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Abstract

In waiting for an event on a parallel machine, a thread of control may either spin (busy wait) or block
(relinquish the processor). The appropriate mechanism depends on the relationship of the expected spin
time to the context switch time on that machine.

If the programmer has accurate information about the behavior of an application, the choice between
spinning and blocking can be made relatively easily. This might be the case, for instance, when a parallel
machine is dedicated to a single, well understood application. However, in the presence of uncertainty,
the choice of mechanism is more difficult.

In this paper we examine the choice between spinning and blocking in environments characterized by
two kinds of uncertainty: multiprogramming, where the applications programmer does not have control
over which threads are running at any point in time, and data-dependent programs, where expected
running times can depend heavily on input data. We compare the loss incurred by spinning in these two
environments to that in systems running a single, "well-behaved" application. Our goal is to determine
how multiprogramming and data-dependent behavior affect expected spin time, and so complicate the job
of selecting the right mechanism.

We examine the base, multiprogrammed, and "data-dependent environments for two different
situations: lock acquisition for mutual exclusion and for barrier synchronization. Using simple analytic
models we conclude that for the case of lock acquisition neither multiprogramming nor data-dependent
behavior significantly increase the expected spin time, and thus do not complicate the choice of
mechanism. However, for barrier synchronization both kinds of uncertainty lead to sharply increased
spin times, and thus must be taken into consideration when choosing between spinning and blocking.
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1. Introduction

When a thread of control on a parallel machine must wait for some event before proceeding, it may be
reasonable for the thread to spin (or busy wait) — that is, to sit in a tight loop continuously checking for
the required condition. The time spent spinning is overhead, and since the processor is occupied and
cannot be allocated to another thread, the effective processing rate of the system is decreased. An
alternative to spinning is blocking — that is, relinquishing the processor. The context switch time required
to block also is overhead, so blocking too decreases the effective processing rate of the system.

The appropriate choice between spinning and blocking depends on the relationship of the expected
spin time to the context switch time. This choice is not always clear, and a mistake can have major
performance implications. For example, one field test release of the DYNIX operating system for the
Sequent multiprocessor [Beck et al. 1987] included the substitution of blocking for spinning in a single
routine as a "performance enhancement”’. Under high loads, this change in fact caused a severe
performance degradation, something that was first noticed by a Sequent competitor and used as the basis
of an advertising campaign [Rodgers 1986].

Although adaptive mechanisms are possible (see, for example, [Ousterhout 1982] and [Lo & Gligor
1987]), the decision of whether to spin or to block is most often made statically at program creation time
by the programmer. In highly controlled environments where the programmer has accurate information
about the expected spin time, this decision may be straightforward. For example, when the parallel
machine is dedicated to a single application that uses locks for mutual exclusion, the programmer may
know that a particular lock is held infrequently and for only a very few instructions. Spinning would be
the clear choice in this case. Similarly, parallel solutions of large numerical problems often are obtained
by partitioning the problem among a number of threads equal to the number of processors. Spinning is
the clear choice here, too, since there are no other threads that could run.

The choice between spinning and blocking is not so straightforward when the expected spin time
depends on run-time factors. How to make this choice in the presence of such uncertainty is the subject
of our paper.

We consider two typical situations in which threads must wait, requiring that either spinning or
blocking be employed. The first situation involves waiting because of competition among threads. Here
we assume a set of largely independent threads that use a lock to provide mutual exclusion when
accessing some resource. When a thread wanting the resource finds the lock in use, it waits until the lock
becomes free. The second situation involves waiting because of cooperation among threads. Here we
model a set of threads that attempt to synchronize at a barrier. Each thread reaching the synchronization
point (that is, the barrier) waits until all other threads have also reached the barrier.

Our "baseline case" is a controlled environment in which the choice between spinning and blocking is
straightforward: a single parallel application running on a dedicated multiprocessor with as many
processors as there are threads of control.

We consider the effect on this choice of two run-time dependencies. The first is multiprogramming.
As parallel architectures become more common, parallel machines and parallel algorithms increasingly
will be the choice for general-purpose computing. Clearly, multiprogramming of user jobs is a
requirement in this environment. However, because the programmer does not have explicit control over
the scheduling decisions made on a multi-user multiprogrammed machine, it is impossible to know which
threads of a parallel application will be running at any particular time. Thus, the spin time can be highly
variable, depending on whether or not the thread that will eventually generate the event being waited for
is currently allocated a processor.

The second source of uncertainty that we consider is data-dependent software. Here we assume that
the thread that eventually will generate the awaited event sometimes completes quickly and sometimes
runs for a long time. Its behavior depends on its state and the data with which it is presented, and so is
not predictable at the time that the application is coded.

The goal of our work is to determine how spin time is affected by these two forms of uncertainty when
compared with the baseline case. If the expected spin time is roughly the same in all three situations, the
decision between spinning and blocking can be made as if the application were running in a well
controlled environment. Since programmers are already dealing with this problem in that environment,
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this would mean that no new special procedures are required. On the other hand, if the spin time can be
significantly lengthened in environments with uncertainty, the programmer’s task is greatly more
difficult, since it will be necessary to estimate at program creation time parameters that become known
only at run time.

Our study is conducted using analytic models validated via simulation. We examine the degradation
arising from using spinning under uncertainty relative to that arising using spinning in a controlled
environment. We decided against constructing models of performance under blocking with which to
compare our spinning models. Information concerning the relative merits of spinning and blocking can
be drawn from the spinning models alone, and the results obtained from models of this single type are
less sensitive to the precise modelling assumptions made, since any inaccuracies appear consistently.
Thus our performance comparisons (if perhaps not the absolute performance values) will be accurate.
(See, for example, [Dubois & Briggs 1982] as a contrast in the complexity and flexibility of modelling
approaches.)

In Section 2 we describe more precisely the models employed in our comparisons, and we outline
briefly the analytic approach. A more detailed discussion of the analysis is found in Appendix A. Section
3 is a discussion of the results for waiting due to lock contention. Section 4 presents the results for
waiting due to barrier synchronization. Section 5 contains our conclusions.

2. The System Models

Clearly, a useful performance model must embody enough of the details of the system it represents so
that the model’s behavior parallels that of the system. At the same time, "unnecessary detail" should be
avoided, and the model kept as simple as possible [Lazowska et al. 1984], for at least two reasons. First,
simplicity aids in understanding the interaction of the model parameters. A model with many parameters
implies an enormous parameter space and consequently a potentially unmanageable set of experiments
and results to explore the significance and interaction of those parameters. Second, a simple model is
usually more quickly analyzed than a complex one, and so eases the practical burden of running the
necessary experiments.

We have constructed two different but similar models, one for lock contention and the other for barrier
synchronization. Each model accommodates the three environments (baseline, multiprogramming, and
data-dependence) in a natural way. This is important because our goal is to compare spin times between
environments, so consistency across those boundaries lends confidence that the comparison is valid.

Performance predictions for our models may be obtained by either simulation or numerical analytic
techniques. In fact, we have developed and run software for both approaches. However, all of the results
given here are taken from the analytic solutions. Simulation was used only for a sample set of cases with
the sole intention of verifying that the analytic software was functioning correctly. The analytic approach
is preferable to simulation in this application because the results it provides are exact equilibrium
performance measures (rather than stochastic estimates and confidence intervals) and because in general
the analytic software is able to obtain results much more quickly than the simulation software.

2.1. Lock Contention

QOur lock contention model consists of P identical processors and J threads. We model explicitly the
contention for a single lock. Each thread is in one of three states: computing, spinning, and critical
section. A thread computes for an average of T time units between attempts to obtain the lock.! When a
thread requires the lock, if the lock is free the thread immediately acquires it. A thread holding the lock
uses it for an average of L time units, then releases it and returns to the computing state. If the lock is not
free when requested, the thread spins until the lock is released. If multiple threads are spinning when the
lock is released, one of these threads is chosen at random to acquire the lock next.

! In reality, this means that the thread occupies the processor for an average of T time units between requests.
The thread may be performing useful work or spinning on another lock or for some other reason during this
time.
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For the baseline case of a controlled system, the model is exactly as described above with J =P, that
is, one thread per processor. This represents the situation in which the machine is dedicated to a single

application at a time, and thus presents the application programmer with the least amount of uncertainty
regarding the behavior of the software.

A multiprogramming environment is reflected in the model in two ways. First, there are more threads
than processors (J > P), thus reflecting the fact that, in a multiprogramming environment, an application
might at times have more threads than it has been allocated processors. Note that it is most appropriate to
increase the number of threads rather than decrease the number of processors when deriving a
multiprogramming instance of the model from a baseline instance, because the inherent degree of lock
contention is thereby kept constant (as this depends on the total instruction delivery rate as determined by
the number of processors, not on the number of threads), and thus any changes in performance can be
attributed solely to the effects of multiprogramming.

At any one time, P threads are scheduled (allocated processors) and J-P are unscheduled (without
processors). The second way in which multiprogramming must be reflected in the model is the
introduction of a scheduling rule that controls which threads fall into each category. We define a
parameter Q that represents the mean scheduling quantum. Each scheduled thread is allowed to use its
processor for an average of Q time units before it is unscheduled. (The scheduling of threads on any
particular processor is independent of that on all other processors.) When a thread’s quantum expires, its
processor is assigned at random to a currently unscheduled thread.

This random scheduling is the major simplification of our model, as the replacement policy in a real
system is more likely to be FCFS in nature. However, note the mean time that a thread remains
unscheduled between successive uses of a processor is identical under random and FCFS replacement, as
is the mean amount of computing provided to each thread per time unit. Thus, intuitively we expect the
mean performance measures observed under the two scheduling disciplines to be similar.

The primary motivation for assuming random replacement is that it enormously simplifies the model
state space. In particular, our model has 2P (J-P )+ 2J — P + 1 states while an identical model with FCFS
scheduling has more than 2’-". This simplification not only allows results to be obtained more quickly,
but also permits the analysis of models with larger numbers of threads and processors than could be
examined otherwise.

To model data-dependent behavior we again let J equal P, that is, the model is not multiprogrammed
since we wish to isolate the particular effect of data-dependence. However, here we let the lock holding
time be highly variable. In particular, with probability 1-p a thread acquiring the lock releases it

instantly, and with probability p holds it for mean time % This results in a mean holding time of L, just
as in the baseline case, but with much greater variance,

2.2. Barrier Synchronization

The model of barrier synchronization is quite similar to the lock contention model. In the baseline
case there are P processors and J =P threads. Each thread is in one of two states: computing or
spinning. A thread computes for an average of T time units before reaching the barrier. If not all other
threads have already reached the barrier, it begins to spin. When the last thread reaches the barrier, all
threads return to the computing state.

For the multiprogramming environment, we keep constant at P the number of threads involved in the
barrier, but add X additional threads. These threads are always in the compute state, but their presence on
the processors interferes with the progress of the P "barrier threads". As previously, O is the mean
scheduling quantum and random replacement among the J+K-P unscheduled threads is used as the
scheduling discipline.

It is important in this model that we keep the number of barrier threads the same as in the baseline
case. The mean time to reach a barrier increases naturally with the number of threads involved in the
synchronization. Since we are trying to isolate the effect of multiprogramming, it would not be suitable
to simplify the model further by having all P+K threads be involved in the barrier, as it would be difficult
to separate the increased spin time due to multiprogramming from that due to the increase in the number
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of barrier threads. (Note that this is in contrast to the lock contention situation, where the inherent lock
contention is determined not by the number of threads but by the instruction delivery rate as determined
by the number of processors.)

To reflect data-dependent behavior in the model, K is zero as in the baseline case (i.e., there are only
the J = P barrier threads), but there is much greater variance in the compute time required before a thread
reaches the barrier. With probability 1-p, a thread computes for zero time units before reaching the

barrier, while with probability p it computes for an average of — time units. This maintains the average
compute time of T time units, as in the baseline case, but greatly increases the variance.
A more detailed discussion of the analytic formalities of these models can be found in Appendix A.

2.3. Choosing Parameter Value Settings for the Model

A problem that must be confronted immediately in attempting to compare spin times among the three
environments (base, multiprogramming, and data-dependent behavior) is how to set the model
parameters. Unfortunately, there does not exist currently an extensive set of measurement data of real
systems on which to base the parameterization, nor even a compelling folklore about what range of values
are reasonable. We have therefore run a large number of experiments with parameters varying over a
wide range. The results presented here represent a subset of those experiments that we believe fairly
represents the "typical” behavior of the systems.

There are two kinds of parameters that must be given values: those involving time (7, L, and @) and
those involving size (P,J and K).

Considering first the parameters involving time, we have chosen to let the compute time T be the unit
of time against which all other time parameters are measured; that is, we have set T = 1.

In all of our experiments we let the lock holding time L vary over an extensive range, in particular
from 0.01 to 0.5. At the low end this represents extremely low lock contention, while at the high end it
represents saturation of the lock.

We have run our experiments with a number of widely differing values for the scheduling quantum Q.
Quantitatively, the results vary, sometimes significantly, with the value of Q. As might be expected,
larger values of Q result in greater amounts of spinning. (Note that since we do not charge for context
switches in our model, there is no performance penalty for smaller values of Q.) This is illustrated in
Figure 1, which shows the mean number of processors spinning as a function of @ and the number of
threads for a 5 processor system, in the lock contention situation. (The mean number of processors
spinning has the advantage of being easily computed from our models, as well as being directly indicative
of the mean spin time, and thus is shown in many of our graphs.) The increase in spinning with Q can be
attributed to an increase in the variance of the spin time, which results from more occasional but longer
lasting situations in which the thread being waited for (either the one holding the lock in the lock
contention case illustrated in Figure 1, or the last one to reach the barrier in the case of barrier
synchronization) is unscheduled. Note that this performance benefit for smaller scheduling quanta is
quite distinct from the benefit in a sequential system of allowing the rapid completion of short jobs.
While quantitatively our results depend on the specific value of Q chosen, the qualitative behavior is
similar in all cases. We have chosen Q =1 for all results presented here. This choice was in part
motivated by the fact that the rate of increase in spin time with increasing values of Q (as illustrated in
Figure 1 for the lock contention case) drops dramatically as Q increases beyond 1.

Turning our attention to the parameters involving size, we chose P and J by running a set of test
experiments for the lock contention situation to determine how the behavior of the system depends on its
size. In these experiments J was set equal to P and T was varied (rather than being fixed at 1 as it is
elsewhere) so that the lock throughput (and thus the lock utilization) is nearly constant across all system
sizes. (See Appendix B for details.) This allows us to isolate the changes in mean spin time caused by
system size from those that would occur naturally because of increased lock contention in the larger
systems if T were held invariant.

Figure 2a shows the mean number of processors spinning as a function of system size and mean lock
holding time. Figure 2b is the same data normalized by the number of spinning processors in the 5
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Fig. 1: Effect of Quantum Size; 5 Processor System

processor system. For short duration locks the behavior of the systems is nearly independent of system
size (both in terms of the absolute difference in the spinning times, as shown in Figure 2a, and, somewhat
surprisingly, in terms of the relative difference, as shown in Figure 2b). For long duration locks, on the
other hand, the number spinning is nearly linearly proportional to system size. Based on this observation,
we have chosen to present results for experiments with the two smallest system sizes, 5 and 10
processors, since these minimize the still considerable processing time required to run the experiments
but still represent a factor of two difference in system size. Based on the above observations, results for
larger systems for the lock contention situation can be safely extrapolated from those presented for the
smaller systems.

Parameters P and J for the barrier synchronization case were chosen to be consistent with the lock
contention results, that is, we again restricted P to 5 and 10 processors. In each model J is kept constant
at the number of processors, since this lets us easily compare the baseline and multiprogramming cases.
Finally, the number of other threads in the multiprogramming environment, K, was varied across an
extensive range; we present selected results.

3. Results for Lock Contention

3.1. The Baseline Case

As noted previously, the baseline case represents the situation where the programmer has the greatest
information available at implementation time about expected spin times. We assume that the parallel
machine is dedicated to a single application during its execution and that the application has been
partitioned to have precisely the same number of threads as there are processors. Thus, we model P
processors and J =P threads.

Performance measures for this baseline environment are used only for comparative purposes. The
mean number spinning for this case is contained in the data given in Figure 3, in the context of a
comparison with the multiprogramming case, which we discuss next.

3.2. Multiprogramming

We examine the effects of multiprogramming by comparing the mean number of spinning processors
under multiprogramming (i.e., when the number of threads exceeds the number of processors) to that in
the baseline case. We have run our experiments with J varying from P to 5P. The performance results
obtained are qualitatively similar, so we have extracted the results for J/ =2P for presentation here.
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It might appear at first that doubling the number of threads would result in increased lock contention,
and that any increase in the number of spinning processors would be a combination of this effect and the
effect of multiprogramming. As noted previously, though, lock contention is inherently dependent on the
number of processors, not the number of threads. Because the number of processors is kept constant, the
total instruction delivery rate, and so the total rate of lock requests and the resulting lock contention, also
are kept constant, with the exception of changes due solely to differing patterns of thread executions.
Thus, any change in system performance can be attributed solely to the introduction of
multiprogramming.

Figure 3 presents a comparison of the baseline and multiprogramming environments for 5 and 10
processor systems. When lock contention is low (represented here by short lock holding times) system
performance is not significantly affected by multiprogramming. Thus, in these environments the author
of parallel software can choose between spinning and blocking as though the application were to be run
standalone. However, at modest to high lock contention, multiprogramming causes a significant
degradation in performance. This effect is the result of the fact that the thread holding the lock is
occasionally unscheduled. In these instances other threads will spin for a scheduling quantum, a
considerable period of time.
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The above analysis has assumed that the scheduling discipline is oblivious to the internal behavior of
the application software, that is, to the states of the threads involved in the scheduling decision. It might
be possible to obtain better system performance if the scheduler had access to this information, since, for
example, the scheduler could then avoid unscheduling the thread that holds the lock. To accomplish this,
the scheduler must rely on the application software (perhaps through the code implementing the language
primitives supporting locking) to set a flag when it acquires a lock, because (for efficiency reasons) the
operating system is not involved in lock requests. However, this might have one or both of the following
undesirable effects. First of all, if it required that an action on the flag be performed inside the critical
section, it would increase by at least one instruction the lock holding time, which could be critical to
system performance [Dritz & Boyle 1987]. Second, an unscrupulous user might be able to modify his
code so as to set this flag for all his threads in an attempt to obtain better service [Coffman & Kleinrock
1968].

We have investigated the potential performance benefits that could be obtained if the scheduler had
knowledge of the state of the threads, i.e., whether they were computing, spinning, or holding the lock.
We have investigated three policies that use this information. In Discipline A the scheduler never
unschedules a thread holding the lock. This eliminates the situation where threads are spinning uselessly
waiting for the lock to be released by an unscheduled thread. Discipline B allows the thread holding the
lock to be unscheduled, but will not schedule a currently unscheduled spinning thread unless the lock is
free. This discipline has the same goal as the first, to reduce useless spinning, but it reduces the
motivation of a user to lie about the state of his threads. The final policy, Discipline C, combines both of
the previous modifications.

Figure 4 presents a summary of the effects of these improved scheduling policies on system
performance. As is readily seen, all three policies result in significant improvements in system
performance, and nearly eradicate the performance penalty imposed by multiprogramming (cf. Figure 3).
Discipline A is preferable to Discipline B, and yields performance almost as good as when both
modifications are combined.

Perhaps one of the less intuitive characteristics of Figure 4 is the shape of the curve for Discipline B.
For low lock holding times (less than about 0.1 in Figure 4b, for example), Discipline B yields
significantly worse performance than that of Disciplines A and C. The curve then exhibits a distinct
change in shape (at around a lock holding time of 0.1 in Figure 4b), and for larger lock holding times
quickly converges to the curves for Disciplines A and C. This shape can be (at least partially) explained
as follows. For low lock holding times, there are usually no or very few threads (either with or without
processors) that are in the spinning state. Thus, Discipline B yields little improvement in performance in
this case. As the lock holding time increases, the average number of threads in the spinning state
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Fig. 4a/4b: Effect of Scheduling Policy; 5 and 10 Processors (cf. Fig. 3)

increases. With Discipline B, such threads tend to be kept unscheduled, diminishing the contention for
processors among the remaining threads. Therefore, although the lock holder flmay be context-switched
in discipline B, this becomes increasingly less likely (because of the absence of a suitable thread to switch
it with), and in any case the average time until that lock holder is rescheduled becomes very small, as the
lock holding time is increased. Thus, for large lock holding times, Discipline B closely corresponds to
Disciplines A and C.

All three improved policies also render the system nearly insensitive to the total number of threads in
terms of the mean number of processors spinning. Figure 5 illustrates this effect using Discipline A as an
example,

It is natural to ask in the multiprogramming context which of spinning and blocking is the preferable
waiting mechanism. To at least partially address this question, we have chosen to give an informal
threshold for context switch times as a function of the parameters of our model. This threshold is such
that context switch times less than the specified value should result in blocking being preferable to
spinning (within the assumptions of the model). Context switch times greater than the threshold value
may still result in blocking being preferable, although for context switch times much larger than the
threshold this is unlikely. Note that, in practice, context switch times depend heavily on the specific
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Fig. 5a/5b: Discipline A Performance vs. Number of Threads; 5 and 10 Processors

architecture and level of granularity of parallelism [Polychronopoulos & Kuck 1987]. For this reason,
and due to the abstract nature of our model, the threshold values we obtain are more useful as relative
values (when comparing the various scheduling disciplines) than as absolute values.

The threshold is computed using an approximation to the average spin time per initially unsuccessful
lock request, considering only those time intervals during which at least one unscheduled thread is in the
compute or critical section states.* We ignore spin time when there are no unscheduled threads in these
states because blocking is not useful in that case. Blocking is likely to be advantageous if the context
switch time is smaller than the threshold value, since blocking should result in a smaller amount of
wasted processor time in this case.

? The approximation assumes that the rate of initially unsuccessful lock requests is independent of the pres-
ence or absence of unscheduled non-spinning threads. Perhaps surprisingly, we found that the nature of the
results was insensitive not only to the use of this approximation (rather than an exact analysis), but also to the
precise way in which the threshold was defined (alternate definitions gave equivalent results).
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Figures 6a and 6b present the threshold values for the four multiprogramming scheduling disciplines
in systems with 5 and 10 processors and twice the number of threads as processors. (The thresholds for
larger numbers of threads mimic the shape of the values given, although of course are larger in value.
The thresholds for the "oblivious" scheduling discipline and Discipline B are relatively sensitive to the
number of threads in the system, while those for Disciplines A and C are largely unaffected by that
parameter.) The threshold values decline for large lock holding times for some of the disciplines because
of the decreasing probability that any of the unscheduled threads have useful work to do.
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It is clear from Figure 6 that there is a significant qualitative difference in the behavior of the various
multiprogramming scheduling disciplines. In particular, the disciplines that refuse to schedule a spinning
thread unless the lock is free (Disciplines B and C) greatly reduce the range of lock utilizations over
which blocking may be an appropriate waiting mechanism. This is a characteristic that argues in favor of
scheduling disciplines that embedy this feature.
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3.3. Data-Dependent Behavior

The final environment considered is that of data-dependent behavior. Recall that this is reflected in
our model by a parameter p. A thread acquiring the lock releases it in zero time with probability 1-p,

and with probability p holds it for mean time —. The case p = 1.0 corresponds exactly to the baseline

case. Figure 7 gives the ratio of the mean numger of spinning processors for various values of p to the
mean number spinning when p =1.0. We make three observations based on this data. First, variability
has the greatest effect when lock contention is low. In these cases the total amount of spinning is small in
any case, so despite the potentially large percentage increase the difference in spinning is small in
absolute terms. (The absolute amount of spinning occurring for the baseline case of p=1.0 can be found
in Figure 2 for the 5 and 10 processor systems.) Second, quite high variability is required before any
significant effect is observed. In our data a p of 0.5 is required before even a factor of two difference
occurs. Finally, the behavior of the system as a function of data-dependence is nearly identical in the 5
and 10 processor systems. Thus, we conclude that the effect of data-dependent behavior is roughly
independent of system size.
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Fig. 7a/7b: Data-Dependent Behavior; 5 and 10 Processors
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4. Barrier Synchronization

4.1. The Baseline Case

We now turn our attention from lock contention to barrier synchronization. Figure 8 shows how the
amount of spinning is affected by the number of threads involved in the barrier synchronization. Here we
have assumed that J =P, that is, that all threads have a processor dedicated to rhﬁm. Under the

assumptions of our model it is easily shown that the mean time to complete the barrier is 3 —.
I

i=1
3

mean number spinning
3]
L

1 ¥ L] i ] ] L] L] ]

i 2 3 4 5 6 7 8 g 10
number of threads Involved In barrler

Fig. 8: Barrier Synchronization Baseline Case

4.2. Multiprogramming

To reflect multiprogramming, the number of threads involved in the barrier synchronization is kept
constant at P, but K other threads are introduced that compete for processors. Figure 9a illustrates how
the mean number of spinning processors is affected by the number of these "other threads" as a function
of system size. Clearly, the amount of spinning per processor per time unit decreases with additional
other threads because those threads never spin. Figure 9b shows how the amount of spinning per barrier
thread per barrier synchronization increases with the amount of competition for processors. It gives the
mean time required to achieve the barrier synchronization for various system sizes. There is a nearly
linear relationship between the number of other threads and the mean time to achieve the barrier.

Just as in the lock contention situation, it is natural to ask if system performance can be improved by
giving the scheduler some information about the internal state of the threads. For barrier contention, the
only information that seems useful is which threads are spinning. Then if a spinning thread happens to
be descheduled because its quantum has expired, it would seem to be beneficial not to reconsider
scheduling it again until the barrier had been reached by all other processors.

Figure 10 shows the ratio of the performance under this modified discipline to the performance
achieved under the "oblivious" discipline. It is not terribly surprising that the mean number of spinning
processors is reduced by this modification. What is surprising is that this gain in overall system
performance does not penalize the threads involved in the barrier. The explanation for this is that
spinning threads compete with those threads still working toward the barrier. Thus, a mechanism that
tends to eliminate the spinning threads helps the other threads achieve the barrier. This effect evidently
outweighs the disadvantage that under the modified discipline many more of the barrier threads are
unscheduled at the time the last thread reaches the barrier, and so at the time the threads begin working
toward the next barrier, than under the "oblivious" discipline. Note though, that under the modified
discipline, as with the oblivious discipline, the performance of the barrier threads still degrades
considerably with increasing numbers of other threads.



-14-

2 processors
4 processors
6 processors
8 processors
10 processors
16 processors

mean number spinning
Ghdadd

— - - -
0 2 4 6 8 10 12 14 16
number of other threads In system

2 processors
4 processors
6 processors
8 processors
10 processors
16 processors

R RN RN

mean time to achleve barrier

0t

Tre—pr :
0 2 4 6 8 10 12 14 18

number of other threads in system

Fig. 9a/9b: Barrier Synchronization under Multiprogramming

4.3. Data-Dependent Behavior

The threads involved in the barrier synchronization in the baseline case were "balanced", in the sense
that the amount of service each required before reaching the barrier was chosen from a single distribution.
To model data-dependent behavior we examine the effect of introducing imbalance. We do this by letting
some threads reach the barrier in zero time, while other threads take longer than the overall mean time.
Recall that parameter p is the probability that a thread requires a non-zero service time.

Figure 11 shows how the amount of spinning is affected by the uncertainty in the thread execution
times. For each value of p, we have graphed the ratio of the fraction of time each processor spends doing
useful work against that value when p = 1.0. It is clear that variance can have a substantial effect on the
expected spin times of threads using barrier synchronization. Further, the magnitude of this effect
increases with the size of the parallel machine. Since we have experimented with quite modest system
sizes, one would expect that in real systems data-dependent behavior could be quite significant to the
performance of applications using barrier synchronization.
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Fig. 10a/10b: Normalized Performance of Modified Discipline (cf. Fig. 9)

5. Conclusions

We have used two analytic models to compare the amount of spinning that occurs in various
environments when threads either compete to obtain a lock or synchronize at a barrier. The purpose of
our comparison is to determine if the uncertainty in performance caused by multiprogramming or by
data-dependent behavior significantly increases the amount of spin time that occurs, and so complicates
the task of choosing an appropriate waiting mechanism.

We have found that for lock contention, neither source of uncertainty poses much danger, assuming
that the system scheduler has access to information concerning who holds the lock or who is spinning.
However, for barrier synchronization, the amount of spinning is quite sensitive to these forms of
uncertainty. Thus, to comrectly choose a waiting mechanism the programmer requires fairly precise
information about not only the behavior of his program but also about the load that will be placed on the
machine when his application is run. For this case, then, the programmer’s task is considerably more
complicated in multiprogramming and/or data-dependent environments than in the case of the more
controlled environment of a dedicated machine and predictable running times.
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Appendix A: Details of the Analysis of the Models

In this appendix we specify more precisely the models we have used and the analysis by which we
have obtained the results presented in the body of this paper. We describe only the model for the lock
acquisition situation. The model for barrier synchronization is similar,

We use a Markovian model to represent a system with P processors and J = P threads. A state of the
system is given by a six-tuple (ningnslngns.ng). Here ny, n, and ns are the number of threads
currently scheduled (that is, allocated processors) that hold the lock, are spinning, and are computing
respectively, and ny4, ns and n¢ are the corresponding counts of unscheduled threads in those three states.
Thus, there are a total of 2P(J-P)+2/ -P +1 states, of which J-P+1 are of the form
(0,0,P|0,n5J—P—ns), P(J—P+1) are of the form (1,n,,P-n,-1|0,n5J—P-ns), and (P+1)(J-P) are of the
form (0,n9,P—n4| LnsJ—P—ns1).

A computing thread makes a lock acquisition attempt after an amount of service (i.e., time on a
processor) exponentially distributed with mean T. With probability p, a thread acquiring the lock

releases it after an exponential amount of service exponentially distributed with mean L win

P
probability 1-p the lock is released in zero time. This is actually modelled by having "multi-step”
transitions in the Markov model, that is, transitions between states that imply the movement of more than
a single customer. Details on this follow when the state transition rates are defined.

Here only the "oblivious" multiprogramming scheduling discipline is considered. (The modifications
required for the other scheduling disciplines are straightforward.) Each thread allocated a processor is
descheduled after an amount of time exponentially distributed with mean Q. A currently descheduled
thread is chosen at random as a replacement.

The steady state solution of this model is obtained by solving the state flow balance equations
[Kleinrock 1975]. It is difficult to give the flow balance equations in a compact form. We therefore write
down the same information in a different form, giving simply the rate of flow out of each state and the
state to which that flow enters.

. Let § =(ny,n,n3 | ngnsng) be a state of the system. Let §; be obtained from § by subtacting 1 from
n;, S' be obtained by adding 1 to n;, and allow these operations to be applied repeatedly. For example,
S} =(nny+l,ns=1 | ngns—1lng+l). Then the flow out of state S is given by:



-18 -

2 .- f3
§ => §{ withrate (n1+n4)?
{ o n3
S => §5 withrate (1-n 1—!?4)'—]7'0
. 7 : 2 nip e | 5
§ => (l,ny—i,n++i|n4nsng) with rate T(l—p) p , l<i<n,

§ == (0.0P | i sii ) With Tt %lf-(l—p y
and, forJ > P,

I - b B
S =>38§ with rate 07>
We obtained the solution of the flow balance equations by the power method [Stewart 1978]. This is
an asymptotically exact iterative technique involving repeated multiplication of the current estimate of
the steady state probability vector with the transition matrix. We initialized the probability vector so that
all states had equal probabilities. We stopped the iteration when the sum of the absolute values of the
changes in the state probabilities in successive iterations was below a threshold of 0.00005. We use the
sum of the changes in all states rather than the maximum change in any one state because we found that
this latter measure lead to unreliable results. OQur threshold value was determined to be adequate by
solving a number of test cases starting with relatively large thresholds and then repeatedly halving the
threshold and resolving. Comparing the results obtained each time the threshold was halved, we
informally concluded that the results were reliable when halving the threshold did not produce an
appreciable change. We know of no problems with the accuracy of the solutions we have obtained using
this threshold, but we did observe that some models required a very large number of iterations to reach
convergence. This was typically the case when there were large differences in time scales in the model.
For instance, we ran some cases with T=1, Q=1 and L=0.001. These models often resulted in long
execution times.

Given the steady state probability vector provided by the power method, computing performance
measures is straightforward. For instance, denoting the steady state probability of state S by P(S), the
mean number of spinning processors is given by

Z ﬂzP(S)

all states S

1<i#j<3

and the lock throughput rate is given by

ny
> —P©)

all states § L

One reservation that might be raised about our model is that all service time distributions are
exponential. Indeed, the work by Dubois and Briggs [1982] presents a more complicated (and more
restrictive) model requiring a heuristic analysis with the sole purpose that lock holding times can be made
less variable than the exponential. We believe that exponentials are acceptable in our models for two
reasons. First, as explained in the introduction, our results depend on comparing models all of which use
exponentials. Experience shows that in general these sorts of comparisons are highly robust to
inaccuracies such as the choice of service time distribution [Lipsky & Church 1977, Lazowska et al.
1984]. Second, in a similar model in the domain of load sharing [Eager et al. 1988] the specific effect of
the exponential distribution was explored and compared against results obtained from a deterministic
distribution. In that work, which was also based on the comparison of models, very little difference was
observed between the exponential and the deterministic set of models.
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Appendix B: Estimating Combute Times

In the set of test experiments that were ran to determine the effect of system size on its behavior
(described in Section 2.3), T was varied so that the lock throughput was nearly constant across all system
sizes. In this appendix, we briefly describe the manner in which this was done.

Because lock throughput depends on T, choosing the T required to exactly equalize lock throughputs
across system sizes requires iteration and its consequent high cost. We therefore chose to use a simpler
but effective approximate technique that does not require iteration. This approximation is obtained by
assuming that no lock contention will take place. Under this assumption lock throughput is given by

e !
T2l and so lock utilization is TiL"

The procedure we followed was to solve the model with the chosen values of L and T for the 5
processor system and to note the resulting lock utilization U. For a P processor system we then solved
for the appropriate compute time T as

PL
= Tp+L

Our assumption of no contention is clearly valid for low values of lock holding time, but it is not clear
how well it performs for larger values. We therefore monitored the lock throughput actually resulting

from our choices for the Tp. In no case did the lock throughput rate differ from that of the 5 processor
system by more than 10%.



