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Abstract

Geographically distributed cloud platforms enable an attractive approach to large-scale content delivery.
Storage at various sites can be dynamically acquired from (and released back to) the cloud provider so as
to support content caching, according to the current demands for the content from the different geographic
regions. When storage is sufficiently expensive that not all content should be cached at all sites, two issues
must be addressed: how should requests for content be routed to the cloud provider sites, and what policy
should be used for caching content using the elastic storage resources obtained from the cloud provider.
Existing approaches are typically designed for non-elastic storage and little is known about the optimal
policies when minimizing the delivery costs for distributed elastic storage.

In this paper, we propose an approach in which elastic storage resources are exploited using a simple
dynamic caching policy, while request routing is updated periodically according to the solution of an opti-
mization model. Use of pull-based dynamic caching, rather than push-based placement, provides robustness
to unpredicted changes in request rates. We show that this robustness is provided at low cost – even with
fixed request rates, use of the dynamic caching policy typically yields content delivery cost within 10% of
that with the optimal static placement. We compare request routing according to our optimization model
to simpler baseline routing policies, and find that the baseline policies can yield greatly increased delivery
cost relative to optimized routing. Finally, we present a lower-cost approximate solution algorithm for our
routing optimization problem that yields content delivery cost within 2.5% of the optimal solution.
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1. Introduction

A common approach to making content delivery applications scalable is to cache content at multiple
geographically distributed sites, and to attempt to serve client requests from nearby servers. However, it
is costly for a content provider to establish its own dedicated distributed infrastructure, and so content
providers often rely on the services of CDN companies.

Recently another option has become possible, namely to make use of the facilities of cloud service
providers. A number of major cloud service providers (e.g., Amazon2, Google3, Microsoft4), employ geo-
graphically distributed data centers that can be used to host content delivery servers. Unlike when using a
CDN, the content provider can often retain control over content caching and request routing.5 Unlike the

1Dr. Gopinathan worked on this project during his postdoc at Linköping University, but has since joined Google.
2http://aws.amazon.com/s3
3http://cloud.google.com
4http://www.windowsazure.com/
5In this paper, “request routing” refers to the choice of the site at which a request will be served, not to network-level

routing.
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case with dedicated infrastructure, use of cloud infrastructure enables server and storage resources to be
dynamically acquired and released according to current demands.

When storage is sufficiently expensive that not all content should be cached at all server sites, policies are
needed for determining what to cache where, and how to route client requests. A simple approach applicable
to scenarios with non-elastic storage resources is to route to the server site nearest to the requesting client,
and to use a pull-based caching approach together with a cache replacement policy such as LRU. Such a
cache replacement policy assumes fixed storage resources rather than elastic resources. Also, this approach
does not consider that it may sometimes be preferable to route client requests to some server site other than
the nearest site, owing to a higher probability that the content is already cached at the other site. Another
commonly-considered approach is to optimize semi-static content placement and request routing, according
to known request rates (e.g., [1, 3, 23]). If actual request rates differ from those assumed in the optimization,
however, the result could be highly sub-optimal.

In this paper, we consider distributed content delivery systems utilizing elastic storage resources. These
resources are assumed to be obtained from a cloud service provider, with a cost incurred per GB per unit
time. In practice, cloud service providers frequently advertise prices according to GB used per month, but
base the charge for a month on the average usage over that month. We assume here that such averaging
is done with a sufficiently fine time granularity that costs will accurately reflect the time-varying storage
usage that results from dynamic caching.

We also assume that server and network resources can be dynamically acquired/released, and so, unlike
much prior work, load balancing for the purpose of minimizing queueing delay is not an objective. Instead,
our objective is to design caching and routing policies that minimize delivery cost as determined by the
costs of acquired storage at each server site, the costs of loading caches with content, and the differential
network delivery cost whenever client requests are routed to other than the nearest server site.

Our contributions are as follows:

• We propose a novel approach to content delivery using geographically distributed cloud platforms.
Request routing is updated periodically through use of an optimization model, based on request rate
estimates. Cache contents are updated dynamically, and are therefore able to adapt to unpredicted
changes in request rates.

• The routing optimization problem we formulate is non-convex and standard techniques therefore are
not directly applicable. However, we are able to identify and prove properties of the solution, leading
to a feasible solution algorithm.

• We compare content delivery cost with our approach to that with optimal static placement and routing,
as well as that with simple baseline routing policies that route all requests locally, or to the server site
with the highest local request rate. Even with fixed request rates, use of dynamic caching is typically
found to yield content delivery cost within 10% of that with the optimal static placement. We find that
the simple baseline routing policies can yield greatly increased delivery cost, relative to the optimal
routing policy with our proposed approach.

• We describe a lower-cost approximate solution algorithm for our routing optimization problem that
yields content delivery cost within 2.5% of the optimal solution.

The remainder of the paper is organized as follows. Our system model is presented in Section 2. Section 3
describes our dynamic caching and optimized routing approach to content delivery. Section 4 characterizes
the solution to our optimization model for request routing and presents a viable algorithm for finding it.
Optimal static placement and routing is considered in Section 5. Section 6 presents numerical results and
policy comparisons, while Section 7 considers lower-cost approximate solution algorithms for our routing
optimization problem and evaluates their performance. Related work and conclusions are presented in
Sections 8 and 9, respectively. Finally, to enhance readability, our major proofs are presented in appendices.
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2. System Model

Since we assume elastic resources, cache storage and request routing can be considered separately for
each file. Our model for caching and request routing for an individual file assumes a system with N = |N |
server sites and M = |M| client locations6, where N and M are the sets of server sites and client locations,
respectively. We consider cache storage and routing at the level of sites, without concern for server/content
replication within a site, and in the following refer to a “server site” simply as a “server”. For simplicity, it
is assumed that every client location c ∈ M is local to one server i∗(c) ∈ N , and remote to all other servers
i 6= i∗(c), i ∈ N .

File delivery costs that are independent of cache storage and request routing need not be modelled. Our
model includes three types of costs that are caching and/or routing dependent:

• Remote routing cost is the incremental cost associated with routing a client request for the file to a
server other than the client’s local server, i.e. to a remote server. It is modelled by a cost R > 0 that
is independent of which remote server the request is directed to. Although this routing cost model
incorporates only first-order location information (local vs. remote), previous work compared routing
policy evaluations that also used such a first-order model to evaluations obtained by simulation, using
transit-stub network topologies with differentiated link costs, and found good agreement [10].

• Cache storage cost is the cost of the storage resources used for the file. It is modelled by a cost L > 0
that is incurred per server, per unit of time that the file is in cache at that server.

• Cache miss cost is incurred when a client request is directed to a server at which the file is not currently
cached, and the file must be retrieved from elsewhere (e.g., from a content provider server that stores
the original copies of all content). Our model normalizes the incremental cost of a cache miss (versus
cache hit) to be 1 cost unit.

The rate of requests from clients at location c ∈ M is denoted by λc. In our routing optimization model,
we assume that requests from the M client locations can be modelled by independent Poisson processes,
and that if the requests from a particular client location are split among multiple servers, request routing
can be modelled as probabilistic. The rate of requests that are directed to server i ∈ N from client location
c ∈ M is denoted by λc,i, the matrix of all λc,i values is denoted by λ, and γi =

∑

c∈M λc,i denotes the
total rate of requests that are directed to server i.

3. Dynamic Caching and Optimized Routing

We propose an approach in which caching and routing policies operate at different time scales. Request
routing is updated periodically using request rate estimates, through use of an optimization model. Cache
contents are updated dynamically, and are therefore able to adapt to the unpredictable variations in request
rates that can be expected in practice.

A pull-based approach to caching is used, wherein content is added to the cache at a server when accessed
there, if not already present. A file is evicted when unaccessed at the server for a fixed period of time T ,
a policy parameter. With such a policy, cache storage use at a server tracks the file request rate there,
increasing or decreasing correspondingly as the request rate increases or decreases. This policy also exploits
any short-term temporal locality in the file request stream, as is often observed in practice.

Our optimization model for request routing incorporates (i) cache miss costs, (i) the costs of non-nearest
server routing, and (iii) cache storage costs. Given our system model and dynamic caching policy, the
probability that the file is not found in cache at server i when a request for the file is directed there is given
by

P (cache miss) = e−γiT , (1)

6The “location” of a client might be defined according to what ISP the client obtains service from, for example, or may be
defined at some other granularity.
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Figure 1: Rates of incurring cache miss and storage costs at a server.

and therefore the rate C(γi) at which server i incurs cache miss cost is

C(γi) = γie
−γiT . (2)

Figure 1 shows plots of the above function for varying total request rate at server i. It is straightforward
to show that this function has a single inflection point at γi = 2

T
, and therefore is strictly concave for γi < 2

T

and strictly convex for γi > 2
T

. The slope of this function is given by

dC(γi)

dγi

= e−γiT (1 − Tγi). (3)

Note also that there is a single maximum at γi = 1
T

. The above characteristics will be leveraged in our
analysis characterizing optimal request routing.

The rate at which server i incurs cache storage cost is given by

G(γi) = L(1 − e−γiT ). (4)

We note that this function is a monotonically increasing concave function.
Figure 1 shows three basic example scenarios in which (a) the cache miss cost dominates except under

very high server load, (b) the peak rates of incurring cache miss cost and storage cost are equal, and (c)
the cache storage cost dominates. Without loss of generality, we use L = 1 in Figure 1 as well as in all
subsequent figures. With our choice of cost unit (equal to the cache miss cost), choosing L = 1 corresponds
to taking as our unit of time the time it takes to incur a storage cost equal to the miss cost.

Finally, the rate at which server i serves requests from clients for which it is a remote server, multiplied
by the incremental remote routing cost R for each such request, is given by

R
∑

c∈M:i∗(c) 6=i

λc,i. (5)

Using expressions (2), (4), and (5) for the three cost components, optimal request routing can be obtained
by finding λc,i values that solve the following optimization problem:

Minimize
∑

i∈N

(

γie
−γiT + L(1 − e−γiT ) + R

∑

c∈M:i∗(c) 6=i λc,i

)

, where γi =
∑

c∈M λc,i (6)

Subject to
∑

i∈N λc,i = λc, ∀c ∈ M

λc,i ≥ 0, ∀i ∈ N ,∀c ∈ M

For convenience and without loss of generality, in the following we assume that N = M . The more
general formulation can easily be transformed into this special case, by aggregating all of the client locations
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with the same local server into a single client location. We index servers and client locations from 1 to N
such that client location i is local to server i, and such that λi ≤ λj whenever i ≤ j. In the next section, we
address the problem of how the above optimization problem is solved in order to obtain an optimal request
routing.

4. Finding an Optimal Request Routing

Note that the optimization function (6) is neither convex, nor concave, and hence standard methods can
not be applied. In Section 4.1 we consider some special cases for which the solution is readily obtainable.
In Section 4.2 we derive some properties of the solution, under a mild constraint on the value of the policy
parameter T , that enable general instances of the optimization problem to be solved in polynomial time.

4.1. Special Cases

We first consider the special cases in which the incremental remote routing cost R tends to zero or
infinity:

• If R → 0, then with an optimal request routing all requests are routed to a single server.

• If R → ∞, then in the optimal request routing all requests are routed to the local server.

These observations are summarized in Theorem 1 and Theorem 2.

Theorem 1. When the incremental remote routing cost R → 0, then an optimal request routing will send
all requests to a single server.

Proof. (Theorem 1) We will prove this theorem by contradiction. Assume that R → 0, and yet that with
some optimal request routing λ

∗, the set of active servers, N ′ ⊂ N , is of cardinality at least two. Let
i and j denote the indices of two such servers. Since, for positive total request rate, the cache storage
cost function given in expression (4) is positive and strictly concave, while the cache miss cost function
given in (2) is positive, strictly concave for total request rate less than 2/T , and strictly decreasing for
total request rate greater than 1/T , both functions are strictly subadditive; i.e., for any positive γi and γj ,
L(1 − e−(γi+γj)T ) < L(1 − e−γiT ) + L(1 − e−γjT ) and (γi + γj)e

−(γi+γj) < γie
−γiT + γje

−γjT . Therefore,
a lower cost could be obtained by routing all of the requests being routed to these servers to only one of
them, making the other inactive. This contradicts the assumed request routing optimality, and establishes
the theorem.

Theorem 2. When the routing cost R → ∞, then in the optimal request routing each client request is served
locally.

Proof. (Theorem 2) The proof is trivial, as any request routing in which not all clients are served locally
has an infinite cost, while the request routing in which all clients are served locally has a finite cost.

We next consider the special case in which the cost of a cache miss is negligible relative to the cache
storage and remote routing costs L and R. In this case request routing concerns the tradeoff between
reducing remote routing costs by selecting local servers, versus reducing cache storage costs by reducing the
number of servers to which requests are routed. In this case our optimization problem reduces to:

Minimize
∑N

i=1

(

L(1 − e−γiT ) + R(γi − λi,i)
)

, where γi =
∑N

c=1 λc,i (7)

Subject to
∑N

i=1 λj,i = λj , ∀j, 1 ≤ j ≤ N

λj,i ≥ 0, ∀i, j, 1 ≤ i ≤ N, 1 ≤ j ≤ N

An optimal policy for this problem was first characterized for a somewhat different server selection sys-
tem [10]. Below, we formalize this policy into a theorem in our context and provide a proof.
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Theorem 3. There is an optimal miss-oblivious request routing policy, in which for some index k (1 ≤ k ≤
N), all requests from client location i, for k ≤ i, are served locally, while all requests from client location j,
for j < k, are served at server N .

Proof. (Theorem 3) Since the cache storage cost function given in expression (4) is nonnegative and strictly
concave, it is optimal to serve all requests that receive remote service at a server with the highest rate of
requests from its local clients (i.e., server N). Furthermore, it is optimal to serve either all requests from a
client location at server N , or none, and the former case can hold only if all requests from client locations
with equal or lower request rate are also served remotely.

To find an optimal request routing, one need only pick the lowest cost solution out of the N candidate
solutions that satisfy the conditions of the above theorem. Hence, the total cost with optimal request routing
is given by

mink=1,2,...,N

[

L(1 − e−(λN+
Pk−1

i=1 λi)T ) +
∑N−1

i=k L(1 − e−λiT ) + R
∑k−1

i=1 λi

]

, (8)

and an optimal request routing can be found in linear time.

4.2. General Case

We now consider the general case of the routing optimization problem under a mild constraint on the
value of the policy parameter T . In particular, we impose the realistic constraint that T is chosen sufficiently
large, such that the total of the costs at a server i, as given by the sum of expressions (2), (4), and (5),
could never be decreased by increasing the arrival rate at server i of remotely-routed requests. By taking the
derivative of this sum with respect to the arrival rate of remotely-routed requests, this constraint requires

R + e−γiT (1 − Tγi + LT ) ≥ 0 ∀γi ≥ 0. (9)

Differentiating with respect to γi to find the value of γi that minimizes the left-hand side, yields the constraint

T ≥ (ln(1/R) − 2)/L. (10)

Assuming the above constraint on T , we characterize and prove some properties of optimal request
routing. This in turn allows us to clearly define a space of candidate solutions within which a solution to
our optimization problem is guaranteed to exist, and to develop a polynomial-time algorithm for finding it.

We will say that a server i is active (for the file under consideration) if it has a non-zero rate of requests
directed to it, i.e. γi > 0. Theorem 4 places an important constraint on the routing to an active server from
its local clients.

Theorem 4. With optimal request routing, it is never the case that only a fraction (less than one and
greater than zero) of the requests from a client location are directed to the local server, with the remainder
being routed elsewhere.

A proof of this theorem is provided in Appendix A. Since it clearly could not be optimal for requests
from remote clients to be routed to a server, while all requests from clients local to this server are directed
elsewhere, Theorem 4 implies that with optimal request routing, each server must fall into one of three
categories:

• Local serving servers are those that serve all requests for the file from local clients, but no other
requests.

• Inactive servers do not serve any requests for the file. Requests from local clients are routed to remote
servers.

• Local and remote serving servers are those that serve all requests for the file from local clients, as well
as requests from remote clients.

6
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Recall that we index servers and client locations such that client location i is local to server i, and
such that λi ≤ λj whenever i ≤ j. Theorem 5 states that with optimal request routing, servers can be
divided into four distinct sets (one or more of which may be empty), such that for some i1, i2, and i3, where
1 ≤ i1 ≤ i2 ≤ i3 ≤ N + 1, servers with index i < i1 are in set S1, index i such that i1 ≤ i < i2 are in set
S2, index i such that i2 ≤ i < i3 are in set S3, and index i such that i ≥ i3 are in set S4. The servers in
S1 are inactive. The servers in S2 and S4 are active, but serve only the requests from their local clients.
In addition to the requests from their local clients, the servers in S3 also serve requests from remote clients
(from the client locations local to the servers in S1). All servers in S3 have the same total rate of requests
directed to them.

Theorem 5. Optimal request routing can be achieved by a policy that partitions the servers into four sets,
S1, S2, S3, and S4, one or more of which may be empty, such that:

1. For any i ∈ Sk and j ∈ Sl where k < l, we have λi ≤ λj.

2. The servers in the sets S2 and S4 are local serving only. Servers in set S1 are inactive, while servers
in S3 are local and remote serving.

3. All servers in S3 serve the same rate of requests, which does not exceed that of the least-loaded server
in S4 (when S4 is nonempty).

A proof of this theorem is provided in Appendix B. Note that a solution to our optimization problem can
be found in polynomial time by considering each possible partitioning of the servers into the four sets S1,
S2, S3, and S4, and then calculating the delivery cost with each partitioning. This approach would require
O(N3) candidate solutions to be considered. Calculation of the delivery cost for each is O(N), even when
calculations for neighboring candidate solutions are leveraged.

The number of candidate solutions to be considered can be reduced by noting that once the set S1 is
determined, so is the total rate of requests that will be served remotely. From Theorem 5, there is an
optimal routing in which all servers in S3 serve the same rate of requests, which does not exceed that of
the least-loaded server in S4. For a given total rate of requests to be served remotely, there is only one
possible partitioning between the S3 and S4 servers that will satisfy these constraints, which can be found in
linear time. Therefore, the number of candidate solutions that need be considered can be reduced to O(N2)
(the number of possible choices of the sets S1 and S2), with a resulting total computational cost of O(N3).
Figure 2 illustrates the allocation of request rate for differing numbers of servers in S1, with the remaining
servers falling into either S3 or S4 (i.e., here S2 is assumed empty).

5. Optimal Static Placement and Routing

For comparison purposes, we now consider optimal static placement and routing. Under fixed request
rates, and without any short-term temporal locality in the request streams (i.e., can be modelled by fixed-
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rate Poisson processes), intuitively it would be better to either permanently store the file at a server, or not
store it at all at that server. In this section we first verify this intuition by proving that static placement
is optimal for a generalization of our routing optimization problem in which each server i has its own Ti

value; i.e., we prove that for each server i, the optimal Ti is either 0 or → ∞. We then give an expression for
the delivery cost with optimal static placement and routing. Finally, we observe that, while optimal under
fixed-rate Poisson requests, static placement is not robust to changes in request rates.

Theorem 6. Let K denote the number of client locations (possibly zero) with request rate λi at least L
min[1,R] .

Optimal caching and request routing can be achieved by a policy in which the K servers local to these client
locations (those with index i such that N −K < i ≤ N) serve the requests of their local clients with Ti → ∞.
When K ≥ 1 and R ≤ 1, the other servers (if any) are inactive, with their local clients served by one of
the K servers. When K ≥ 1 and R > 1, the other servers serve only their local clients with Ti = 0. When
K = 0 and L +

∑N−1
i=1 Rλi ≤

∑N
i=1 λi, all requests should be directed to the server with the highest local

request rate (server N) with TN → ∞. Finally, when K = 0 and L + R
∑N−1

i=1 λi >
∑N

i=1 λi, all client
requests should be served by the local server, with Ti = 0 for 1 ≤ i ≤ N .

Proof. (Theorem 6) This proof is derived on a case-by-case basis. Consider first an optimal value of Ti for
server i. We will show that the objective function is minimized using either Ti → ∞ or Ti = 0. To see this,
consider the derivative of the objective function (6):

F (Ti) =
d

dTi

[Expression(6)] = γie
−γiTi(L − γi). (11)

This function is monotonically non-decreasing for γi ≤ L and monotonically non-increasing for L ≤ γi.
(Note that L, measured as cost per time unit, and γi, measured as requests per time unit, are related here
by the normalized cost of a cache miss, equal to 1 cost unit.) This shows that any solution with intermediate
Ti values is no better than one with either Ti → 0 or Ti → ∞. Hence, an optimal Ti value for server i is
Ti → ∞ or Ti = 0.

Second, assume that there exists at least one active server j with Tj → ∞, and let us consider where the
requests of the clients local to server i should be served. When L ≤ min[1, R]λi, the objective function (6) is
minimized by serving all these requests locally with Ti → ∞ (at cost L). To see this, note that the costs of
operating with Ti → 0 and Ti → ∞ are γi and L, respectively. Using Ti → ∞ and serving all these requests
locally (at total cost L) is optimal in this case. (Note that any request directed to a different server would
increase the cost by R.) When λi < L and 1 ≤ R, the objective function (6) is minimized by serving all
these requests locally with Ti = 0 (at cost λi). (Note that any request directed to a different server would
increase the cost by R − 1.) Finally, when λiR < L and R < 1, the objective function (6) is minimized by
directing all these requests to server j. (Note that any request served locally would increase the cost by
1 − R.)

At this point, we make two observations. First, from the above argument it is clear that in the optimal
policy, the same decision should be made for all requests local to server i. If one request local to server i
should be served locally, then all requests local to server i should be served locally, and if one such request
should be served remotely, then all these requests should be served remotely. Second, as long as the request
rate from at least one client location j is such that L ≤ min[1, R]λj , there will be at least one server (in
particular, server j) that serves local requests with Tj → ∞.

Based on the second observation, we must now consider the case where there is no server i with L ≤
min[1, R]λi. For this case, we first show that (i) there is no advantage to have more than one server with
Ti → ∞, and (ii) the server with the highest local request rate is the best candidate for such a server. The

first property follows from the inequality
∑N−1

i=N−K min[1, R]λi ≤ (K − 1)L, which we use to show that:

L +

N−1
∑

i=1

min[1, R]λi ≤ KL +

N−K
∑

i=1

min[1, R]λi. (12)

8



The second property follows from the inequality λc ≤ λN (1 ≤ c ≤ N), which we use to show that:

L +

N−1
∑

i=1

λiR ≤ L − λcR +

N
∑

i=1

λiR. (13)

In the case where there is no server i with L ≤ min[1, R]λi, the only two candidate solutions are that
(i) all requests are served locally with Ti = 0 for all servers, or (ii) server N (with the highest local request
rate) serves all requests and uses TN → ∞ (since for TN = 0 it cannot be optimal for server N to serve

remote requests). In the first case the total cost is
∑N

i=1 λi, and in the second case the total cost is

L +
∑N−1

i=1 min[1, R]λi. Enumerating each of the cases completes the proof.

Corollary 1. With fixed-rate Poisson requests, the rate at which delivery cost is incurred with optimal static
placement and routing is given by:

min

[

N
∑

i=1

λi, min
1≤k≤N

[

kL + min[1, R]

N−k
∑

i=1

λi

]]

. (14)

While static placement and routing is optimal with fixed-rate Poisson requests, we note that in many
content delivery applications there is a high degree of popularity variation and churn [27, 6]. To illustrate the
robustness to request rate changes that dynamic caching provides, in contrast to static placement, consider
the extreme scenarios in which request rates are initially very low (λi → 0) and then become very high
(flash crowd), or vice-versa. For both very low and very high request rates, with both dynamic caching and
optimal static placement, the optimal routing is to the local server.

When request rates are very high, copies of the content should be placed at all servers, giving an optimal
total rate at which delivery cost is incurred of NL. This is also the cost that would be incurred with
dynamic caching. When request rates are very low, no copies should be cached, giving an optimal total
rate at which delivery cost is incurred of

∑

i λi → 0. With dynamic caching, this becomes approximately
∑

i(λi + L(T/(T + 1/λi))) → 0.
In contrast, with static placement optimized for very low request rates (i.e. no copies), if request rates

then became very high the total rate at which delivery cost would be incurred would be
∑

i λi >> NL.
With static placement optimized for very high request rates (i.e. copies of the content placed at all servers),
if request rates then became very low, the total rate at which delivery cost would be incurred would be
NL >>

∑

i(λi + L(T/(T + 1/λi))).

6. Numerical Results and Policy Comparisons

In this section we present numerical results, including delivery cost comparisons of dynamic caching
and optimized routing to optimal static placement and routing, as well as to dynamic caching with simple
baseline routing policies. We carry out these comparisons under different workload and cost conditions,
assuming fixed-rate Poisson requests. Recall that the unit of cost is chosen as the incremental cost of a
cache miss, and that choosing L = 1 corresponds to choosing as our time unit the time required to incur a
storage cost equal to the miss cost.

Figure 3 shows the rate of requests directed to each server with dynamic caching and optimized routing for
different values of the policy parameter T , as well as with local routing and with optimal static placement
and routing. Results are shown for two different remote routing costs. The default value of R = 0.5
(Figure 3(a)) corresponds to a scenario where the cost of routing a request remotely is half the cost of a
cache miss. The value of R = 0.9 (Figure 3(b)) corresponds to a scenario in which there is a high cost to
routing remotely, not much less than the cost of a cache miss. The request rates from the client locations
are distributed according to a Zipf distribution with parameter α = 1, such that the average request rate
across the client locations, denoted by λ, is 1. Request rate variations across the client locations could arise
owing to differences in file popularity in different regions, or simply from differences in the number of clients
at each location.
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Figure 3: Rates of requests directed to each server with different policies. (Default: λ = 1, α = 1, N = 64, L = 1.)

For a fixed request rate at a server, as T decreases the cache miss cost increases, creating incentive
to concentrate requests at fewer servers. For T = 0.1, in fact, there is just a single active server in the
optimal solution for the system considered in Figure 3(a). As T increases, there are increased numbers of
active servers, but it is interesting to note that for T = 2 the number of active servers is the same in both
Figures 3(a) and (b) as with T → ∞, as seen by the results for optimal static placement and routing.7 We
have observed that T = 1/e (using our normalized time unit, the point at which the peak rates of incurring
cache miss cost and storage cost are equal, as illustrated in Figure 1), appears to achieve a good compromise
between robustness to request rate changes, and cost performance under fixed-rate Poisson requests, and
use it as the default in subsequent figures.

Finally, note that for most of the cases with dynamic caching and optimized routing considered in
Figure 3, no more than three of the sets identified in Theorem 5 are non-empty. For example, with T = 0.1
set S4 is empty (as well as set S2 for the case of R = 0.5 considered in Figure 3(a)), and with T = 2 set S2

is empty. Among the considered cases, only with T = 1/e and R = 0.9 are all four sets non-empty.
We next consider how the total delivery cost with dynamic caching and optimized routing is split among

the three cost components. We report the cost incurred per processed request, i.e., the rate at which delivery
cost is incurred, divided by the total request rate, and call this “average delivery cost”. Figure 4 shows
the average delivery cost for each cost component separately, for different workload, system, and policy
parameter settings. Recall that the unit of cost is chosen as the incremental cost of a cache miss, and so,
for example, a policy that always routed requests to the local server but never cached the file (T = 0) would
have an average delivery cost of one. The average delivery cost could also substantially exceed one, for
example in a scenario with very low request rates and a static placement policy that used k > 0 file copies
incurring cache storage cost at rate kL. Results are shown varying (a) the average request rate λ per client
location, (b) the request rate skew α, (c) the number of server sites N , (d) the value of the dynamic caching
policy parameter T , and (e) the remote routing cost R. In all cases, we use the following default values:
λ = 1, α = 1, N = 64, T = 1/e, R = 0.5.

It is interesting to observe that frequently a substantial fraction of requests are routed to a remote server,
as indicated by the relatively large remote routing costs. (Note that the fraction of requests that are remotely
routed can be found by dividing the average remote routing cost by R.) Remote routing can concentrate
requests at fewer servers, reducing the cache storage and cache miss costs. It is also interesting to observe
that in Figure 4(d) all T values greater than 1 give the same results. This is consistent with the observation
concerning Figure 3 that T = 2 gave the same number of active servers as T → ∞. Finally, note that as the

7Note that for optimal static placement and routing, it does not matter which of the servers with a copy of the file gets a
remotely-routed request. For the results shown in Figure 3, remotely-routed requests have been spread evenly across all such
servers.
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Figure 4: Cost breakdown for dynamic caching and optimized routing. (Default: λ = 1, α = 1, N = 64, T = 1/e, R = 0.5,
L = 1.)

arrival rate increases in Figure 4(a), the average total delivery cost decreases. This is a consequence of our
definition of average delivery cost as the rate at which delivery cost is incurred divided by the total request
rate, and the ability to amortize cache miss and cache storage costs over multiple requests.

We now compare the average total delivery cost with dynamic caching and optimized routing, to that
with optimal static placement and routing, and to that when using dynamic caching with two simple baseline
routing policies:

• Local routing in which all requests are directed to the local server.

• Single routing in which all requests are directed to the server with the highest local request rate.

Note that these baseline routing policies are optimal when R → ∞ and R → 0, respectively. Figure 5 shows
these cost comparisons varying (a) the average request rate λ per client location, (b) the request rate skew
α, (c) the number of server sites N , and (d) the remote routing cost R. The same default values are used
as for Figure 4.

We note that optimized routing in many cases significantly outperforms the baseline policies. In fact, the
performance difference can be shown to be unbounded. We also note that dynamic caching and optimized
routing, with T = 1/e, typically yields delivery cost within 10% of that with the optimal static placement.
Greater performance differences are only seen for small systems (N < 8) or low request rates (λ < 0.1 using
our normalized time unit).

7. Lower-cost Routing Policies

Although request routing based on a solution to the routing optimization problem formulated in Section
3 can substantially outperform simple baseline policies such as local and single, finding such a solution
requires O(N2) candidate solutions to be considered. In this section we consider the cost penalties with two
simpler policies, based on approximate solutions to the routing optimization problem:
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Figure 5: Cost comparisons. (Default: λ = 1, α = 1, N = 64, R = 0.5, L = 1.)

• Top-skewed routing in which requests from clients local to the n servers with the lowest local request
rates are directed to the server with the highest local request rate, which serves both its own local
clients and all remote requests. All other servers serve only requests from local clients. The value of
n is chosen that yields the smallest total delivery cost as given by optimization function (6).

• Balanced routing in which requests from clients local to the n servers with the lowest local request
rates are directed to a set of servers with the next higher local request rates, so that all servers in
this set serve the same rate of requests and none of them serve more than any other server. All other
servers (with higher local request rate) serve only requests from local clients. Again, the value of n is
chosen that yields the smallest total delivery cost as given by optimization function (6).

Note that the top-skewed policy has the same structure as the optimal miss-oblivious solution described in
Section 4.1. The balanced policy corresponds to modifying our search algorithm in Section 4.2 by adding the
constraint that S2 is empty (as was assumed when illustrating the algorithm operation in Figure 2). Note
that with this modification only O(N) candidate solutions need be considered, and the total computational
cost is reduced to O(N2) from O(N3).

Figures 6 and 7 show the cost increase compared to the cost of the optimal solution for the top-skewed
and balanced policy, respectively. The figures consider a wide range of scenarios, including (a) four orders of
magnitude differences in average request rate λ, (b) balanced (α = 1/16) to highly skewed (α = 4) request
rates, as well as (c) small (N = 2) to large (N = 1024) systems. Each figure shows results for three R values
(0.1, 0.5, 0.9) and the default T value (1/e), and for three T values (0.1, 1/e, 2) and the default R value
(0.5).

Figure 6 shows that there are cases where the cost increase for the top-skewed policy is up to 18%,
although for T = 1/e the cost increase does not exceed 10%. In contrast, the balanced policy consistently
achieves a delivery cost within 2.5% of the optimal solution (Figure 7). The cost increase with this policy is
greatest when the remote routing cost is high, as some of the servers that otherwise would be in server set
S2 (and serve requests from local clients) instead are inactive. However, as the cost increase is small and
the complexity of the policy is significantly less than that of the optimal solution, the balanced policy may
be an attractive candidate to be used in practice.
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Figure 7: Cost increase if using the balanced policy compared to the optimal solution. (Default: λ = 1, α = 1, N = 64, L = 1.)

8. Related Work

Routing for geographically distributed cloud services is an area of increasing interest (e.g., [34]). The
most closely related work, however, has focused on server (or replica) placement, and request routing, in
more traditional content delivery platforms such as CDNs. Generally, replica placement can be divided into
server placement and content placement. Both tasks consider the problem of deciding where to place service
resources to satisfy a given demand.

In the context of server and replica placement, simple iterative greedy approaches that place one server
or file at a time have proven to achieve close to minimal network costs [28, 24, 20, 29]. Other works
have considered the problem of minimizing the overall network delay and its relationship to demand and
server placement [8] or how to improve the system capacity by dynamically adjusting the number of replicas
according to server load and demand [33]. There have also been a number of works that investigate how to
efficiently distribute the content to the replica servers (e.g., [12, 25, 17]). In contrast to the above works,
we assume that the candidate servers for a particular file are predetermined but that not all servers have
cached copies, and consider the problem of optimized request routing among these servers.

Much work on content placement has considered hierarchical cache systems, evaluated with the aid
of various mixed integer linear program (MILP) formulations, or variations thereof [3, 7, 14]. Borst et
al. [7] analyze simple cooperative cache management algorithms designed to minimize bandwidth costs,
while Applegate et al. [3] employ a Lagrangian relaxation-based decomposition technique combined with
integer rounding to find near-optimal solutions. Huang et al. [19] extends these ideas to allow placement
optimization on the granularity of segments, allowing them to better leverage impatient user video viewing
patterns (where the users do not watch the full video) to reduce bandwidth usage. Other works (e.g., [23, 32])
have defined various optimization formulations, shown that the content placement problem is NP-complete,
and provided heuristic replication strategies. In contrast to the above works, we consider the problem in
which request routing is optimized and active replicas only exist while in the cache. For our specific problem,
we leverage properties of the optimal solution to find ways to obtain the optimal solution efficiently.
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There is a wide range of papers that consider the request routing problem, including works that consider
both individual [11, 21, 35, 2, 30] and aggregated [1, 9, 15, 18, 10] service. With aggregated service multiple
requests are more efficiently served as a group than individually. Similar to in our context, this scaling
property results in tradeoffs between selecting the nearest server and directing requests to a single server
that can achieve greater service aggregation. Within the context of streaming video delivery Almeida et
al. [1] show that use of service aggregation can result in optimal solutions for placement, request routing,
and routing of server multicasts that are very different from those for systems without service aggregation.
Carlsson and Eager [9, 10] use a system model similar to that employed here, to compare classes of request
routing policies for systems in which multiple servers implement a batched video-on-demand service, as well
as for the case of energy/cost efficient content delivery using digital fountains.

Our paper uses a relatively general cost model, and we note that this model also is applicable to the
context of energy-aware policies in systems with caches at the edge of the network. Here, the cache storage
cost and cache miss cost correspond to the energy costs associated with keeping the content in the cache
and loading the content into the cache, respectively. The remote routing cost also maps naturally, as edge
networks typically consume much more energy than the core [5, 26, 4]. In this case, the remote routing cost
reflects the difference between the energy consumed with local service (i.e., consuming a base energy cost
staying within the same edge network) and with remote service (i.e., the cost associated with obtaining the
content from a different edge network).

Among the works that assume individual service, perhaps the most closely related to ours are papers that
consider optimized cache copy placement and request routing using TTL-based caches. TTL-based caches
have been used and analyzed in the context of DNS servers [22]. However, in contrast to DNS servers, we
assume that the content provider is in control of the content and therefore the “TTL” can be reset on each
access as there is no risk of (uninformed) cache inconsistency. Other works have considered networks of
LRU caches [13, 31] or TTL-based cache networks with exponentially distributed TTL values [16]. Here, we
assume a fixed (deterministic) value of our parameter T .

9. Conclusions

In this paper we proposed an approach to content delivery using geographically distributed cloud plat-
forms. In the proposed approach elastic storage resources are exploited using a simple dynamic caching
policy, while request routing is updated periodically according to the solution of a cost optimization model.
In comparison to static placement, dynamic caching provides greater flexibility in scenarios where there is
a high degree of popularity variation and churn and/or short-term temporal locality in the request streams.
Our optimization model for request routing considers (i) the dynamics of the content caching policy, (ii)
the costs of non-nearest server routing, (iii) the costs of cache misses, and (iv) storage costs. We identified
and proved properties of the optimal solution that allowed us to determine a viable algorithm for finding it,
despite the general non-convexity of the problem.

Our numerical results suggest that, under fixed request rates, use of dynamic caching typically yields
content delivery cost within 10% of that with the optimal static placement. We found that optimized
routing can yield greatly reduced delivery cost compared to simple baseline routing policies. A lower-cost
approximate solution algorithm for our routing optimization problem was found to yield close-to-optimal
solutions.
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Appendix A. Proof of Theorem 4

Proof. (Theorem 4) The proof of Theorem 4 is by contradiction. Suppose to the contrary that with an
optimal request routing, there is some active server i that serves only a fraction (less than one and greater
than zero) of the requests from its local clients, with some non-zero fraction of the remainder of these
requests being directed to a server j 6= i.

Consider the derivative of the total cost, as the rate at which requests from clients local to server i
are directed to server j is increased, and the rate at which they are directed to server i is correspondingly
decreased. With an optimal request routing, this derivative must equal zero; i.e., we must have

R + e−γjT (1 − Tγj + LT ) − e−γiT (1 − Tγi + LT ) = 0. (A.1)

Relation (9) and the above equation imply that 1−Tγi +LT ≥ 0, and we also have (by assumption) R > 0.
Together with the above equation, this implies that γj > γi.

We now show that total cost is higher with this request routing than it would be if all requests being
routed to server i were routed to server j instead, thus contradicting the assumption that the request routing
was optimal, and establishing the theorem. Note that the increase in the total remote routing cost when
the requests being routed to server i are instead routed to server j is maximized when all of the requests
being served by server i were local requests. Thus, we need only consider this case, i.e., we will show that

γie
−γiT +L(1− e−γiT )+γje

−γjT +L(1− e−γjT )− (γi +γj)e
−(γi+γj)T −L(1− e−(γi+γj)T )−Rγi > 0. (A.2)

We first show that the left-hand side of the above relation is minimized for L = 0, and thus we need only
consider this case. Solving for R in equation (A.1) and substituting in relation (A.2), and then taking the
derivative with respect to L yields

2 − e−γjT − e−γiT − (1 − e−(γi+γj)T ) − γiTe−γiT + γiTe−γjT . (A.3)

Letting s = γj/γi > 1 and t = γiT > 0, this derivative can be re-written as

2 − e−st − e−t − (1 − e−t(1+s)) − te−t + te−st. (A.4)

To show that the left-hand side of relation (A.2) is minimized for L = 0, we need to show that expression
(A.4) is greater than or equal to zero. Since the derivative of expression (A.4) with respect to s is negative
for t > 0, we need only show that expression (A.4) is non-negative for s → ∞. This follows immediately
after recognizing that expression (A.4) for s → ∞ is minimized for t → 0.

For L = 0, after solving for R in equation (A.1) and substituting into relation (A.2), we get

γie
−γiT + γje

−γjT − (γi + γj)e
−(γi+γj)T − γi(e

−γiT (1 − Tγi) − e−γjT (1 − Tγj)) > 0. (A.5)

Letting s = γj/γi > 1 and t = γiT > 0 and simplifying yields

(s + 1)(1 − e−t) − t(s − et(s−1)) > 0. (A.6)

It is straightforward to show that the derivative of the left-hand side of the above relation with respect to s
is positive for s > 1, t > 0. Therefore, we need only show that relation (A.6) holds when s → 1 from above;
i.e., that

2(1 − e−t) > 0, (A.7)

which follows immediately, completing the proof.

16



Appendix B. Proof of Theorem 5

To prove Theorem 5, we first prove two properties that are required for the theorem to hold. These
properties are given in Lemma 1 and Lemma 2. The first lemma concerns the unique property of the set
S3. The second lemma concerns the boundary between set S1 and S2.

Appendix B.1. Balancing using remote requests

Lemma 1. Let S be the set of servers that in addition to all of the requests from their local clients also
serve requests from remote clients. There exists an optimal routing in which all servers in S serve the same
total rate of requests; i.e., γi = γj ,∀i, j ∈ S.

To simplify the proof of this lemma we will first transform the optimization problem formulation using
the substitution yi = γi −L. Given this transformation (and the assumption that M = N , with servers and
client locations indexed from 1 to N such that client location i is local to server i), we can now write the
optimization problem as follows.

Minimize

LN + e−LT
∑N

i=1

(

yie
−yiT + eLT R(L + yi − λi,i)

)

, where yi =
∑N

j=1 λj,i − L (B.1)

Subject to
∑N

i=1 λj,i = λj , ∀j, 1 ≤ j ≤ N

λj,i ≥ 0, ∀i, j, 1 ≤ i ≤ N, 1 ≤ j ≤ N

Note that if we ignore constants and set R′ = ReLT , the objective function can be written as

N
∑

i=1

(

yie
−yiT + R′(yi − λi,i)

)

, (B.2)

where we can identify the miss cost term C(yi) = yie
−yiT .

Proof. (Lemma 1) We will show that for any request routing in which two servers i and j in S serve different
total request rates γi 6= γj , the total cost is no less than that of an alternative routing in which the requests
from remote clients that are sent to these two servers are redistributed so that either i and j serve the
same total rate of requests, or only one of them serves requests from remote clients. As this process can be
repeated until all servers remaining in S serve the same total rate of requests, this will establish the lemma.

Let x denote the total rate of requests from remote clients that are directed to servers i and j, with a
fraction f of these requests served by server i and the remaining fraction (1 − f) served by server j, for
0 ≤ f ≤ 1. The total request rate for servers i and j is then given by γi = λi + fx and γj = λj + (1 − f)x,
respectively, giving yi = −L + λi + fx and yj = −L + λj + (1 − f)x. The component of the total delivery
cost that is dependent on f is given as

C = C(yi) + C(yj)

= (λi + fx − L)e−(λi+fx−L)T

+ [λj + (1 − f)x − L]e−(λj+(1−f)x−L)T . (B.3)

The derivative with respect to f of the above cost function is given as

dC

df
= x[e−yiT − Tyie

−yiT ] − x[e−yjT − Tyje
−yjT ], (B.4)

while the second derivative is given as

d2C

df2
= x2T

[

(yiT − 2)e−yiT + (yjT − 2)e−yjT
]

. (B.5)
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The cost is minimized either when f is 0 or 1, or when expression (B.4) equals zero, in which case

e−yiT − Tyie
−yiT = e−yjT − Tyje

−yjT , (B.6)

implying that the slope of the cost function C(y) at y = yi is equal to the slope at yj . Therefore, the
minimum cost can be achieved only when either: (i) both i and j serve the same total request rate, (ii) only
one of i and j serve requests from remote clients, or (iii) neither (i) nor (ii) holds, but the slope of the cost
function at yi is the same as that at yj . The result will be established if we can show that the minimum
cost can never be achieved by (iii).

We distinguish two cases based on the sum of yi and yj (note that this sum is independent of f).
Case 1 (yi + yj ≤ 4

T
): Assume without loss of generality that yi ≤ yj . Using yj ≤ 4

T
− yi, yi ≤ yj (by

assumption), and yi ≤
2
T

(as implied by yi + yj ≤ 4
T

and yi ≤ yj), together with expression (B.5) for the
second derivative of the cost function (B.3) with respect to f , yields

d2C

df2
= x2T

[

(yiT − 2)e−yiT + (yjT − 2)e−yjT
]

≤ x2T
[

(yiT − 2)e−yiT + (2 − yiT )e−yjT
]

= x2T (yiT − 2)(e−yiT − e−yjT )

≤ 0,

with equality holding only when yi = yj = 2
T

. A point where the second derivative is less than zero could
possibly achieve the minimum cost only if it was an endpoint (f = 0 or f = 1). So, the minimum cost
cannot be achieved by (iii) in this case.

Case 2 ( 4
T

< yi + yj): Consider the value of f (possibly outside the feasible interval [0, 1]) for which
yi = yj . The first derivative of the cost function (B.3) is zero at this point since yi = yj , and the second
derivative is positive since yi > 2

T
and yj > 2

T
, implying that this value of f yields a local minimum of the

cost function. Since there is only a single inflection point in the miss cost function C(y), there can be at
most one other value of f for which the slope of the miss cost function at yi equals that at yj . This cannot
also be a local minimum of the cost function (B.3), however, since one cannot have two local minimums
without an intervening maximum. Thus, the minimum cost cannot be achieved by (iii) in this case either,
completing the proof.

Appendix B.2. Inactive servers

Lemma 2. There exists an optimal request routing in which a server j is never in the set of inactive servers
when there is some server i that is local serving, and λi ≤ λj.

Proof. (Lemma 2) We prove this lemma by showing that with a routing in which server i is local serving and
server j is inactive, with λi ≤ λj , the delivery cost is not increased by one of the following two modifications
to the routing: (i) the requests from the clients at location i are served remotely instead of locally; or (ii)
the requests from the clients at location i are served remotely instead of locally and those from the clients at
location j are served locally instead of remotely. Specifically, we determine a threshold request rate λ∗, such
that whenever λi ≤ λ∗, modification (i) does not increase the delivery cost, while when λ∗ < λi, modification
(ii) does not increase the delivery cost.

To calculate the change in total cost, the proof must take into account the load of the two servers, as
well as the set of remote servers that serves i and/or j. Consider now the change in cost if the load of server
i is moved remotely. First, the cost change δi at server i is

δi ≡ δ(λi) = λiR − λie
−λiT − L(1 − e−λiT )

≤ λiR − λie
−λiT . (B.7)

Note that the bound in the last line is tight for the special case when there is no cache storage cost (i.e.,
L = 0). As we will see, this corresponds to the most restrictive case.
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In general, for λi ≤ − 1
T

lnR this function is negative, so for these values it is clearly optimal for i to
be served remotely. However, also for slightly larger values (particularly when L > 0) the increased cost
may be offset by a reduction in cost at the remote servers that end up serving this client location. Second,
with more servers providing additional flexibility, the change in cost due to the remote servers can be worst-
case bounded by considering the scenario where these extra requests are directed to a single server r. This
scenario will allow us to give a valid (but not necessarily tight) bound on the change in cost ∆i at the remote
server(s) from serving also the clients at location i. More specifically, assuming that the remote server r
originally has a total rate of requests directed to it of γr, we have

∆i ≡ ∆(λi) = (γr + λi)e
−(γr+λi)T − γre

−γrT + L(e−γrT − e−(γr+λi)T )

≥ (γr + λi)e
−(γr+λi)T − γre

−γrT . (B.8)

Now, if we consider the total cost change δi +∆i, it is important to note that the change in the combined
cache storage cost always is non-positive:

−L(1 − e−λiT ) + L(e−γrT − e−(γr+λi)T ) = −L(1 − e−γrT )(1 − e−λiT ) ≤ 0.

This shows that the special case when there is no cache storage cost (i.e., L = 0) is the most restrictive. To
improve readability, for the remainder of this proof, we will therefore focus on this case. In this case, we do
not have to keep track of L and the bound in relation (B.7) is tight.

Now, the bound λ∗ for when it always is better to serve i remotely, can be calculated by solving the
equation δi = −∆i. For the case when 2/T ≤ γr this equation has a single solution. To see this, let us now
look closer at the cost changes and their derivatives:

dδi

dλi

=
d

dλi

[λiR − λie
−λiT ]

= R − e−λiT (1 − λiT ), (B.9)

−
d∆i

dλi

=
d

dλi

[γre
−γrT − (γr + λi)e

−(γr+λi)T ]

= e−(γr+λi)T ((γr + λi)T − 1). (B.10)

The first function is a monotonically increasing (positive) for − 1
T

lnR ≤ λi. The second function is monoton-
ically decreasing (negative) when 2/T ≤ γr and can be upper bounded by the cost derivative at the original
point; i.e., −d∆r

dλi
≤ e−γrT (γrT − 1). These observations confirm that there only can be a single point above

− 1
T

lnR ≤ λi for which we have equality between the cost increase δi at server i and cost decrease −∆i at
the remote server. As suggested above, we denote this point λ∗.

When λi ≤ λ∗, the proof is trivial, as it is better for requests from client location i to be routed remotely.
Consider instead the case when λ∗ < λi. For this case, we want to show that it is better to change the
solution such that i goes remotely and j is served locally. For this new solution to have a smaller cost, we
must show that

C(γr) − C(γr + (λi − λj)) ≥ δ(λi) − δ(λj). (B.11)

This can be rewritten as

−

∫ γr+(λi−λj)

γr

dC

dy
dy ≥

∫ λj

λi

dδ

dλ
dλ. (B.12)

Now, to show this, it is sufficient to show that

dC

dy
(γr − z) ≤

dδ

dλ
(λi + z), (B.13)

for all 0 ≤ z. We will show this using a two-step proof. We will first show that it is true for z = 0 and then
use the fact that the derivative (as a function of z) of the two sides is strictly positive as well.
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First, let us consider the case when z = 0. For this case we have that dC
dγ

(γr) = e−γrT (γrT − 1). We
next leverage the definition of the threshold rate λ∗ to obtain a relationship between these variables and λ∗.
More specifically, we use that δ(λ∗) = −∆(λ∗):

λ∗R − λ∗e−λ∗T = γre
−γrT − (γr + λ∗)e(γr+λ∗)T

= e−γrT [γr − γre
−λ∗T − λ∗e−λ∗T ]

= e−γrT (γrT − 1)(1 − e−λ∗T )
1

T

+e−γrT (1 − e−λ∗T − λ∗Te−λ∗T )
1

T
(B.14)

From this expression we can now identify dC
dγ

(γr), and relate the two expressions as follows:

dC

dλ
(γr) ≡ e−γrT (γrT − 1)

=
λ∗T

1 − e−λ∗T
[R − e−λ∗T + e−γrT e−λ∗T ] − e−γrT

≤ R − e−λ∗T + e−γrT e−λ∗T − e−γrT

≤ R − e−λ∗T (1 − λ∗T )

≡
dδ

dλ
(λ∗). (B.15)

Finally, since dδ
dλ

is monotonic, we have:

dC

dλ
(γr) ≤

dδ

dλ
(λ∗) ≤

dδA

dλi

(λi) (B.16)

Having shown that relation (B.13) holds true for the case z = 0, we now want to show that it holds true
for 0 ≤ z as well. To do this we will show that the z-derivatives are monotonic (and the cost difference
therefore will increase monotonically, as well). In other words, we want to show that

d

dz
[
dC

dλ
(γr − z)] ≤

d

dz
[
dδ

dλ
(λi + z)]. (B.17)

First, we expand the derivative into six terms:

d

dz
[c − e−(λi+z)T (1 − (λi + z)T ) − e(γr−z)T ((γr − z)T − 1)]

= e−(λi+z)T (
2

T
+ λi + z) + e−(γr−z)T (

2

T
− γr + z). (B.18)

Note that there only is a single negative term; i.e., γre
−(γr−z)T . On a case-by-case basis we next show that

this term is smaller than some subset of the positive terms.
Case 1 (γr ≤ 2/T ): This case is trivial, as 2/T − γr ≥ 0, and we therefore have that both sets of terms

are non-negative.
Case 2 (2/T ≤ γr ≤ 4/T ): First, note that λi + z ≤ 1/T = 2/T − 1/T ≤ γr − z. Here, we have used

that z ≤ 1/T −λi ≤ 1/T and 2/T ≤ γr. Given these observations we can consider all positive terms without
z:

e−(λi+z)T (
2

T
+ λi) + e−(γr−z)T 2

T
≥ e−(γr−z)T 4

T

≥ e−(γr−z)T γr. (B.19)

The first inequality makes use of the above observations, and the last inequality makes use of the fact that
γr ≤ 4/T .
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Case 3 (4/T ≤ γr): For this case, we can use the fact that 4e−4 ≥ γre
−γrT , to show that the first term

always is greater than the negative term.

e−(λi+z)T 2/T ≥ e−zT 2/T

= 4e−4 e4

2T
e−zT

≥ 4e−4e−zT 1/T

≥ γre
−γrT e−zT

= γre
−(γr−z)T . (B.20)

This completes our proof.

At this point we should note that the above lemmas imply that there exists an optimal solution in
which γi ≤ γj for every pair of servers i and j for which λi ≤ λj . This is formalized in Corollary 2. (For
completeness, we include a separate proof of this Corollary.) Motivated by these observations we restrict
ourselves to the optimal solution that preserves this ordering for the total loads; i.e., for which we also have
γi ≤ γj .

Corollary 2. There exists an optimal solution in which γi ≤ γj for every pair of servers i and j for which
λi ≤ λj.

Proof. (Corollary 2) Consider an optimal solution where this statement does not hold true.8 In this case we
must have (at least) two servers i and j for which γi > γj and λi ≤ λj . Now, consider an alternative solution
in which the load of the two servers are exchanged such that server i serves γj and server j serves γi. We
will show that this alternative solution has no greater cost and an optimal solution that satisfy the above
conditions can be obtained by repeating this exchange process until there exists no such pair of servers.

First, it should be noted that the cache miss cost C(γi)+C(γj) is independent of which server serves the
most requests; i.e., Ci(γi) + Cj(γj) = Ci(γj) + Cj(γi). Hence, there is no added cache miss cost associated
with the alternative solution. Similarly, the cache storage cost is independent of which server serves the
most requests; i.e., Gi(γi) + Gj(γj) = Gi(γj) + Gj(γi).

Based on the above observations, any difference in cost would be due to differences in the amount of
client requests being served locally. However, clearly there is no disadvantage to exchanging the loads of
the two servers. To see this, consider the difference between the remotely served client requests before the
switch (γi −min[λi, γi]) + (γj −min[λj , γj ]) with that after the switch (γj −min[λi, γj ]) + (γi −min[λj , γi]).
To complete the proof we must hence show that:

min[λi, γi] + min[λj , γj ] ≤ min[λi, γj ] + min[λj , γi]. (B.21)

Now, consider the following three cases.
Case 1 (λi ≤ γi and λj ≤ γj): In this case we have λi ≤ λj ≤ γj and λj ≤ γjγi. Hence, LHS =

min[λi, γi] + min[λj , γj ] = λi + λj ≤ min[λi, γj ] + min[λj , γi] = RHS.
Case 2 (λi ≤ γi and λj > γj): Due to our assumptions regarding active servers serving all local

requests, we must hence have γj = 0. Furthermore, we note that both λi ≤ λj and λi ≤ γi. Hence,
LHS = min[λi, γi] + min[λj , γj ] = λi ≤ min[λj , γi] = min[λi, γj ] + min[λj , γi] = RHS.

Case 3 (λi > γi): Due to our assumptions regarding active servers serving all local requests, we
must hence have γi = 0. Furthermore, as γj < γi, we must also have that γj = 0. Hence, LHS =
min[λi, γi] + min[λj , γj ] = 0 = min[λi, γj ] + min[λj , γi] = RHS.

Clearly, serving these requests at server j rather than server i would be no worse, as none of the three
costs would increase when exchanging the loads. This completes our proof.

8Without loss of generality, we will allow the local load to be split across servers. (Clearly any improvements we can make
to this more general case can be further improved according to Theorem 4.)
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Appendix B.3. Putting the pieces together

Proof. (Theorem 5) First, we note that Lemma 2 ensures that only the servers with the lowest local request
rates (S1) are inactive. The requests from clients local to these servers are directed remotely. Second, among
the set of servers that are active, Lemma 1 (which states that the servers that are remote serving should
have the same load) and Corollary 2 (which states that the loads in the optimal solution are monotonically
non-decreasing) ensures that all servers in S3 are grouped together and they do not have a higher load than
the least loaded server in S4. Third, since all servers in S3 have the same load, there can at most be two
more sets of servers than those in sets S1 (which include the servers associated with the lowest local request
rates) and S3 (which all have the same load). The set of servers in S2 and S4 are local serving (only), and
simply consist of the remaining servers, which either are less loaded than those in S3 (these belong to S2) or
are no less loaded than those in S3 (these belong to S4). Having identified and characterized the properties
of each of the four groups, this completes the proof.
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