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Abstract
Recent increases in live and on-demand video streaming
have dramatically changed the Internet landscape. In North
America, Netflix alone accounts for 28% of all and 33%
of peak downstream Internet traffic on fixed access links,
with further rapid growth expected [26]. This increase in
streaming traffic coincides with the steady adoption of HTTP
for use in video streaming. Many streaming video providers,
such as Apple, Adobe, Akamai, Netflix and Microsoft, now
use HTTP to stream content [5]. Therefore, it is critical that
we understand the impact of this emerging workload on web
servers. Unlike other web content, a recent study [13] of
streaming video shows that even small infrequent latency
spikes, manifested as buffering related pauses, can result
in shorter viewing times especially during live broadcasts.
Unfortunately, no appropriate benchmarks exist to evaluate
web servers under HTTP video streaming workloads.

In this paper, we devise tools and methodologies for gen-
erating workloads and benchmarks for video streaming sys-
tems. We describe the difficulties encountered in trying to
utilize existing workload characterization studies, motivate
the need for workloads, and create example benchmarks. We
use these benchmarks to examine the performance of three
existing web servers (Apache, nginx, and userver). We
find that simple modifications to userver provide promis-
ing and significant benefits on some representative streaming
workloads. While these results warrant additional investiga-
tion, they demonstrate the need for and value of HTTP video
streaming benchmarks in web server development.

1. Introduction
Many modern video streaming services have eschewed the
previously dominant streaming protocols, such as Real-time
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Transport Protocol (RTP) and Real-Time Streaming Proto-
col (RTSP), in favour of having simple clients that request
chunks (a few seconds of video) via HTTP over TCP/IP from
standard, stateless web servers. This technique is being used
by Apple, Adobe, Akamai, Netflix, Microsoft, and many
others [5]. The switch to HTTP fundamentally changes the
role of a streaming video server; rather than have servers
push the data to the clients, the clients instead pull data from
the servers using HTTP requests.

The dominance of HTTP stems from the following ad-
vantages: HTTP is simple and stateless; it can easily traverse
firewalls (since it uses TCP); and it can leverage the existing
ubiquitous infrastructure such as web servers, caches, and
Content Distribution Networks (CDNs). We refer to this in-
frastructure as the HTTP ecosystem. In spite of these advan-
tages, there are performance uncertainties in using HTTP for
video streaming due to the lack of video streaming bench-
marks targeting the HTTP ecosystem. While we believe that
it will be important to develop and use benchmarks for all
aspects of the HTTP ecosystem, in this paper we start by
focusing on web servers, as they are the most central and
performance critical component in the ecosystem.

This work was motivated by the absence of existing
benchmarks that can be used to evaluate new techniques for
improving web server performance under video streaming
workloads. While many of the techniques we were consider-
ing were effective on micro-benchmarks, the lack of existing
benchmarks prevented us from conducting meaningful com-
parisons with other servers and from understanding whether
or not the benefits existed under representative workloads.

Our goal in this paper is to take the necessary first steps
to develop tools and methodologies for generating and run-
ning benchmarks for modern HTTP-based streaming video
services. Our contributions in this paper are:

• We develop tools and methodologies to create video
streaming benchmarks that can be used to evaluate the per-
formance of web servers. We describe our modifications
to httperf [22], a general benchmarking tool, to gener-
ate traffic according to our workloads and ensure quality
of service requirements are met. We also describe how we
use dummynet [24] to simulate the variety of connec-



tions common today, including home broadband connec-
tions and low-bandwidth high-delay wireless networks.

• We incorporate results from several papers on workload
characterization of modern Internet video services in our
workload generator. This ensures that our generated work-
loads and benchmarks exercise web servers in the same
manner as users would in a real deployment.

• We examine the performance of three web servers
(Apache, nginx, and userver). We find that rela-
tively simple modifications to userver can provide sig-
nificant benefits for some video streaming workloads but
are ineffectual for others. These results motivate the need
for further studies using a variety of realistic video stream-
ing workloads to ensure web servers are prepared for cur-
rent and future video streaming demands.

2. Background and Related Work
Existing web server workloads and benchmarks, such as
SPECweb2009 [29], reflect traffic characteristics that were
prevalent in the past and differ significantly from HTTP
video traffic. Web server research has concentrated on serv-
ing requests for items that are primarily small and exhibit
lots of locality [7, 8, 23, 27, 28]. In contrast, video files are
large and, while there is some locality, there is a long tail
of content that is viewed only a small number of times [16].
Although the existing HTTP ecosystem can service videos
and other large files, users often experience significant de-
lays while waiting for video data to be delivered. This is es-
pecially apparent when watching high-quality video. A re-
cent study [13] shows that even occasional pauses lead to
shorter video viewing times, especially during live events.
Also, clients rarely watch an entire video, typically terminat-
ing a connection before reaching the end; 60% of YouTube
videos are watched for less than 20% of their duration [14].

Previous work has also largely ignored the growing
number of devices accessing Internet services over low-
bandwidth, high-delay networks. Instead experiments are
conducted in laboratories using high-speed (gigabit) local
area networks [7, 23, 27, 28]. It is therefore essential that we
develop benchmarks for HTTP-based video servers that can
be used in laboratory settings but emulate the wide variety
of devices and networks used to view video content.

Existing video workload generators are unsuitable for our
purposes because they generate workloads for analysis and
simulation rather than for creating traffic to exercise a web
server [1, 18, 31, 34]. Although these workloads could be
used as part of a benchmark [18], it would require significant
re-engineering of the workload generators.

General-purpose workload generators [4, 9, 12] can be
used to benchmark HTTP-based systems but these genera-
tors have not been configured to produce HTTP streaming
video. In order to use one of these generators, we would
have to implement a new client module, and such exten-
sions are non-trivial to implement. Therefore, we instead use

httperf [22], an existing HTTP traffic generator; this ap-
proach is shared by several other benchmarks [6, 21].

There are many sources of real-world video informa-
tion available for use in workload generation. These include
papers describing workload generators, which typically in-
clude measurements as sources for their workload distribu-
tions, but the major source of information is papers that fo-
cus on characterizing measured video traffic. Many different
types of videos and delivery systems have been studied: user
generated video sites like YouTube [1, 10, 11, 15, 16, 34]
and Yahoo! video [19], video on demand sites [32], and
corporate video websites [31]. All of these papers measure
and characterize the important video properties, such as the
popularity distribution, duration, bitrate and size informa-
tion. Although it is possible to do useful analysis with only
video information, like estimating the effectiveness of proxy
caching [1] compared to server patching [18] or peer-to-peer
caching [34], it is also necessary to understand and model
client behaviour to construct a representative benchmark.

A realistic benchmark must therefore accurately model
client network behaviour such as bandwidth and latency.
There has been a significant amount of work in measuring
and modeling client behaviour [15, 16, 31, 32]. For our work,
we primarily utilize measurements from [15]; these mea-
surements include detailed information about client stream-
ing sessions and were obtained recently, which is critical to
our focus on current and future video streaming workloads.

3. Objectives
Our primary objectives for this paper are to devise flexible
tools and methodologies for constructing HTTP streaming
video workloads that can be used to examine, understand,
compare and improve the performance of web servers. Al-
though the work in this paper is focused on web server per-
formance, our long term goal is to also be able to evaluate
proxy caches, CDNs, and possible protocol improvements
or modifications.

In addition to our overarching objectives, there are three
specific goals for our web server benchmark. First, it should
generate web server loads that are representative of what
we would measure at HTTP streaming video web servers in
real deployments. Second, the benchmark should measure
the long-term performance of web servers by running for a
sufficient length of time, and by isolating and removing the
effects of starting and stopping experiments. Lastly, since we
anticipate using benchmarks to test a variety of web servers,
including different design and implementation alternatives,
we ensure that each experiment does not run for too long,
otherwise the benchmark is unlikely to be used.

Our methodology for generating a workload and bench-
mark is divided into separate phases:

1. Specify a workload: This requires characterizing a work-
load by understanding what are believed to be the im-



portant observations and parameters (including distribu-
tions) required to sufficiently characterize a workload.

2. Construct a workload: Using the workload specifica-
tion and a workload constructor we create log files
(wsesslogs) that are used by httperf to generate
the desired load.

3. Set up the experiment: This phase includes setting up the
networking, client, and server environments. This also
includes populating the server with files and setting up
dummynet on all of the client machines to mimic the
desired mix of networks. These steps are performed using
information from the workload specification.

4. Run the benchmark: The final phase is to execute the
benchmark and collect the performance data.

Figure 1 illustrates these different phases. It is important
to note that, in this paper, we generate workloads based on
the information we have obtained from several different pa-
pers that characterize YouTube video requests. If additional
information for YouTube requests or a characterization of
video requests for a different service becomes available, we
believe that our methodology will permit one to easily create
a new workload.

constructor Switch
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Workload

Log files

httperf 
wsesslogs

Client 1 Client 2

httperf

dummynetdummynet

httperf

File set
constructor Server

File set
Workload

Figure 1. Overview of the methodology

From our survey of existing workload characterization
papers, we discovered a number of common issues in serv-
ing HTTP video that we want to capture in our benchmark
design.

• Videos are not always watched to the end, and we want to
capture that behaviour. This is done by generating client
sessions that ask for an appropriate fraction of a video.

• Because we expect that many video workloads will be
disk intensive, we felt that it would be beneficial to evalu-
ate different disk placement issues without having to gen-
erate a different set of files (which would not be amenable
to a fair comparison). We create a generic set of fixed-
length files on the server, which can later be assigned to
different videos to examine disk placement issues.

• Some services use HTTP range requests to ask for a spec-
ified portion of a single video file. Other services divide
the video into chunks that are stored in separate files and
use HTTP GET requests to obtain the desired file. In this

paper we follow the latter approach, but our tools are ca-
pable of generating workloads that use range requests.

• We assume that HTTP requests related to searching and
browsing for videos occur on a separate machine. This is
how large video systems are designed in practice [15, 32]
and it simplifies the benchmark.

• We want to be able to implement clients that use HTTP
adaptive streaming. It would require a specialized client
application to truly adapt to real-time network conditions,
but we can simulate rate adaptation with httperf by
generating session logs that switch between videos with
different encodings at predetermined times.

4. Workload Specification
Our goal in designing benchmark workloads is to accu-
rately model the request traffic of real web servers streaming
videos to clients. However, satisfying this goal is not suffi-
cient to ensure benchmark results that are representative of
web server performance in real deployments. In real deploy-
ments, the server hardware is provisioned to match the actual
workload; we instead generate a workload based on the ca-
pabilities of the server hardware, such as available memory.
Generating too few or many videos will result in unrealisti-
cally high or low disk cache hit rates respectively; this would
significantly skew the performance results and could lead to
incorrect conclusions when comparing different designs.

There are also a number of pragmatic secondary goals
that affect how we design our workloads. For example, al-
though most workloads model current traffic patterns, work-
loads that are reconfigurable can be used to model antici-
pated demands and traffic parameters; this can be extremely
useful in planning and forecasting future design require-
ments. We expect that many user-behaviour related parame-
ters, such as parameters concerning viewing habits, will not
change significantly. However, future values for parameters
such as video bitrate and client downstream bandwidth will
likely be very different than today’s values. Therefore, in de-
signing a reconfigurable workload, we explicitly separate the
highly variable parameters, which enables us to quickly ex-
periment with different workload configurations.

In addition to reconfigurability, another workload design
goal is reducing benchmark runtime. Short benchmarks pro-
vide rapid feedback that is useful for both web server de-
velopment and configuration tuning. This led us to design
workloads with sessions that are as short as possible without
sacrificing their ability to characterize the steady-state per-
formance of the web servers. For example, we found that in
our experimental setup, workloads with 7200 sessions en-
sure that the web server performance reaches steady-state.

In the following sections, we describe in detail the design
of one example video streaming workload suitable for our
experiment environment.



4.1 Video Characteristics

Our video and session characteristics and distributions are
drawn from [15]. This paper provides low-level details about
client sessions by measuring traffic at the edge, and is a re-
cent source for information regarding YouTube video char-
acteristics and download mechanisms.

There is much debate in the literature about the shape of
a YouTube video popularity distribution. Some find a close
fit with a Zipf distribution [16]. Others find that Gamma or
Weibull distributions fit more closely [11]. For this work-
load, we use a Zipf distribution because previous work that
measures over a short timeframe, similar to our target bench-
mark environment, finds that measurements follow a Zipf
distribution. In contrast, measurements that sample over a
longer period of time or rely on extracting viewing informa-
tion from the YouTube database tend to have non-Zipf-like
distributions. There is a discussion of these issues in [10].

The Zipf distribution requires two parameters; we chose
an alpha value of 0.8 and a video population of 10000. The
number of videos was based partly on the capacity of the
hard drive in our server, which can hold 10000 videos with
the average video size of 13 MB. The video library size
was also chosen to suit our experiment length of 7200 video
sessions. This choice of parameters results in about 35% of
requests being serviced from the cache for our experiments.

An equally important parameter to the popularity dis-
tribution is the duration distribution of the video library.
YouTube video durations have a complicated distribution;
for example there are peaks at 200 seconds, the typical
length of music videos, and at 10 minutes, a limit that
YouTube imposes on video length. Some authors specify the
duration algorithmically as an aggregation of normal distri-
butions [11]. We use a CDF to represent the distribution of
video durations rather than an analytical formula, because
the distribution is likely to be irregular for any video library.
Figure 2 shows the duration distribution used for this work-
load; it is based on data found in [15].

From this distribution, we assign a duration to each video
without accounting for the video popularity. Although pre-
vious work [1] has suggested a weak correlation between
popularity and duration, we have found no measurements to
quantify such a correlation and have therefore omitted it in
this workload. An additional concern with assigning dura-
tions is that the most popular videos make up a large pro-
portion of the workload, so the durations assigned to these
videos has a large effect on the proportion of sessions that
can be serviced from the cache. We assign the median video
duration to the two most popular videos because we believe
this produces a more representative workload that is less sen-
sitive to the choice of a random seed for the generator. This
parameter can be configured to assign different fixed values,
or to simply use randomly-assigned durations for all videos.

The final video characteristic we assign is the video bit
rate. There are many different video encodings and variable
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Figure 2. Duration of videos

bit rates used for YouTube videos, as observed by [15], with
an average rate of 394 Kbps [16]. It simplifies our workload
generator if we represent video chunks with a fixed size and
fixed duration, so we assume a fixed bitrate for all videos. We
chose a bitrate of 419 Kbps, which represents 10 seconds of
video using 0.5 MB of data.

We expect that bitrates will change in the future, as more
high resolution video is produced and viewed. We may also
revisit the decision to use a constant bitrate, if servers are
found to be sensitive to variable bitrate videos. Variable
bitrates could be simulated by either modifying the log files
so that fixed-size chunks represent different time spans, or
by modifying the file set so that different size chunks are
used to represent fixed time spans.

4.2 Session Characteristics

Our benchmark workload must, in addition to determining
the characteristics of the videos, also specify how much
of each video is downloaded by the clients. From previous
studies, we know that most clients do not watch to the end
of the videos. However, we can not accurately determine
the amount of data that is downloaded using the session
length alone because clients buffer data to compensate for
variations in download speeds. There is one study [15] that
provides the number of bytes downloaded in a session as a
fraction of the video size, which we can use to determine
session lengths accurately. Figure 3 shows the curve we use
to determine what fraction of a video is downloaded.
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Again, we choose a session fraction independently of
video properties such as length or popularity even though
there might be a weak correlation. For example, with the
Video on Demand system studied in [32], sessions last
longer for unpopular videos than popular videos, and this
property might hold for YouTube videos as well. However,
we believe that this is a reasonable simplification for this
workload.

The final session characteristic is the session initiation
rate. Rather than assign a particular value, we instead vary
the average session initiation rate in order to determine web
server performance limits. There is no consensus on the
inter-arrival time distribution in previous measurement stud-
ies. We chose to make inter-arrival times exponentially dis-
tributed (session arrivals occur according to a Poisson pro-
cess), as other simple distributions, such as uniform, are even
less realistic and can cause significant artifacts in the bench-
mark results.

4.3 Client Network Characteristics

Table 1 shows the access speeds we use for our clients in this
workload. This data represents the access speeds of client
computers in the United States to Akamai servers, as re-
ported in [2]. We disregard the low speed clients because
their connections are not suitable for viewing video and be-
cause they represent an insignificant fraction of the total. Be-
cause there is no detailed information about the distribution
of access speeds, we represent each of three relevant cate-
gories with a single rate. These assigned rates are based on
average access speed measured by Akamai.

Category Akamai Akamai Rates Share
Rates Share Mbps

High Above 5 Mbps 42.0% 10.0 42%
Bband 2 – 5 Mbps 38.0% 3.5 42%
Medium 0.5 – 2 Mbps 18.2% 1.0 17%
Low Below 0.5 Mbps 1.8% – 0%

Table 1. Client access speeds

We also model network delays between the clients and
the server. We do not have information regarding the net-
work delay for YouTube users, so we simply assign a con-
stant delay of 50 ms on both the forward and reverse paths,
which is the approximate time to transmit from coast-to-
coast in North America. Delays for mobile clients can be
much larger; this may require that we revisit this design de-
cision in the future.

5. Workload Generation
Table 2 provides a summary of the parameters we used to
construct the sample workloads for this paper. We give a de-
scription of each parameter, its value or distribution, and the
source of the measurement. This table is an abstract spec-
ification, as it could describe video sessions in any setting

using any protocol. Once we create an experimental envi-
ronment, then we have a target for a concrete implementa-
tion of the abstract session specification that is specific to the
test equipment.

Parameter Description Value used Source

Video Popularity Dist. Zipf α = 0.8 [1]
Video Count 10000
Video Duration Dist. See Figure 2 [15]
Video Bit rate 419 kbps [16]
Session Length Dist. See Figure 3 [15]
Session Arrival Process Poisson [18, 19]
Session Count 7200
Session Chunk Timeout 10 seconds [5]
Client Network Bandwidth See Table 1 [2]
Client Network Delay 50 ms, one way
Client Request Size (MB) 0.5 and 2.0
Client Request Pacing Yes
Client Adaptation None [15]

Server Storage Method Chunked
Server Chunk Size (Time) 10 s and 40 s
Server Chunk Size (MB) 0.5 and 2.0
Server Chunk Sequence By Session
Server Video Placement Random
Server Warming Size 3500 chunks
Server Ramp-Up 200 sessions
Server Ramp-Down 100 sessions

Table 2. Summary of workload specification

Some HTTP video providers, like YouTube, implement
application flow control on the servers to limit the download
rate of videos [3, 15]. This is primarily a mechanism to min-
imize wasted bandwidth when a client does not watch to the
end of a video. This mechanism is not widely used by other
streaming services and, even for YouTube, it is disabled for
mobile clients with sporadic network connectivity.

Our workload generator uses a more generic approach
to HTTP video streaming based on a representative HTTP
video streaming platform, Apple’s HTTP Live Stream-
ing [5]. With this platform, videos are segmented into
chunks, and the clients download the chunks at a limited
rate using a technique called pacing. The clients first down-
load chunks at full speed until a video buffer is filled, then
request subsequent video chunks only when needed to refill
the buffer, thus using less bandwidth than requesting chunks
at full network rates. Not all HTTP video platforms use pac-
ing, but it is a technique that enables true streaming video
using any web server.

There are two ways to implement client chunking; the
clients can use HTTP range requests to download chunks
from a single video file, or the videos can be divided into
chunks and stored in separate files that are requested by
the clients. Our primary workload uses file-based chunking,
with all videos divided into 10 second chunks and stored



in separate 0.5 MB files. This chunk size is the same as
used by Apple’s Live Streaming. We also create a secondary
workload that uses a significantly larger 2.0 MB chunk size
that we use only in Section 8.

5.1 Server Configuration

Any web server is capable of servicing the requests made by
the httperf clients, which are simple static file requests.
Files that represent the video chunks must be created a
priori in the server’s file system. To accomplish this, we
simply create many thousands of chunk-size files in the same
directory, in numerical order, starting from a newly-installed
file system. However, the results of this procedure are not
repeatable, even starting from a newly created file system,
so we have little control over file placement. For this reason,
we create our file sets only once, so we can compare the
results of different experiments.

Each video in the specification is assigned a consecutive
sequence of chunks. Sessions are represented by sequential
requests through as many of the chunks as necessary to equal
the session length. We generate different workloads using
the same file set by changing the association between videos
and specific file chunks.

File chunks should be assigned to videos carefully to
avoid bias in the results. In this paper, we assign video
positions randomly, but in the future we intend to experiment
with different file placement strategies.

Figure 4 shows the distribution of session lengths in the
abstract specification, compared to the results when sessions
are rounded up to the next multiple of the 0.5 MB chunks
size. The minimum session length we can represent in a
workload is 10 seconds. This artifact has little impact be-
cause the exact lengths of short sessions do not have much
impact on the results.
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5.2 Client Configuration

Our experiments utilize 12 client hosts to generate hun-
dreds of concurrent video sessions. Each client host is on
its own gigabit subnet and we use dummynet to impose
bandwidth limits and add delay to each session. Overhead
from dummynet limits each client computer to a maximum

of approximately 600 Mbps of throughput, or 7200 Mbps
aggregate bandwidth over all clients.

We approximate the specification in Table 1 by config-
uring dummynet to allow 10 Mbps bandwidth on 5 of the
clients, 3.5 Mbps on 5 of the clients, and 1 Mbps on the re-
maining two clients. Statistics are collected separately for
each client, so this configuration makes it easy to generate
statistics for individual rates. We use dummynet to delay
both incoming and outgoing packets by 50 ms to simulate
network latencies and tuned the client and server TCP pa-
rameters to handle the larger bandwidth-delay product intro-
duced by the delay.

Our workload generator creates a trace file (called a
wsesslog) for each client host that specifies a sequence
of HTTP requests for entire files or ranges within files.
An instance of httperf running on each host uses the
wsesslog file to issue HTTP requests to the web server.
Figure 5 shows a small example of a wsesslog that con-
tains requests for several videos.

Each video is requested in a sequence of chunks us-
ing a persistent HTTP connection called a session. Ses-
sions are initiated using a Poisson process, so the duration
between session initiations is independent with a common
exponential distribution. New sessions are started indepen-
dently, simulating the access pattern of many concurrent
video viewers. Normally, httperf requests the next chunk
in a session as soon as the previous chunk is completely re-
ceived, but if a pacing delay is specified, a request will not
be sent until the specified pacing time has elapsed from the
start of the previous request. This is used to emulate video
player buffering and/or users pausing a video.

We also specify a timeout for each request in the
wsesslog file, and if the request is not completely serviced
before the timeout elapses, httperf terminates the ses-
sion. This loosely approximates a user becoming unsatisfied
with the response or video quality and ending the session.
We use the failure count as a primary indication of whether
the web server is overloaded. The throughput figures are also
affected by timeouts because only completed requests are in-
cluded in our throughput measurements.

For our primary workload, we generate wsesslog files
with 10 second timeouts for each chunk. The first 3 chunks
of each session are requested without pacing delays, simulat-
ing the filling of a buffer; and subsequent chunks are paced
so they are requested at a rate of one chunk every 10 seconds.

Table 3 contains summary statistics that characterize our
two workloads. Both are constructed using the specification
in Table 2 and differ only in the chunk size. The first four
values in Table 3 refer to statistics derived solely from the
abstract specification, and so are the same for both work-
loads. The remaining values differ because session lengths
are rounded up to a multiple of the chunk size.



# Session 1: 4 chunks with pacing
vid01/secs-0-9 timeout=10
vid01/secs-10-19 timeout=10
vid01/secs-20-29 timeout=10 pacing=10
vid01/secs-30-39 timeout=10 pacing=10

# Session 2: 3 chunks range requests
vid02 range=0-524287 timeout=10
vid02 range=524288-1048575 timeout=10
vid02 range=1048575-1572863 timeout=10

# Session 3: 2 chunks different quality
vid03/high/secs-0-9 timeout=10
vid03/med/secs-10-19 timeout=10

# Session 4: pause/rewind/skip forward
vid04/secs-0-9 timeout=10
vid04/secs-10-19 timeout=10 pacing=60
vid04/secs-20-29 timeout=10
vid04/secs-0-9 timeout=10
vid04/secs-100-109 timeout=10

Figure 5. Small example of an httperf wsesslog

Description 0.5 MB 2.0 MB

unique videos 3366 3366
single-session videos 67.5 % 67.5 %
average video duration 258.7 s 258.7 s
average video size 12.9 MB 12.9 MB
average session time 146.3 s 150.6 s
average requests per session 14.628 3.766
unique file chunks requested 60004 16318
total file chunks requested 105323 27188
number of chunks viewed once 44478 12293

Table 3. Characteristics of constructed workloads

6. Experimental Environment
The equipment and environment we use to conduct our ex-
periments were selected to ensure that network and proces-
sor resources are not a limiting factor in the experiments. We
use 12 client machines and one server. All client machines
run Ubuntu 10.04.2 LTS with a Linux 2.6.32-30 kernel. All
systems have had the number of open file descriptors permit-
ted per user increased to 65535. Eight clients have dual 2.4
GHz Xeon processors and the other four have dual 2.8 GHz
Xeon processors. All clients have 1 GB of memory and four
Intel 1 Gbps NICs. The clients are connected to the server
with multiple 1 Gbps switches each containing 24 ports.

The server machine is an HP DL380 G5 with two Intel
E5400 2.8 GHz processors that each include 4 cores. The
system contains 8 GB of RAM, three 146 GB 10,000 RPM
2.5 inch SAS disks and three Intel Pro/1000 network cards
with four 1 Gbps ports each. The server runs FreeBSD 8.0-

RELEASE. The data files used in all experiments are on a
separate disk from the operating system. We intentionally
avoid using Linux on the server because of serious perfor-
mance bugs involving the cache algorithm, previously dis-
covered when using sendfile [17].

On the clients, we use a version of httperf [22] that
was locally modified to support new features of wsesslog
and to track statistics on every requested chunk. We use
dummynet [24], which comes with Ubuntu, to emulate
different types of networks.

We use a number of different web servers. Most experi-
ments use version 0.8.0 of userver, which has been pre-
viously shown to perform well [8, 23] and is easy for us
to modify. We also use Apache version 2.2.21 and ver-
sion 1.0.9 of nginx. The default configuration parameters
for Apache are not well suited to servicing video. It closes
persistent client connections if a new request isn’t received
within 5 seconds of the previous request and also after 100
requests have been received. We modified these and other
configuration parameters in Apache and similar parameters
in the other servers to obtain the best performance.

7. Running Experiments
For our experiments, we measure the aggregate throughput
of the server when servicing workloads at a series of dif-
ferent rates. We use the measurements to produce graphs,
such as Figure 7, that show the aggregate throughput in MB/s
from requests that were completely serviced prior to timeout.
When the server is not overloaded, we expect the throughput
to be equal to the chunk rate multiplied by the chunk size.

The methodology for running experiments and collecting
measurements has a significant effect on the results. We
explain how we ensure that experiments reach steady-state
in a reasonable amount of time, demonstrate the importance
of using dummynet to simulate client networks, and discuss
the execution time and repeatability of our experiments.

7.1 Steady-state Behaviour

We include in our measurements only those sessions that
are serviced completely while the web server is operating
at a steady-state; i.e., when the rate of session initiations
is equal to the rate of session completions. At the start
of an experiment, the rate of session completions is very
low because the paced sessions in our workload last an
average of 146 seconds. Because of this, we don’t start to
measure sessions for a ramp-up period. Similarly, when we
stop initiating new sessions at the end of the experiment, any
sessions that are still active should not be included in the
measurement because the server is no longer at steady state.
We apply a ramp-down period at the end to account for this,
and we do not count sessions that are initiated too close to
the end of the experiment.

An additional consideration at the start of an experiment
is the state of the cache. For repeatable results, we must



ensure that the cache is in the same state at the beginning of
every experiment. It is most practical to start with an empty
cache, but a web server will not reach full performance until
the cache is full, which can take considerable time.

Figure 6 is an example of the curve we use to evaluate the
progress of an experiment. This curve shows the length of
time it takes for each individual chunk to be serviced, in the
order they are requested over the course of an experiment.
The response time is longer when the server is overloaded,
as illustrated by the no warming curve in Figure 6. The
other curves in the figure show the results when the cache is
prewarmed with the most popular chunks before the start of
the experiment, which can shorten the ramp-up time before
session measurements can begin.
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Figure 6. Cache warming techniques

We modified httperf to recognize ramp-up and ramp-
down periods. Each instance of httperf processes 600
sessions in our workload and we use a ramp-up period of
200 sessions and a ramp-down period of 100 sessions. The
average session consists of about 16 requests, so these pe-
riods correspond to 3200 requests at the beginning of the
experiment and 1600 requests at the end.

We use a script to start the clients and server, and to start
the tools we use to monitor the progress of the benchmark.
vmstat is used to monitor CPU utilization. iostat mon-
itors disk usage which includes bandwidth, transaction size,
transaction times, queue lengths, and fraction of time the
disk is busy. At the end of an experiment, our script com-
bines the most important information from httperf, the
server, and the monitoring tools into a single report. In par-
ticular, the total amount of data read from disk, sent by the
server and received by the client are all recorded.

7.2 Bandwidth-Limited Clients

dummynet allows us to simulate network characteristics
such as available bandwidth and latency. We conduct exper-
iments to demonstrate the importance of simulating repre-
sentative client access networks. In one case, we configure
userver to use a maximum of 100 processes and 20000
connections. In the other case, we configure userver to
use 1 process and 1 connection. We run two experiments
comparing these configurations using the workload with

0.5 MB chunks. The clients do not use pacing because
with a single connection configuration, the server through-
put will be bounded by the pacing rate. The first experiment
does not use dummynet (unthrottled) and the second uses
dummynet to model different client networks (throttled).

Figure 7 shows the results of these two experiments. As
can be seen by the two lines labeled unthrottled, the perfor-
mance of the two vastly different configurations are quite
close. However, the two lines labeled throttled show that
the performance of these two configurations are dramati-
cally different when using representative client networks.
The strong performance of the single connection unthrottled
case is a result of the data being sent unrealistically fast over
the 1 Gbps network. This demonstrates the importance of
simulating different client network speeds for this workload.
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Figure 7. Using dummynet to model client networks

7.3 Duration and Repeatability

One of our stated goals was to produce a benchmark that
completes in a reasonable amount of time. We believe that
the execution times are sufficiently long to reach a steady
state yet not so long to prohibit their use. For the graphs in
this paper, an experiment for one data point lasts 30 – 65
minutes (depending on the target request rate) with about 5
hours needed to generate one line on a graph (e.g., Figure 7).

The length of the experiments and the exclusion of ramp-
up and ramp-down phases when gathering performance met-
rics helps in obtaining repeatable results. We periodically
sample the throughput while the experiments are running
and compute a 95% confidence interval for that sampled
throughput. For all the experiments in this paper, the 95%
confidence interval for the sampled throughput is less than 1
MB/sec, indicating that the workloads are stable during the
measurement period.

We tested the stability of the experiments by repeating
experiments 10 times at selected rates. This also enabled
us to compute 95% confidence intervals for the failure rate
percentages. Table 4 contains measured statistics for exper-
iments described in Section 8. The confidence intervals for
throughput are small, particularly when there are no failures
during the experiment. The confidence intervals for the fail-



ure rates are larger, but still show that the experiments are
repeatable even when the server is severely overloaded.

Request Tput Mean Tput CI Failure Failure
Rate (MB/s) (MB/s) Mean (%) CI (%)

Figures 10 and 11, userver prefetch
20 39.2 0.01 0.0 0.00
40 68.4 0.09 5.7 0.13

Figures 10 and 11, userver noprefetch
20 33.1 0.12 14.1 0.95
40 33.3 0.61 52.5 1.68

Figures 8 and 9, userver noprefetch
70 33.8 0.06 2.3 0.17

100 38.9 0.15 19.6 0.66

Table 4. Confidence intervals for some userver runs

8. Web Server Benchmarks
Using our example workload and methodology for conduct-
ing benchmarks, we examine the performance of three dif-
ferent open-source web servers: Apache, nginx and two
different configurations of userver.

The userver configurations differ in how sendfile
is used. In general, sendfile is considered the most effi-
cient way to service static workloads from the file system
cache; it avoids buffer copy overhead by transmitting the
contents to a client directly from the cache. However, we
found that sendfile is inefficient when the contents are
not found in the file system cache. sendfile only fetches
enough data with each disk read to refill the socket buffer,
which is sized based on the characteristics of the network
rather than those of the disk. Reading from disk in this way
exposes two inefficiencies: small disk reads and additional
seeks when concurrently servicing multiple client requests.

One configuration of userver uses sendfile directly
and blocks when data must be read from disk. The other
leverages a feature of the FreeBSD version of sendfile
to avoid blocking. Rather than blocking, sendfile can in-
stead return immediately with an error code [25]. Upon re-
ceiving this error code, we use a helper thread to prefetch an
entire chunk into the file system cache, rather than read only
enough to fill the socket buffer. The single helper thread also
ensures that multiple files will not be read concurrently; it
reads only a single chunk at a time, and queues other pend-
ing reads. We refer to the configuration that uses a helper
thread as prefetch userver and the other configuration as
noprefetch userver.

Our overarching goal is to determine whether web servers
can be better implemented and tuned to service HTTP
streaming workloads. From preliminary investigations with
micro-benchmarks, we found that poor disk throughput can
limit web server performance. Therefore, to maximize the
performance of web servers for streaming video, we must
investigate strategies for maximizing disk performance. The

prefetching we introduced in userver is one such strategy;
we evaluate its performance impact by comparing the two
configurations of userver. We also test against Apache
and nginx, two widely-used web servers.

8.1 Effect of File System

One of the basic decisions when setting up a video server
is how to store the videos; if the HTTP video system uses
file-based chunking, there is a choice of the size to use for
the chunks. We created two workloads that differ only in
the chunk size to investigate the performance implications
of the choice. Our results suggest that increasing the chunk
size can make a huge difference, and provides motivation
to improve how HTTP streaming video servers create and
access the files storing the videos.

Figure 8 shows the throughput of four different servers
using the 0.5 MB chunk workload. For these experiments,
we vary the target chunk rate between 40 and 100 chunks/s.
When the request rate exceeds the capacity of the server, it is
not possible to completely service all the sessions. Figure 9
shows the percentage of sessions that could not be com-
pletely serviced for each target load. These results show that
all four server configurations provide similar performance.
The failure rates at 70 chunks/sec are lower for nginx and
userver without prefetching, and the difference is larger
than the 95% confidence intervals, so these server configura-
tions are somewhat better at servicing the 0.5 MB workload.

Table 5 shows the results from monitoring the disk per-
formance during the experiments at 70 chunks/sec. In this
table, the results for userver are labeled nopr for the no-
prefetch configuration and pr for the prefetch configuration.
The average times for read transactions are lower for nginx
and userver noprefetch, which may explain why the per-
formance of those servers is slightly better.
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Figure 8. Aggregate throughput with 0.5 MB chunk size

The prefetch userver performs worse than two of the
other servers with the 0.5 MB chunk workload because
the serialization of disk access by the web server prevents
the kernel from scheduling disk I/O to minimize seek dis-
tances. In contrast, the serialization of disk access is bene-
ficial for the 2.0 MB workload. Figure 10 shows the aggre-
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Figure 9. Missed deadlines, 0.5 MB chunks

Web server Time Per Avg Read Tput Disk
Read (ms) Size (KB) MB/s Util

userver nopr 2.935 72.9 24.26 100%
userver pr 3.681 84.7 21.69 97%
Apache 3.115 71.3 22.14 99%
Nginx 2.818 71.1 24.66 100%
wc 2.292 84.0 37.15 91%

Table 5. Disk performance, 0.5 MB chunks at 70 req/s

gate throughput and Figure 11 shows the session failure rate
when the chunk size is 2.0 MB.
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Figure 10. Aggregate throughput with 2.0 MB chunk size

The 2.0 MB workload uses the same abstract workload
specification as the 0.5 MB workload, but the results are
not comparable because the file sets are different and per-
formance will vary because the session lengths are rounded
differently in the two workloads. With the 2.0 MB chunk
size, prefetch userver reaches a failure-free throughput of
35 chunks/sec, 133% higher than the failure-free throughput
of the other servers. Table 6 shows that there is much higher
disk throughput with prefetching, both because of a low read
time, and because the average read size is large.

For these workloads, the disk is the bottleneck and de-
termines the performance of the web server. Therefore, we
complete our examination of disk performance by establish-
ing an approximate upper limit on disk throughput when
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Web server Time Per Avg Read Tput Disk
Read (ms) Size (KB) MB/s Util

userver nopr 3.612 88.1 23.86 100%
userver pr 2.307 112.4 42.65 90%
Apache 2.247 39.3 17.18 100%
Nginx 4.288 87.4 19.94 100%
wc 2.014 112.0 48.79 90%

Table 6. Disk performance, 2.0 MB chunks at 35 req/s

reading our two different file sets. This examination involves
running a simple workload experiment using wc, the stan-
dard Unix word count tool, to read the same file chunks that
are requested as part of the workloads. The file chunks com-
prising each video are read in sequential order, but the videos
are visited in a random order. The results of this experiment
are labeled wc in Tables 5 and 6. The disk throughput
of userver prefetch is only 13% lower than the perfor-
mance of wc with 2.0 MB chunks, but the best server disk
throughput using 0.5MB chunks is 33% lower than wc. Our
prefetching technique makes effective use of available disk
throughput when using 2.0 MB chunks, but it is not clear
whether there is a way to make better use of potential disk
performance when using 0.5 MB chunks.

8.2 Effect of Pacing

The video players on some devices, especially those with
limited memory capacity like smartphones and tablet de-
vices, will limit the amount of video stored on the device
at any point in time. This is done by first buffering a rea-
sonable amount of data to play the video without having to
rebuffer (i.e., stop video playback while waiting for video to
be delivered) and then requesting more video when buffer
space becomes available. As described previously this be-
haviour is mimicked in our workloads by using the pacing
functionality we have added to httperf.

However, video players on some devices have significant
amounts of memory and in some cases simply utilize the
hard drive of the system in order to store video as it arrives.
In this case, requests for the next chunk are sent to the server



as soon the previous reply arrives, essentially requesting
chunks far in advance of when they will be played back.

An interesting question is whether or not such behaviour
by the clients (issuing paced versus non paced requests) af-
fects the overall throughput of the server. To examine this
issue we create a new workload that is identical to that used
in Section 8.1 and used to produce the results shown in Fig-
ure 8, except for client pacing. We can create workloads with
specified mixes of clients issuing paced versus non paced re-
quests, but we consider here the extreme case in which none
of the clients pace their requests and are only limited by the
speed of the server and their network connection.

Figure 12 shows the results of this experiment. The lines
in the graph that are labeled userver noprefetch nopacing and
userver prefetch nopacing are results obtained using this new
workload where clients do not pace their requests, while the
other two lines are taken directly from Figure 8. It is inter-
esting to note that when the userver is prefetching there is no
difference in aggregate throughput, while when the userver
is not prefetching the differences in aggregate throughput are
significant, results that would have been difficult to predict a
priori.
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9. Discussion
Use of the methodologies described in this paper has allowed
us to discover several interesting server design issues that ap-
pear to have substantial impacts on Web server performance
for HTTP streaming video workloads. Perhaps most signif-
icantly, our performance results suggest the importance of
investigating design optimizations focused on improving ef-
ficiency of disk access. Although our experiments were per-
formed using a “small-scale” server machine with a modest
amount of memory and only a single disk, we believe that the
disk performance bottleneck would also occur with larger-
scale servers. For example, the disk bottleneck has been re-
ported for Akamai servers in the case of “long tail” user-
generated video workloads [20].

Design optimizations for disk-bottlenecked systems can
differ substantially from those that have been traditionally
explored for web servers. An important goal in web server

performance optimization has been to eliminate block-
ing [25]. By processing many requests in parallel and with
appropriate server design, the time spent waiting for an I/O
to complete for one request can be overlapped with CPU
processing for other requests. In our experiments with video
streaming workloads, however, the CPU load has been neg-
ligible. In this context, rather than processing many HTTP
requests in parallel, each contending for disk access, it is bet-
ter to serialize disk accesses so that a large amount of data is
fetched for one request, before switching to service another.

If each video is stored as many small files, it may be dif-
ficult to achieve the same level of efficiency of disk usage
as when each video is stored as a single file. Surprisingly, in
follow-on work to this paper, we found that simply storing
videos in large files does not provide significant increase in
throughput for the server [30]. Benefits from large files are
only obtained by carefully controlling disk accesses through
the web server. Furthermore, although aggressive prefetch-
ing will make disk accesses more efficient, memory used
for prefetched data is then unavailable for use for caching
of frequently-accessed video chunks. In the case of clients
with low bandwidth network connections that read video
data from the server at low rates, prefetched data will need
to reside in memory for a relatively long time. Prefetching
can also result in wasted work when users prematurely ter-
minate their video sessions. Given the observed low CPU
load and typical multi-core architectures, relatively complex,
computation-intensive policies for addressing these tradeoffs
may be worth investigating.

10. Conclusions
Video traffic is growing much more rapidly than other Inter-
net traffic types, and its fraction of the total may increase to
over 90% [33]. It appears that much of this video traffic will
be delivered over HTTP, which allows the use of standard
web servers rather than specialized video servers. Assess-
ing how efficiently web servers will support this new type
of workload will require experimental studies in which web
servers are subjected to HTTP streaming video workloads of
varying types, with characteristics chosen to approximately
match those in application scenarios of interest.

To facilitate such studies, we have developed methodolo-
gies for generating HTTP streaming video workloads with a
wide range of possible characteristics and for running ex-
periments using these workloads. We illustrate the use of
our methodologies by generating example workloads with
characteristics based in part on those empirically observed
for video sharing services. In experiments using these work-
loads, three web servers are assessed under varying loads.

Although our experiments are for illustrative purposes,
they nonetheless provide insight into how the efficiency of
disk access can impact performance in this context. A rela-
tively simple design change to userver, to asynchronously
prefetch files through sequentialized disk access, was found



to yield substantially improved performance in some cases.
In future work, we plan to use our methodologies to inves-
tigate how web server design changes can improve perfor-
mance for HTTP streaming video workloads.

11. Availability
Our log files and modified version of httperf are available
at http://cs.uwaterloo.ca/˜brecht/papers/systor-2012.
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