
Exploiting Dynamic Independence in a Static

Conditioning Graph

Kevin Grant1 and Michael C. Horsch1

Dept. of Computer Science, University of Saskatchewan, Saskatoon, SK, S7N 5A9
{kjg658,horsch}@mail.usask.ca

Abstract. A conditioning graph (CG) is a graphical structure that at-
tempt to minimize the implementation overhead of computing probabil-
ities in belief networks. A conditioning graph recursively factorizes the
network, but restricting each decomposition to a single node allows us to
store the structure with minimal overhead, and compute with a simple
algorithm. This paper extends conditioning graphs with optimizations
that effectively reduce the height of the CG, thus reducing time com-
plexity exponentially, while increasing the storage requirements by only
a constant factor. We conclude that CGs are frequently as efficient as
any other exact inference method, with the advantage of being vastly
superior to VE and JT in terms of space complexity, and far simpler to
implement.

1 Introduction

Recently, we proposed conditioning graphs (CGs) which are runtime representa-
tions of belief networks [6]. CGs have a number of important properties. First,
they require only linear space, in terms of the size of the original network, whereas
a join tree for example, requires space that is exponential in the width of the
network. Second, a CG consists of simple node pointers and floating point val-
ues; no high-level elements of belief network computation are included. As well,
inference algorithms for conditioning graphs are small recursive algorithms, eas-
ily implementable on any architecture, without requiring monolithic runtime
libraries, or worse, the implementation of complex inference techniques such as
variable elimination [4, 15] or junction tree propagation [9].

Conditioning graphs are a form of recursive factorization of belief networks.
Recursive decomposition [10] and recursive conditioning [2] restrict the number
of children at each internal node to two, and no restriction is made on the number
of variables at each internal node. In contrast, conditioning graphs have exactly
one variable at each internal node, and no restriction on the number of children.
This difference simplifies the implementation of inference substantially.

Conditioning graphs are also related to Query-DAGs [3] in which simple
formulae are precomputed and stored as DAGs. The evaluation engine for this
approach is very lightweight, reducing system overhead substantially. However,
the size of a Q-DAG may be exponential in the size of the network.

2

Inference in belief networks allows the calculation of posterior probabilities
while considering only essential information. Any information deemed irrelevant
to the current query is ignored by certain inference algorithms (such as Variable
Elimination (VE) [15]). Such pruning can provide enormous efficiency gain in
application, both space and time-wise. The complexity of pruning is linear on
the size of the network model, making it fast in comparison to inference.

Because precompiled structures like conditioning graphs must be general
enough to allow any query, they do not inherently exploit the use of variables
that are irrelevant for a given query. In previous work, we exploited certain
domain-dependent observation variables for faster calculation [6]. In this paper,
we show how to exploit irrelevant variables for a given query. We show that with
a small amount of additional memory, we can achieve exponential speedup for
inference using conditioning graphs. In some cases, the time complexity is very
competitive with other exact methods such as VE and JTP, with the advantage
of requiring only linear space, and being very simple to implement.

The remainder of this paper is as follows. Section 2 reviews conditioning
graphs and their methods. Sections 3 and 4 present two improvements to the
basic algorithm. Section 5 shows empirical analysis of these improvements over
some well-known networks. Section 6 summarizes current and future research.

2 Elimination Trees and Conditioning Graphs

We denote a random variable with capital letters (eg. X, Y, Z), and sets of vari-
ables with boldfaced capital letters X = {X1, ..., Xn}. Each random variable X

has an associated domain of size mX , and can be assigned a value or instan-
tiated. An instantiation of a variable is denoted X = x, or x for short, where
x ∈ {0, ..., mX − 1}. A context, or instantiation of a set of variables, is denoted
X = x or x.

An elimination tree [6] over a belief network is a tree in which each leaf
corresponds to a conditional probability table (CPT) in the network, and each
non-leaf corresponds to a random variable from the network. The tree is struc-
tured such that for any non-leaf node N in the tree, the variable at N and its
ancestor variables in the tree d-separate all variables of one subtree directly be-
low N from all variables in another subtree below N . An elimination tree can be
derived from an elimination ordering using a modified version of elimination [15]
(see Grant & Horsch [6, 7] for details). Figure 1(b) shows the elimination tree
for the Fire example, shown in Figure 1(a)

An algorithm for computing probabilities in elimination trees is presented in
Figure 2. At each internal node T , we condition over its variable (denoted by
VT), unless it is observed. To compute probability P (e) from elimination tree T ,
we call P(T , e). The context is extended as the tree is traversed in a depth-first
manner, and when a leaf node T is reached, its CPT (denoted by φT) is indexed
by that context.

A conditioning graph [6] is a low-level representation of an elimination tree.
The abstract algorithm in Figure 2 is given a compact efficient implementation

3

Report

Leaving

Smoke

TamperingFire

Alarm

(a) The fire network [12].

R

L

S T

F

A

P(A | T,F) P(R | L)P(L | A)P(F)P(T)P(S | F)

(b) An elimination tree for the fire network.

Fig. 1. Elimination tree construction.

P(T , c)

1. if T is a leaf node
2. return φT (c)
3. elseif VT is instantiated in c

4. Total← 1
5. for each T ′ ∈ chT

6. Total← Total ∗ P(T ′, c)
7. return Total
8. else

9. Total← 0
10. for each vT ∈ dom(VT)
11. Total← Total + P(T, c ∪ {vT })
12. return Total

Fig. 2. Algorithm P , for processing an elimination tree given a context.

in terms of conditioning graphs, and primitive computational operations such as
arithmetic and pointer manipulation.

An example of a conditioning graph is shown in Figure 3(a). Note that at
each leaf, we store the CPT as an array of values, and an index as an integer
variable, which we call pos. In each internal node, we store a set of primary
arcs, a set of secondary arcs, and an integer representing the current value of the
node’s variable. The primary arcs are used to direct the recursive computation,
and are obtained from the elimination tree. The secondary arcs are used to make
the associations between variables in the graph and the CPTs that depend on
them. The secondary arcs are added according to the following rule: there is an
arc from an internal node A to leaf node B iff the variable X associated with A

is contained in the definition of the CPT associated with B.

We implement P as a depth-first traversal. When we reach a leaf node, we
need to retrieve the CPT parameter that corresponds to the context. To do this,
we store each CPT as a linear array of parameters, as follows. Let {C1, · · · , Ck}
be the variables of the CPT φ, ordered according to the order of their depth in
the tree. The index of φ(c1, · · · , ck) is calculated as follows:

index ([]) = 0
index ([c1, · · · , ck]) = ck + mk × index ([c1, · · · , ck−1])

(1)

4

R = -1

L = -1

S = -1 T = -1

F = -1

A = -1

0.02
0.98

0.9
0.1
0.01
0.99

0.5
0.99
0.85
0.0001
0.5
0.01
0.15
0.9999

0.01
0.99

0.88
0.12
0.001
0.999

0.75
0.25
0.01
0.99

0 0 0 0 0 0

cpt pos cpt pos cpt pos cpt pos cpt pos cpt pos

(a) Conditioning graph.

Query(N)

1. if N is a leaf node
2. return N.cpt[N.pos]
3. else if N.value 6= ⋄
4. for each S′ ∈ N.secondary do

5. S′.pos← S′.pos ∗N.m + N.value
6. Total ← 1
7. for each P ′ ∈ N.primary do

8. Total ← Total ∗Query(P ′)
9. for each S′ ∈ N.secondary do

10. S′.pos← S′.pos/N.m
11. return Total
12. else

13. Total ← 0
14. for i← 0 to N.m− 1 do

15. N.value← i
16. Total ← Total + Query(N)
17. N.value← ⋄
18. return Total

(b) Algorithm.

Fig. 3. Conditioning graph of the Fire example and the algorithm for computing prob-
abilities from it.

where mi is the size of the domain of variable Ci. By choosing an ordering that is
consistent with the path from root to leaf in the elimination tree, we can compute
the CPT’s index as the context is constructed, that is, while we traverse the tree.

Inference in a CG consists of summing out ‘hidden’ variables. Variables that
are either being queried or used as evidence are instantiated in advance of calling
P . To do this, we maintain one global context over all variables, denoted g.
Each variable Vi is instantiated in g to a member of D(Vi) ∪ {⋄}). The symbol
⋄ (borrowed from Darwiche and Provan [3]) is a special symbol that means the
variable is unobserved (we use -1 in our implementation). Initially, all nodes are
assigned ⋄ in g, as no variables have been instantiated. To calculate P (E1 =
e1, · · · , Ek = ek), we set Ei = ei in g for i = 1 . . . k. While performing the
algorithm, when conditioning a node to Vi = vi, we set Vi = vi. To reset the
variable (after conditioning on all values from its domain), we set Vi = ⋄ in g.

Figure 3(b) shows Query, the final low-level implementation of P . We use
dot notation to refer to the data members of the variables. For a leaf node N , we
use N.cpt and N.pos to refer to the CPT and its current index, respectively. For
an internal node N , we use N.primary, N.secondary, N.value, and N.m to refer
to the node’s primary children, secondary children, variable value, and variable
size, respectively. The variable’s value represents the evidence, if any. To set the
evidence V = vi, the application would set V.value = i. It is assumed that a
constant-time mapping exists between the variable and the node that contains
it: such a mapping can be constructed during compilation of the graph.

To avoid confusion regarding the notions of parents and children in the vari-
ous graphs and trees, we refer to the parents (children) of a variable in the belief
network as its network parents (children), while those in the conditioning graph
will be graph parents (children).

5

3 Optimizing indexing

Conditioning graphs index CPTs as variables are instantiated using a depth-first
traversal. For each variable that has been observed or conditioned, the indices for
its CPTs (linked through secondary pointers) are updated (Line 4 and 5 of the
Query algorithm). These values must be unset once the child values have been
calculated (Line 9 and 10 of the Query algorithm). This linear-time indexing
occurs once for each time the node is visited; the number of times a variable is
visited in exponential in the depth of the variable in the elimination tree. This
approach is simple to implement, but inefficient. We can dramatically improve
the efficiency of indexing by precomputing some of parameters involved, at a
small cost in terms of memory.

The function index takes a context over the variables of a CPT and returns a
unique index for that context’s entry in the CPT. We showed index in its Horner
form (Equation 1), but we can also represent it as a linear function over its pa-

rameters. Let Mi =
∏k

j=i+1 mj . This means that index (c1, · · · , ck) =
∑k

i=1 ciMi.
The cardinality of a variables never changes during inference, so Mi is a constant
that can be calculated during the compilation of the conditioning graph. The
commutativity of addition means that we can add the terms in the above equa-
tion in any order. Consequently, evidence values can be determined and their
effect on the indexing computation is independent of any query. Furthermore,
evidence only needs to be set once. This is in contrast to the original algorithm,
where the evidence was factored into the index when an evidence variable was
visited in the traversal, and evidence variables were reset when the traversal
of the subtree was completed. Hence, the number of times the evidence is set
and reset reduces from exponential to constant (per query). This decrease in the
number of operations is exponential on the height of the tree, although this is not
evident in terms of asymptotic complexity. If the evidence remains unchanged
over multiple queries, then the savings propagates over these queries as well.

Figure 4 gives the new algorithm for updating evidence, and querying the
graph. We represent the scalar value between a node N and a respective sec-
ondary child S using the function scalar(N, S). Notice that the query algorithm
does not compute over the secondary links for an observed variable.

4 Relevant Variables

When computing a posterior probability, the variables in the belief network can
be classified into three sets.

1. The query variables, including the variable over which a posterior distribu-
tion is to be computed, as well as all the evidence variables.

2. The relevant variables, whose CPTs must be included.
3. The irrelevant variables, whose CPTs may be safely left out.

The irrelevant variables include barren variables [13] and d-separated variables
[5]. Barren variables are variables whose marginalization would produce inter-
mediate distributions full of 1s. Barren variables often comprise a considerable

6

SetEvidence(N, i)

1. diff ← i−N.value {⋄ = 0 in this equation}
2. for each S′ ∈ N.secondary do

3. S′.pos← S′.pos + scalar(N, S′) ∗ diff
4. N.value ← i

Query2 (N)

1. if N is a leaf node
2. return N.cpt[N.pos]
3. else if N.value <> ⋄
4. Total ← 1
5. for each P ′ ∈ N.primary do

6. Total ← Total ∗Query2 (P ′)
7. return Total
8. else

9. Total ← 0
10. for i← 0 to N.m− 1 do

11. SetEvidence(N, i)
12. Total ← Total + Query2 (N)
13. SetEvidence(N, ⋄)
14. return Total

Fig. 4. Algorithms for setting evidence and querying, given that secondary scalar values
are used.

portion of the belief network, especially when the observations and queries are
localized to a particular section of the network, and even more so when those ob-
servations/queries are shallow (closer to the root than the leaves). D-separated
variables are variables in the belief network that are irrelevant to the current
query given the current evidence. These variables can also be ignored.

Finding barren and d-separated variables requires traversal through the be-
lief network, but the conditioning graph does not store the belief network in a
convenient manner for this. Two possibilities are immediately apparent:

1. At each node, store two tertiary sets of pointers, that correspond to the
original belief network. That is, node N storing variable V would have two
sets, parents and children, that point to the nodes containing V ’s network
parents and network children, respectively.

2. Make the secondary arcs bi-directional. In other words, each leaf node in
the conditioning graph stores pointers up to its variables in the conditioning
graph. As the leaf node stores a CPT for a variable V , and a CPT represents
a relationship between V and its network parents, every leaf node has a
distinguished arc to V (called a root arc), and a set of pointers to V ’s network
parents (a non-root arc).

Tertiary pointers are more intuitive, and require only one step to traverse to a
neighbour (rather than the two step process of traversing to a tree leaf first).
However, including tertiary pointers is more space-expensive than making exist-
ing secondary arcs bidirectional. In a highly connected graph, the difference can
be substantial. For simplicity, we will use the first option, but the algorithms are
easily modified to use the second option if space is limited.

7

There exist several algorithms for finding nodes that are relevant to the query.
One of the more recent ones, the Bayes-ball algorithm [14], finds both d-separated
and barren variables simultaneously, and is a very good choice. However, since
barren variables can be identified prior to the query, our algorithm performs
these tasks separately: first non-barren variables are identified, and from these,
the set of dependent variables are found.

The simplest definition of a barren variable is recursive: a variable in a belief
network is barren if (a) it is not observed or part of the query and (b) either it
is a leaf node, or all of its children are barren. For our algorithm, we maintain
the collection of non-barren variables dynamically, as follows: whenever a barren
variable becomes observed (or part of a query), then it becomes non-barren, and
notifies its network parents of its non-barren state. This process continues in a
recursive manner. Conversely, when a non-barren variable becomes unobserved,
it checks whether or not its children are all barren. If they are, it becomes barren,
and notifies its parents of its barren-ness. To accomplish this in a timely fashion,
each internal node in the conditioning graph maintains an integer, nonbarren,
that represents the number of nonbarren children that variable has in the net-
work. When a variable becomes non-barren, it notifies its network parents, which
update their nonbarren status by incrementing it. The opposite process occurs
when a non-barren node becomes barren. A variable is barren if it is not observed
and its nonbarren value is 0. Figure 5 shows SetEvidence2, our new evidence
entry method that maintains barren variables. Note that SetEvidence2 is called
whenever the observed value of a variable changes, independent of any query.

SetEvidence2(N, i)

1. SetEvidence(N, i)
2. if i 6= ⋄
3. ResetBarren(N)
4. else

5. SetBarren(N)

ResetBarren(N)

1. if N .barren = true
2. N.barren ← false
3. for each Pa ∈ N .parents do

4. Pa.nonbarren ← Pa.nonbarren + 1
5. ResetBarren(Pa)

SetBarren(N)

1. if N.barren = false AND N.nonbarren = 0 AND N.value = ⋄
2. N.barren ← true
3. for each Pa ∈ N .parents do

4. Pa.nonbarren ← Pa.nonbarren - 1
5. SetBarren(Pa)

Fig. 5. Algorithm for setting the evidence, maintaining labeling of barren nodes.

From the set of nonbarren variables, we can select the relevant information.
The relevant information of a query in a belief network is information that is

8

not independent of the query; it is not d-separated from the query [11]. Space
precludes a detailed discussion on d-separation, however, it suffices to say that
a query is dependent on a variable if there exists at least one (undirected) path
between the query and that variable that is not blocked by the evidence.

A variable is relevant if its local distribution is relevant to the query. Given
that all non-barren nodes have been identified, relevant variables can be iden-
tified recursively (we assume that a query variable is not observed), using the
rules of d-separation [11]:

1. A query variable is marked as a relevant variable.
2. An unmarked barren variable is marked as an irrelevant variable.
3. Given a relevant variable, its unmarked, unobserved parents are relevant.
4. Given a relevant unobserved variable, its unmarked children are relevant.

It must be noted that the above definition of a relevant variable only applies
if the barren variables are identified. This simple recursive definition allows us
to write a depth-first search algorithm for marking the relevant nodes. This
algorithm, SetRelevant, is given in Figure 6. To identify relevant variable, a
boolean value relevant is attached to each node, and is given the value true for
each graph node which contains a relevant variable.

SetRelevant(N)

1. for each node N’ in the conditioning graph
2. N’.relevant ← N’.active ← false
3. MarkRelevant(N,N)

MarkRelevant(N, Q)

1. N .relevant ← true
2. MarkActive(N.root)
3. for each P ∈ N.pa s.t. P.barren = false AND P.relevant=false AND P.value= ⋄ do

4. MarkRelevant(P, Q)
5. if N = Q OR N .value 6= ⋄
6. for each C ∈ N.ch s.t. C.barren=false AND C.relevant=false do

7. MarkRelevant(C, Q)

MarkActive(N)

1. N .active ← true
2. if N .parent.active = false
3. MarkActive(N.parent)

Fig. 6. The SetRelevant algorithm, which marks the active part of the conditioning
graph for processing a particular query.

In addition to marking the relevance of each node, we need to mark the
active paths through the conditioning graph. A leaf node is active if the query is
dependent on its CPT. An internal node is active iff (a) the query is dependent
on its variable or (b) it has a dependent primary child. Only the active nodes
are traversed, the rest are ignored. In addition, the active nodes that are not
dependent are treated as observed nodes: they are not conditioned over, they
only combine results from their active children. We identify each active node in
the conditioning graph by setting a value active=true. We use the MarkActive

9

algorithm in Figure 6 to mark the active nodes in the graph as we identify
relevant information. Note that MarkActive requires that each node N have a
pointer to its parent node, which we identify as N.parent in the algorithm. As
well, we denote N ’s root arc (described previously) as N.root.

Given that we have marked the active and relevant nodes in the conditioning
graph (that is, we have called SetRelevant on the query node), Query3 in Figure
7 shows the new query algorithm. The new query algorithm only traverses the
active part of the network. It only conditions over relevant nodes. Each node
now additionally stores pointers to the nodes containing its network parents and
children, and maintains nonbarren, relevant, and active flags. These additions
cumulatively contribute a constant factor to the current network storage.

Query3 (N)

1. if N is a leaf node
2. return N.cpt[N.pos]
3. else if N.value 6= ⋄ OR N.relevant = false
4. Total ← 1
5. for each P ′ ∈ N.primary s.t. P ′.active = true do

6. Total ← Total ∗Query3 (P ′)
7. return Total
8. else

9. Total ← 0
10. for i← 0 to N.m− 1 do

11. SetEvidence(N, i)
12. Total ← Total + Query3 (N)
13. SetEvidence(N, ⋄)
14. return Total

Fig. 7. The Query algorithm, utilizing active and relevant nodes (Lines 03 and 05).

5 Results

Conditioning graphs offer linear-space computation, and easy portability to any
architecture. However, they have a worst-case time complexity that is exponen-
tial on the size of the network. Methods for balancing elimination trees have been
developed [7], however, the subsequent heights are still a function of network size.
Elimination methods, on the other hand, compute in time exponential on the
tree-width of the network [4]. This value is typically small in comparison to the
network size, so elimination methods will typically be quicker to answer queries
than conditioning methods, but they require much more space. In this section, we
show that the proposed optimizations provide considerable speedup in inference,
and that the inference times are reasonable compared to elimination.

We refer to the height of a conditioning graph as its actual height h, while its
height after ignoring irrelevant nodes will be its effective height h∗. We will refer
to the effective conditioning graph as the conditioning graph with its irrelevant
nodes ignored. To draw a comparison between conditioning graph methods and
elimination methods, we compare the effective height h∗ of the conditioning

10

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 0.1 0.2 0.3 0.4 0.5

h
 -

 h
*

Evidence (%)

ALARM
BARLEY

DIABETES
PIGS

WATER

(a)

 0

 2

 4

 6

 8

 10

 12

 0 0.1 0.2 0.3 0.4 0.5

h
 -

 h
*

Evidence (%)

MILDEW
MUNIN1
MUNIN2
MUNIN3
MUNIN4

(b)

Fig. 8. Height difference between actual and relevant conditioning graph.

graph to the width w∗ of the network generated using the min-fill heuristic [8].
By comparing the CG height to induced width, we are comparing the complexity
of inference in CGs with the complexity of inference in VE and JTP, by looking
at the exponent involved in the worst case analysis.

We compared the approaches over ten well-known networks, obtained from
the Bayesian network repository.1 We tested the algorithms using different per-
centages of evidence variables (ranging from 0 − 50% of the variables in the
network). For each test, we generated 100 random sets of evidence, and tested
50 different query variables on for each set of evidence, for a total of 5000 runs
per evidence set size, per network.

Figure 8 shows the difference h − h∗ for each network (for readability, we
have presented the results in two graphs). The graphs show that ignoring the
irrelevant information of the network offers a substantial speedup over computing
over it. The speedup is most prominent when there is no evidence; there is also
a tendency for the difference to increase when the amount of evidence is greater
than 20%. An explanation for these results is offered below.

We next compare the height of the effective relevant graph to the width of
the network (generated using the standard min-fill algorithm), i.e., h∗ − w∗.
Figure 9 shows the result of this comparison. While the actual height of the
conditioning graph is typically much worse than the width of the network, the
effective height of the relevant conditioning graph is not that much worse than
the network width - in fact, it’s typically better when the amount of evidence
is greater than 20%. The curves are similar for all graphs: an initial growth,
followed by a decline. This shows that in many cases, the complexity of recursive
decompositions is within the width of the network, meaning that we obtain
reasonable time while maintaining the benefits of conditioning graphs, namely,
linear space implementation and portability.

The results for both sets of graphs are easily explained by considering where
the hardest inference problems are in terms of amount of evidence. When a

1 http://www.cs.huji.ac.il/labs/compbio/Repository/.

11

-10

-5

 0

 5

 10

 15

 0 0.1 0.2 0.3 0.4 0.5

h
*

 -
 w

*

Evidence (%)

ALARM
BARLEY

DIABETES
PIGS

WATER

(a)

-10

-8

-6

-4

-2

 0

 2

 4

 6

 0 0.1 0.2 0.3 0.4 0.5

h
*

 -
 w

*

Evidence (%)

MILDEW
MUNIN1
MUNIN2
MUNIN3
MUNIN4

(b)

Fig. 9. Difference between relevant height of conditioning graph and network width.

network has no evidence, the number of barren variables is typically high, so the
complexity is low. As evidence is added, the number of barren variables declines,
increasing the complexity. However, this increase in the number of variables is
eventually offset by the number of d-separated variables, so the complexity begins
to decline. Hence, the hardest problems for inference in our example networks
occur when the amount of evidence is greater than 0% and less than 20%.

6 Conclusions and Future Work

This paper presents two optimizations to conditioning graphs, to improve their
efficiency while still maintaining linear space. The first optimization improved
the efficiency of indexing in the CPTs of the conditioning graph. The second op-
timization demonstrated how to leave irrelevant variables out of the conditioning
technique. These optimizations required simple extensions to the original code
which are consistent with the original goal of CGs: easily implementable, making
them universally portable. The optimizations attempt to avoid repeat calculation
and irrelevant information. They take advantage of current model state.

The first optimization saves us an exponential number of arithmetic opera-
tions for a given query, and these savings can be realized across queries in cases
where the evidence remains the same. For the second optimization, we mea-
sured its performance according to the effective height of the conditioning graph
(the maximum number of relevant non-observed variables along any path). We
observed that the effective height of the network is typically better than the
actual height, which means an exponential speedup in the run-times of condi-
tioning graphs. We also observed that this speedup allows conditioning graphs to
be competitive in runtime to elimination algorithms in certain cases, especially
when the percentage of observed nodes does not fall between 5% and 20%. Both
of these optimizations increase the storage requirements of the algorithm by only
a constant factor.

12

While these optimizations provide some speedup, providing caching of in-
termediate values at internal nodes ultimately produces the fastest recursive
structures [2]. Caching is easily implemented in conditioning graphs (caches are
indexed the same as distributions). However, naive caching seems to require ex-
ponential space. Darwiche et al. have provided good methods for optimal caching
given limited space for d-trees [1]. We are currently investigating the most effec-
tive use of space in a conditioning graph.

References

1. D. Allen and A. Darwiche. Optimal time–space tradeoff in probabilistic inference.
In Proceedings of the 18th International Joint Conference on Artificial Intelligence
(IJCAI-03), pages 969–975, 2003.

2. A. Darwiche. Recursive Conditioning: Any-space conditioning algorithm with
treewidth-bounded complexity. Artificial Intelligence, pages 5–41, 2000.

3. A. Darwiche and G. Provan. Query dags: A practical paradigm for implement-
ing belief network inference. In Proceedings of the 12th Annual Conference on
Uncertainty in Artificial Intelligence, pages 203–210, 1996.

4. R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence, 113(1-2):41–85, 1999.

5. D. Geiger, T. Verma, and J. Pearl. Identifying independence in Bayesian networks.
Networks, 20:507–534, 1990.

6. K. Grant and M. Horsch. Conditioning Graphs: Practical Structures for Inference
in Bayesian Networks. In Proceedings of the The 18th Australian Joint Conference
on Artificial Intelligence, pages 49–59, 2005.

7. K. Grant and M. Horsch. Methods for Constructing Balanced Elimination Trees
and Other Recursive Decompositions. Proceedings of the the 19th International
Florida Artificial Intelligence Research Society Conference (To Appear), 2006.

8. U. Kjaerulff. Triangulation of graphs - algorithms giving small total state space.
Technical report, Dept. of Mathematics and Computer Science, Strandvejan, DK
9000 Aalborg, Denmark, 1990.

9. S. Lauritzen and D. Spiegelhalter. Local computations with probabilities on graph-
ical structures and their application to expert systems. Journal of the Royal Sta-
tistical Society, 50:157–224, 1988.

10. S. Monti and G. F. Cooper. Bounded recursive decomposition: a search-based
method for belief-network inference under limited resources. Int. J. Approx. Rea-
soning, 15(1):49–75, 1996.

11. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., 1988.

12. D. Poole, A. Mackworth, and R. Goebel. Computational Intelligence. Oxford
University Press, 1998.

13. R. D. Shachter. Evaluating influence diagrams. Oper. Res., 34(6):871–882, 1986.
14. R. D. Shachter. Bayes-ball: The rational pastime (for determining irrelevance and

requisite information in belief networks and influence diagrams). In Proceedings of
the 14th Annual Conference on Uncertainty in Artificial Intelligence, pages 480–
487, 1998.

15. N. Zhang and D. Poole. A Simple Approach to Bayesian Network Computations.
In Proc. of the 10th Canadian Conference on Artificial Intelligence, pages 171–178,
1994.

