
Methods for Constructing Balanced Elimination Trees and Other Recursive
Decompositions

Kevin Grant and Michael C. Horsch
Dept. of Computer Science
University of Saskatchewan

Saskatoon, Saskatchewan, Canada
Email: kjg658@mail.usask.ca and horsch@cs.usask.ca

Abstract

A conditioning graph is a form of recursive factorization
which minimizes the memory requirements and simpli-
fies the implementation of inference in Bayesian net-
works. The time complexity for inference in condition-
ing graphs has been shown to beO(n exp(d)), where
d is the depth of the underlying elimination tree. We
demonstrate in this paper techniques for building small
elimination trees. We give a simple method for deriving
elimination trees for Darwiche et al.’s dtrees. We also
give two new heuristics for building small elimination
trees. We show that these heuristics, combined with a
constructive process for building e-trees produces the
smaller trees.

Introduction
When programmers wish to use Bayesian networks in their
applications, the standard convention is to include the en-
tire network, as well as an inference engine to compute pos-
teriors from the model. Algorithms based on junction-tree
message passing (Lauritzen & Spiegelhalter 1988) or vari-
able elimination (Zhang & Poole 1994; Dechter 1999) have
a high space requirement and are difficult to code. Further-
more, application programmers not wishing to implement
an inference method must import large general-purpose li-
braries.

Compiled versions of Bayesian networks overcome this
difficulty to some extent. Query-DAGs (Darwiche & Provan
1996) precompute probability equations that are parameter-
ized by evidence variables, and stores them as DAGs. New
evidence changes the parameter values and the equations.
The inference engine for these systems is very lightweight,
reducing system overhead substantially. And the interfaceto
the system is sufficiently easy - the user can either set evi-
dence nodes or query probabilitistic output nodes. However,
although the abstraction provided by Q-DAGs makes them
universally implementable, their size may be exponential in
the size of the network.

Recently, we proposedconditioning graphs(Grant &
Horsch 2005). Conditioning graphs combine the linear
space requirements of conditioning with the simplicity of Q-
DAGs. Its components consist of simple node pointers and

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

floating point values; no high-level elements of Bayesian
network computation are included. As well, the inference
algorithm for conditioning graphs is a small recursive algo-
rithm, easily implementable on any architecture.

The time complexity of inference using a conditioning
graph is exponential on the height of its underlying elim-
ination tree. Hence, minimizing the height of these elim-
ination trees is of particular interest. Producing balanced
recursive decompositions has been previously investigated
by Darwiche et al. (Darwiche 2000; Darwiche & Hopkins
2001). These documents provide two methods for balancing
dtrees (a recursive decomposition where the size of the cut-
set at each node is unrestricted, but every internal node must
have two children). The first method involves constructing
an unbalanced dtree, and subsequently balancing it using
contraction methods. The second involves hypergraph par-
titioning, which combines construction and balancing intoa
single step.

We demonstrate a simple transformation between dtrees
and elimination trees, and show that the time complexity
of inference in the elimination trees after conversion is the
same as in the dtree. Thus, any algorithm for building well-
balanced dtrees also contributes well-balanced elimination
trees. We also suggest two new heuristics for constructing
recursive decompositions, based on greedy search, and show
empirically that these are better than the method suggested
by (Darwiche & Hopkins 2001) for tested networks when no
caching is employed.

The rest of the document is structured as follows. We
begin with a review of elimination trees and their construc-
tion, which is followed by a discussion of the transformation
from a dtree to a elimination tree (e-tree). We then intro-
duce two heuristics for building e-trees, and show that e-
trees constructed using these heuristics are superior e-trees
constructed from balanced dtrees. We close with a summary
and future work.

Background
A Bayesian networkis a tuple〈G, φ〉, whereG = 〈V , E〉
is a directed acyclic graph over random variablesV =
{V1, ..., Vn}. φ = {φ1, ..., φn} is a set of potentials, where
φi is a conditional probability distribution ofVi given its
parents inG.

An elimination tree(Grant & Horsch 2005) ore-treeover

A D

C

E

B

Figure 1: An example Bayesian network.

AD

C

P(A)P(D|B, C)P(E | D) P(C | A)P(B | A)

E

B

Figure 2: The network from Figure 1, arranged in an elimi-
nation tree.

a Bayesian network is a tree where each leaf corresponds
to a CPT in the network, and each non-leaf corresponds to
a random variable from the network. The tree is structured
such that for any nodeN in the tree, the variable atN and
N ’s ancestors d-separate all variables from one child ofN
from all variables in another child ofN . Figure 2 shows an
e-tree for the network shown in Figure 1.

Elimination trees are a recursive factorization of Bayesian
networks. Other recursive factorizations exist, such as re-
cursive decomposition (Monti & Cooper 1996) and recur-
sive conditioning (Darwiche 2000). The primary difference
is that these factorizations restrict the number of children at
each internal node to two, while no restriction is made on
the number of variables at each internal node. In contrast,
elimination trees restrict the number of variables at each in-
ternal node to one, but have no restriction on the number of
children.

To compute a probability from an elimination tree, we tra-
verse it depth-first, generating a context as we descend, such
that when we reach a leaf node, we can extract a probability
from the corresponding CPT. Values returned from the chil-
dren of a node are multiplied. If the variable at a node is not
observed, then we condition over that variable. When the
variable at a node is an evidence variable, its value is fixed,
which affects all calculations in its descendants.

A conditioning graphis an e-tree with additional arcs con-
necting variable nodes to leaf nodes. The basic algorithm
for computing probabilities is the same, but the additional
structure simplifies the basic algorithm to increase its porta-
bility.. Space restrictions preclude a more detailed expla-
nation of this approach, but see (Grant & Horsch 2005) for
more details. The time complexity for inference in an e-tree
is exponential on the height of the tree.

Elimination trees have a close correspondence with elimi-
nation algorithms (Zhang & Poole 1994; Dechter 1999). The

algorithm for building an elimination tree parallels variable
elimination, where an internal node represents the marginal-
ization of its variable label, and the children of the node
represent the distributions that would be multiplied together.
Thus, an internal node is labeled with a variable, but repre-
sents a distribution. Figure 3 gives a simple algorithm for
constructing an elimination tree from a Bayesian network
〈G,Φ〉. In the algorithm, we usedom(T) to represent the
union of all CPT domains from the leaves ofT ’s subtree.

Notice that the algorithm in Figure 3 returns a set of trees,
rather than a single tree. In the event that the network is
not connected, the number of disconnected components will
correspond to the number of trees returned byelimtree. We
assume that the elimination tree is connected (that is, the
algorithm returns a single tree).

elimtree(〈G = 〈V , E〉,Φ〉)

T ← {}

for each φ ∈ Φ do
Construct a leaf nodeTφ containingφ
Add Tφ to T

for each Vi ∈ V do
Select the setT i = {T ∈ T |Vi ∈ dom(T)}
RemoveT i from T

Construct a new internal nodeti whose children areT i

Labelti with Vi, and add it toT
return T

Figure 3: The code for generating an elimination tree from
a Bayesian network.

Given an e-tree of heightd, the time complexity of com-
puting a probability from the tree isO(n exp(d)), where
d = n in the worst case. Although the worst case rarely oc-
curs, it demonstrates the importance of an e-tree with good
structure. The dtree structure due to Darwiche et al. is re-
lated to our e-tree structure, and methods for constructing
well-balanced dtrees have been proposed (Darwiche 2000;
Darwiche & Hopkins 2001). The following section demon-
strates a relationship between dtrees and e-trees, such that
we can take advantage of these algorithms for building bal-
anced dtrees when constructing e-trees. Also, the above al-
gorithm for constructing e-trees suggests that the complex-
ity of the e-tree is a function of the variable ordering. In a
subsequent section, we examine how to construct good vari-
able orderings such that e-trees can be computed directly,
without resorting to secondary balancing methods (these are
described in the next section).

Dtrees to Elimination Trees
As mentioned, adtree is a recursive decomposition of a
Bayesian network, where each internal node has two chil-
dren. The number of variables at each node is not restricted
to one variable as it is in e-tree nodes. Figure 4 shows a
possible dtree for the network of Figure 1.

The time complexity of computing probabilities in a dtree
(when no caching is used) isO(n exp(wd)) wherew is the
size of the largest cutset (set of variables at a node), and

AD

B,C

P(A)P(D|B, C)P(E | D)

{}

P(C|A)P(B|A)

Figure 4: A dtree for the Bayesian network in Figure 1

d is the maximum depth of the tree (the quantity measured
is the number of recursive calls made). If the tree is bal-
anced, thend = log n. There are two well-established al-
gorithms for balancing dtrees. The first (Darwiche 2000)
involves constructing a dtree using variable elimination (in
the same manner as elimination trees are constructed), and
then balancing them using contraction (Miller & Reif 1985).
The second involves directly computing balanced trees using
hypergraph partitioning (Darwiche & Hopkins 2001).

The similarity of dtrees and e-trees suggests that a well-
balanced dtree might lead to a well-balanced e-tree. Trans-
forming a dtree to an e-tree is straightforward. We show a
transformation method, and then show that the complexity
of the resulting e-tree is the same as the original dtree.

There are several things to note about the conversion.
First, the leaf nodes of a dtree and an e-tree are identical,
that is, they correspond to a CPT from the Bayesian net-
work. Second, the cutsets of a dtree do not include leaf vari-
ables from the original Bayesian network. A cutset in a dtree
represents a subset of the intersection of variables from the
leaf CPTs of its subtree. Hence, since a leaf variable in a
Bayesian network is only defined in one CPT, it follows that
it never appears in a cutset.

The conversion process is as follows:

1. For each leaf variable in the original Bayesian network,
create a new node containing that variable, and insert it as
the parent of the node containing that variable’s CPT.

2. If a node has no variables in its cutset, then the children
of this node become children of the parent node.

3. If a node hask variables in its cutset, wherek > 1, then
it creates a chain ofk − 1 nodes beneath it, and assigns
each one a variable from the cutset.

This algorithm converts the dtree of Figure 4 to the e-tree
shown in Figure 2. We now prove that the time complexity
of inference over the two structures is the same.

Lemma 1. After converting a dtree of depthd and cutset
width w, the resulting e-tree has a depth ofd2, whered2 ≤
d ∗ w + 1.

Proof Sketch: Follows from the node transformations.
Adding a leaf variable above a leaf node increases any path
in the tree by at most 1. Absorbing nodes does not increase
the height. Creating a chain out of a set of cutset variables
increases the length of a path from 1 tow (since the cutset
is at most sizew). Hence, since the the number of nodes in

any path is at mostd, the maximum length of a path in the
e-tree isd ∗ w + 1.

Theorem 1. The time complexity to compute posterior prob-
abilities using a dtree is the same as the time complexity us-
ing an e-tree constructed from that dtree.

Proof. The time complexity of inference using a dtree of
heightd and widthw is O(n exp(wd)) (Darwiche 2000).
From the lemma, the e-tree constructed from such a dtree is
of heightd ∗ w + 1. Since the time complexity of inference
over an e-tree is exponential on its height, it follows that the
two structures share the same complexity.

We generate elimination trees from balanced dtrees using
both techniques discussed by Darwiche et al. (Darwiche &
Hopkins 2001): generate a tree, then balance them using
contraction; and generate a balanced dtree using hypergraph
partitioning. We compare these e-trees to those constructed
using the methods described in the next section. The results
of this comparison are given in theEvaluationsection.

In closing this section, we note that the transformation
from a dtree to an e-tree can be reversed. This is important,
since the complexity of computing over a dtree is a function
of two factors: the height of the tree, and the width of the
cutsets. In Darwiche et al. (Darwiche & Hopkins 2001),
the authors explicitly compare the construction algorithms
by each term, but not by product of these two factors. It
is the product of these terms that determines the time com-
plexity of computing over the structure in the absence of any
caching. In contrast, the complexity of computing over e-
trees is a function only of height. Therefore, by minimizing
the complexity of an e-tree, we are minimizing the afore-
mentioned product in a dtree. Therefore any method devel-
oped to build good e-trees can be used to build good dtrees.
This is especially important if the dtree will be used without
any caching of intermediate results.

Better Elimination Orderings
In inference algorithms based on junction trees or variable
elimination, a good elimination ordering results in small
cliques, or small intermediate distributions. Finding an
optimal elimination ordering is NP-hard; heuristic meth-
ods, which are relatively fast, have been shown to give
good results in most cases. Starting from a moralized
graph, themin-fill heuristic chooses to eliminate the vari-
able which would require the fewest edges to be added
to the network during triangulation; themin-sizeheuris-
tic chooses to eliminate the variable which would mini-
mize the number of neighbouring variables (Kjaerulff 1990;
Huang & Darwiche 1996).

These heuristics are not necessarily well suited for recur-
sive decomposition techniques, especially if intermediate re-
sults are not cached (Darwiche 2000). They try to minimize
clique size, which is not directly related to the time com-
plexity of inference over a decomposition structure such as
an e-tree. Consider the example shown in Figure 5. Using
themin-fill heuristic, we will always remove a node from the
end of the chain, which leads to the possibility of an elimi-
nation ordering such asG, F, E, D, C, B, A. This ordering

A B C D E F G

Figure 5: For this Bayesian network, an elimination ordering
that is optimal for inference based on junction trees is the
worst case for methods based on decomposition structures.

A B C D E F G

P(A) P(B | A) P(C | B) P(D | C) P(E | D) P(F |E) P(G | F)

Figure 6: A worst case e-tree for the Bayesian network in
Figure 5, constructed using the min-fill heuristic.

is optimal for inference methods based on junction trees or
variable elimination. However, it is the worst case for in-
ference over e-trees and dtrees. Figure 6 shows the elimina-
tion tree generated from this elimination ordering (the corre-
sponding dtree is exactly the same, minus the node contain-
ing the leaf variable). The height of the e-tree correspondsto
the number of nodes in the network, making the complexity
of inferenceO(n exp(n)).1

Darwiche shows that a bad ordering can be repaired using
rake and compress methods (Miller & Reif 1985). How-
ever, we take a more direct approach, trying to measure (and
minimize) the height of the resulting e-tree, which directly
affects the time complexity of inference over it. Recall that
an e-tree is constructed iteratively, and when a variable is
chosen as the root of a new e-tree, all partial e-trees that in-
clude this variable in their definition are made children of
the chosen variable. We wish to choose the variable such
that the resulting e-tree has the smallest height.

The height of an e-tree is determined by taking the current
height, and estimating the additional height that would result
in later iterations. This is very similar to the way heuristics
are used in A* search: the best choice minimizesf , which
is the sum of current costg with estimated remaining costh.
We defineg(T) as the current height of a given e-treeT . The
estimateh(T) is the number of variables in the domain ofT
that have not yet been eliminated. This value corresponds
exactly to themin-sizeheuristic of classical elimination or-
der generation, and provides a lower bound on the remaining
height of the tree.

We define the heuristic functionf , as a weighted sum of
g andh, so that their effect in the search can be manipu-
lated:f = (1 − α)g + αh, whereα ∈ [0, 1]. Usingα = 1
corresponds to using themin-sizeheuristic. Usingα = 0
corresponds to a heuristic based only on the estimate of the
height of the tree using the remaining variables. Excluding
theα values from the equation provides a tight lower bound
on the eventual height of the resulting tree.

The approach we take in this paper is based on hill-
climbing search, using a heuristic that has some similarity

1The best possible ordering chosen by min-fill for a chain of
variables leads to an e-tree of heightn/2, which is still linear in
the number of variables.

to the way heuristics are used in A* search. Because of the
similarity, it is important to note that no backtracking oc-
curs, and the resulting ordering is not guaranteed to be opti-
mal. Converting the greedy search to a best-first approach is
a simple extension, which we have not fully explored.

The choice of current tree height (g) as a component in
our heuristic is an obvious one. However, using the number
of remaining variables in the e-tree is only one choice for a
lookahead value. Indeed, since it corresponds exactly to the
min-sizeheuristic, a natural question to ask is if we can use
themin-fill heuristic, which is typically preferred in classical
variable-ordering applications overmin-size.

The problem withmin-fill is that counts edges, rather than
variables, so an additive combination ofg (which counts
height in terms of a number of variables), andmin-fill would
not give a consistent estimate of total height. Furthermore,
no simple setting ofα can account for the difference in these
measures. We resolve this problem by noting that if the
number of remaining nodes to be marginalized isn, then the
maximum number of necessary fill edges isf = n(n−1)/2.
Solving forn givesn = (1 +

√
1 + 8f)/2. This value de-

rived frommin-fill can be used as our lookahead value in the
heuristic functionf .

Finally, when selecting a node, it is very often the case
that many variables have the same bestf value, especially
early in the search. Using the traditional methods, Darwiche
and Huang recommend using themin-fill algorithm, break-
ing any ties with themin-sizealgorithm (Huang & Darwiche
1996). However, when working on this project, we found
that even with tie-breaking procedures in place, there were
still a large number of unresolved ties that had to be bro-
ken arbitrarily. To address this issue, we break these ties by
choosing one of the best variables at random.

Evaluation
We compare the quality of the e-trees produced by our
heuristics to those produced from balanced dtrees. We use
both heuristics from the previous section: the first usesh
as themin-sizeheuristic, and the second uses the modi-
fied min-fill value. This comparison is made using several
well-known Bayesian networks from the Bayesian network
repository.2 We also follow the approach taken in (Darwiche
& Hopkins 2001), and compare our algorithms over several
ISAC ’85 benchmark circuits.

Because all the heuristics employ random ties breaking,
we show results as the mean of 50 trials for each configura-
tion. The bold entries in the tables of results indicate where
the mean height of the final tree using our heuristics is supe-
rior to the best result from any of the other methods.

Table 1 shows the results of the first comparison, using the
benchmark Bayesian networks. In the first column, we show
the mean height of e-trees derived from a dtree constructed
using themin-fill heuristic (Darwiche 2000), without balanc-
ing. The second column shows the height of e-trees derived
from balanced dtrees, usingcontract(Darwiche 2000). The
third column shows the mean height of the e-trees converted

2http://www.cs.huji.ac.il/labs/compbio/Repository/.

DTree Conversion Best-first search (values indicateα)

mf mf-bal hmetis 0 .0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1 .0

Barley 21.8 19.52 15.09 19.96 14.1 13.8 13.8 14.32 14.08 14.18 14.98 14.98 15.24 19.16

Diabetes 60.36 23.28 18.95 50.98 18.32 18.16 18.18 18.14 19.48 21.14 20.98 24.1 30.46 52.44

Link 45.74 43.4 48.2 147.8 40.38 39.32 39.04 39.54 40.36 40.56 38.98 39.4 39.18 47.08

Mildew 13.66 12.2 11.02 15.18 9.42 9.34 9.28 10.34 10.44 10.3 10.72 10.56 10.64 12.7

Munin1 23.26 22.16 26.39 42.0 19.02 18.64 18.68 18.84 19.64 19.68 19.48 22.0 20.8 23.46

Munin2 31.44 23.76 26.16 78.4 15.92 15.78 15.72 16.04 16.68 17.06 18.72 20.4 21.58 29.22

Munin3 26.82 21.02 24.48 78.66 16.0 16.26 16.78 17.4 17.62 17.9 19.0 19.06 20.46 27.6

Munin4 27.38 22.3 28.78 90.06 17.4 17.36 17.16 18.08 18.42 18.68 20.32 21.18 22.9 28.44

Pigs 26.06 24.6 24.23 48.42 20.72 20.56 20.58 20.16 20.62 21.32 21.26 21.42 21.8 25.78

Water 15.82 15.82 16.0 19.92 16.22 15.1 15.0 15.0 15.36 16.0 16.0 16.0 16.0 16.8

Table 1: Heights of constructed e-trees on repository Bayesian networks using the modifiedmin-sizeheuristic for lookahead.

DTree Conversion Best-first search (values indicateα)

mf mf-bal hmetis 0 .0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1 .0

c432 41.72 41.4 47.2 73.68 42.3 40.4 38.7 38.14 38.06 39.0 39.0 39.0 39.0 42.3

c499 47.92 42.12 40.67 77.82 40.6 39.06 39.06 41.08 41.76 45.0 41.0 40.96 40.96 46.22

c880 55.9 51.92 54.35 124.62 50.62 48.3 48.42 47.58 48.12 47.52 48.04 48.22 48.42 56.02

c1355 50.38 50.38 45.78 123.9 45.18 43.4 43.08 45.08 44.88 45.0 39.0 43.0 43.0 51.52

c1908 74.12 72.48 84.8 195.92 87.76 83.06 80.54 76.52 76.0 74.32 73.96 73.76 74.48 78.62

Table 2: Heights of constructed e-trees on ISAC ’85 benchmark circuits, also usingmin-sizefor lookahead.

from a dtree constructed using hypergraph partitioning (Dar-
wiche & Hopkins 2001). The subsequent columns are gener-
ated using our modifiedmin-sizeheuristic described above,
for varyingα values.

From this table, we can make a few observations. Con-
sidering only the dtree numbers, it can be observed that it is
better to build an e-tree from a balanced dtree, rather than
an unbalanced one. Second, our results show that for con-
structing e-trees (where we are less concerned with the width
of the ordering, and more concerned with the height of the
e-tree), hypergraph partitioning did not show an overall ad-
vantage over a balanced dtree constructed usingmin-fill; the
best results were obtained when the hypergraph partitioning
software,hmetis, was restricted using a parameter that tries
to enforce a very strict fair balancing of the nodes between
partitions. However, the hypergraph partitioning algorithm
was shown by Darwiche and Hopkins to be a better algo-
rithm for constructing good dtrees (Darwiche & Hopkins
2001).

Most notably, our modifiedmin-sizeheuristic consistently
outperformed the dtree based constructions, forα values be-
tween 0.2 and 0.5. The reductions in e-tree height were be-
tween 1 and 8 variables for the networks tested. Consider-
ing that the complexity is exponential on the height of the
tree, such a reduction is very significant. The best results
appear forα ∈ [0.2, 0.5], which suggests that while using
only the current heightg creates very poor trees, the current
cost should be weighted higher than the lookahead valueh.

We also tested our heuristics using several of the ISAC
’85 benchmark circuits, interepreting the circuits as DAGs.
Table 2 shows the results of this comparison. While the op-
timal α values are typically higher for these networks than
the benchmark Bayesian networks, we see that the results
are similar to the previous networks – the smallest means

appear whenα ∈ [0.1, 0.5]. Our heuristic results in smaller
trees than the standardmin-fill algorithm, even after balanc-
ing the resulting dtree before converting to an e-tree (except
for network c1908).

Table 3 and 4 show the results of using the modifiedmin-
fill measure as the heuristic to build e-trees for the Bayes
networks and benchmark circults, respectively. Again, the
mean value of50 trials is reported.

We can see that the results from our heuristic are gener-
ally better than those using themin-sizeheuristic as looka-
head. The optimalα value appears to be lower (meaning that
even less emphasis should be placed on lookahead). The re-
sults are more significant for the benchmark circuits, where
themin-fill algorithm is superior to the dtree methods over
all test networks (recall thatmin-sizedid not outperform the
dtree methods for thec1908circuit.)

Conclusions and Future Work
This paper presented techniques for building good elimina-
tion trees, from which we can construct conditioning graphs.
Since the time complexity of a recursive structure is a func-
tion of its height, a shallow, balanced elimination tree is de-
sirable.

Darwiche demonstrated two methods for building bal-
anced dtrees (Darwiche 2000; Darwiche & Hopkins 2001).
We have shown in this paper a linear-time transformation
to an e-tree, that guarantees the complexity of the two struc-
tures are the same. We also developed two new heuristics for
directly building e-trees, extended from traditional heuris-
tics for developing variable orderings in Bayesian networks.
We show that in the example networks, the e-trees devel-
oped from these heuristics are typically smaller than those
converted from dtrees.

The results obtained from our experiments show that, for

DTree Conversion Best-first search (values indicateα)

mf mf-bal hmetis 0 .0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1 .0

Barley 21.8 19.52 15.09 20.08 13.6 12.74 13.26 13.7 13.62 13.68 14.34 14.32 14.8 21.8

Diabetes 60.36 23.28 18.95 54.74 17.94 17.66 17.68 18.2 18.76 19.86 22.38 24.78 30.48 60.36

Link 45.74 43.4 48.2 152.14 38.46 37.34 37.64 37.78 37.2 37.76 37.84 38.18 39.72 45.74

Mildew 13.66 12.2 11.02 14.72 9.12 9.24 10.0 10.1 10.14 10.0 10.0 10.0 10.0 13.66

Munin1 23.26 22.16 26.39 42.24 18.68 18.22 18.3 18.76 20.28 19.46 19.8 20.0 21.1 23.26

Munin2 31.44 23.76 26.16 80.8 15.92 16.0 16.46 16.92 17.38 17.3 18.46 19.16 24.6 31.44

Munin3 26.82 21.02 24.48 68.42 16.2 16.34 16.96 17.0 18.0 18.84 18.7 19.5 21.42 26.82

Munin4 27.38 22.3 28.78 80.72 17.08 17.0 17.02 17.64 18.22 18.0 18.7 20.8 21.74 27.38

Pigs 26.06 24.6 24.23 51.04 19.38 19.58 19.92 20.24 19.86 20.5 20.62 21.46 22.44 26.06

Water 15.82 15.82 16.0 20.12 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.82

Table 3: Heights of constructed e-trees on repository Bayesian networks using the modifiedmin-fill heuristic for lookahead.

DTree Conversion Best-first search (values indicateα)

mf mf-bal hmetis 0 .0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1 .0

c432 41.72 41.4 47.2 76.4 38.54 37.86 37.22 37.74 38.0 38.24 39.0 39.0 39.0 41.72

c499 47.92 42.12 40.67 78.38 38.92 38.2 38.12 35.9 37.6 36.0 36.0 36.0 40.0 47.92

c880 55.9 51.92 54.35 121.58 48.58 47.04 45.32 44.0 44.38 45.0 45.0 45.12 45.74 55.9

c1355 50.38 50.38 45.78 125.56 45.8 44.22 45.38 40.98 40.5 39.0 39.0 39.0 43.0 50.38

c1908 74.12 72.48 84.8 195.46 88.14 82.98 80.06 76.24 69.72 70.44 70.04 70.7 68.5 74.12

Table 4: Heights of constructed e-trees on ISAC ’85 benchmark circuits, also usingmin-fill for lookahead.

recursive decompositions in which the time complexity is
a function of height (i.e., little space for caching), the pro-
posed heuristics are actually preferable to other methods for
construction. This applies not only to elimination trees, but
would also apply to dtrees as well.

If intermediate computations are cached (Darwiche
2000), then the time complexity of recursive decompositions
becomes a strict function of the width of the variable order-
ing. In this case, a more appropriate strategy is to minimize
the width of the variable ordering, rather than the height of
the tree. However, for mixed models with partial caching,
a mix of both would possibly be advantageous, where the
complexity is not necessarily a function of height. Further
research is needed to determine such a strategy.

Recall that ties in the estimation of the height of an e-tree
were broken arbitrarily, and the average of 50 runs was re-
ported. Different choices resulted in a difference of height
that in some cases exceeded 3 variables. This effect was spe-
cially dramatic early in the construction. This suggests that
a more careful measure might be a dramatic improvement
on the heuristics based onmin-sizeor min-fill.

Acknowledgements
The authors gratefully acknowledge the support of NSERC.

References
Darwiche, A., and Hopkins, M. 2001. Using recursive de-
composition to construct elimination orders, jointrees and
dtrees. InTrends in Artificial Intelligence, Lecture notes in
AI, 2143. Springer-Verlag. 180–191.

Darwiche, A., and Provan, G. 1996. Query dags: A prac-
tical paradigm for implementing belief network inference.
In Proceedings of the 12th Annual Conference on Uncer-

tainty in Artificial Intelligence (UAI-96), 203–210. San
Francisco, CA: Morgan Kaufmann Publishers.
Darwiche, A. 2000. Recursive Conditioning: Any-space
conditioning algorithm with treewidth-bounded complex-
ity. Artificial Intelligence5–41.
Dechter, R. 1999. Bucket elimination: A unifying frame-
work for reasoning.Artificial Intelligence113(1-2):41–85.
Grant, K., and Horsch, M. 2005. Conditioning Graphs:
Practical Structures for Inference in Bayesian Networks.
In Proceedings of the The 18th Australian Joint Conference
on Artificial Intelligence, 49–59.
Huang, C., and Darwiche, A. 1996. Inference in belief
networks: A procedural guide.International Journal of
Approximate Reasoning15(3):225–263.
Kjaerulff, U. 1990. Triangulation of graphs - algorithms
giving small total state space. Technical report, Dept.
of Mathematics and Computer Science, Strandvejan, DK
9000 Aalborg, Denmark.
Lauritzen, S., and Spiegelhalter, D. 1988. Local compu-
tations with probabilities on graphical structures and their
application to expert systems.Journal of the Royal Statis-
tical Society50:157–224.
Miller, G. L., and Reif, J. 1985. Parallel tree contraction
and its application. InProceedings of the 26th IEEE Sym-
posium on Foundations of Computer Science, 478–489.
Monti, S., and Cooper, G. F. 1996. Bounded recursive
decomposition: a search-based method for belief-network
inference under limited resources.Int. J. Approx. Reason-
ing 15(1):49–75.
Zhang, N., and Poole, D. 1994. A Simple Approach to
Bayesian Network Computations. InProc. of the Tenth
Canadian Conference on Artificial Intelligence, 171–178.

