
A Decision Theoretic Meta-Reasoner for Constraint 
Optimization  

Jingfang Zheng and Michael C. Horsch 

Department of Computer Science 
University of Saskatchewan 

Saskatoon, Saskatchewan, Canada 
 

 
Abstract. Solving constraint optimization problems is hard because it is not 
enough to find the best solution; an algorithm does not know a candidate is the 
best solution until it has proven that there are no better solutions. The proof can 
be long, compared to the time spent to find a good solution.  In the cases where 
there are resource bounds, the proof of optimality may not be achievable and a 
tradeoff needs to be made between the solution quality and the cost due to the 
time delay. We propose a decision theoretic meta-reasoning-guided COP solver  
to address this issue. By choosing the action with the estimated maximal 
expected utility, the meta-reasoner finds a stopping point with a good tradeoff 
between the solution quality and the time cost. 

1. Introduction 

Constraint optimization problems (COPs) can be very much harder than solving 
constraint satisfaction problems (CSPs), because CSP solving algorithms can stop 
once a solution is obtained; but for COP solving, unless the optimal cost is known 
before hand, an algorithm that optimizes COPs cannot stop until it has proven that a 
solution is optimal. Even problems of modest size can be costly in terms of time. For 
some applications, the time cost may be as important as the solution quality.  

A simple approach to this tradeoff is to spend as much time as is allowed by the 
application.  In effect, this approach amounts to spending the user’s entire budget for 
computation. When time is cheap, this approach may be effective, but when time is 
costly, a user may prefer a good solution sooner than a better solution later. Another 
approach is to search for a solution whose quality is no less than a given quality.  This 
approach may result in solutions whose quality could be improved with a little more 
computation, or as before, solutions whose quality is not justified by the expense of 
the computation. By explicitly considering the costs and benefits of computation, a 
system may be able to optimize the comprehensive value of a solution, namely the 
quality net of computational costs.   

In this paper we present the design of a practical COP solver that uses decision 
theoretic meta-reasoning to control computation. In this approach, computational 
actions are associated with utilities [Horvitz 1989, Russell & Wefald 1991]. The value 
of the computational action is the solution quality that results, and the cost is 
associated with resources used in the solving (e.g., time). We apply this approach by 
monitoring the status of the solver and deciding to halt when the solver seems trapped 



in a proof of optimality. Since different users have different requirements for time and 
solution quality, we allow for different user preference models.  Our results show that 
the meta-reasoning solver obtains a good trade-off when resource costs are high. 

Our work differs from that of Horvitz et al. [2001], in that the decision problem is 
different. For a satisfiability problem, every solution is equally valuable, and the dec-
ision problem faced by a stochastic local search method is to choose whether to restart 
the search, or carry on from the current location.  In a COP, solutions vary in quality, 
and the tradeoff is more flexible since the value of the solution is part of the decision.   

Many of the issues addressed in the domain of planning under uncertainty (eg, 
[Boddy and Dean, 1994] and [Dean et al., 1995]) arise in constraint optimization and 
soft constraint propagation.  The main difference lies in the information available 
during deliberation, and the extent to which the representation provides structure to 
the meta-reasoner. Our approach does not exploit the structure of the COP as much as 
is done in the planning domain.  

To evaluate our approach, we focus on the problem of finding an assignment that 
violates the fewest number of constraints, i.e., Max-CSP, when all constraints are 
binary. However, our approach generalizes to any COP that can be expressed as a 
Valued-CSP (VCSP), or equivalently, a Semiring-based CSP (SCSP) [Bistarelli et al. 
1996].  The details of these representations are not important for the purposes of this 
paper.  However, we refer the reader to [Zheng and Horsch 2003] for details 
concerning the COP solver used in this study. 

1.3 Decision theoretic meta-reasoning 

In problems like CSPs and COPs, there is always uncertainty in the solving process.  
Horvitz [1988] summarizes the sources of uncertainty during computation: the value 
of alternative computed results in a particular situation, the difficulty of generating 
results from a problem instance, and the costs and availability of resources (such as 
time) required for reasoning.  Meta-reasoning refers to the deliberation concerning 
possible changes to the computational state of an agent [Russell & Welfald 1991].  
More concisely, it is the reasoning about computation. 

The uncertain trade-off between the costs and benefits of a computation can be 
modeled with decision theory. A decision theoretic meta-reasoner tries to determine 
the object-level computation that maximizes the agent’s expected utility, considering 
the trade-off explicitly. The comprehensive utility uc refers to the net value associated 
with the commitment to a computation. Comprehensive utility can be decomposed 
into two components: the object-level utility uo and the inference-related utility ui. 
The object level utility uo of a strategy is the utility of the outcome, omitting the costs 
associated with computation. The inference-related utility ui includes the costs that 
are be involved in the computation, such as time cost, memory cost and network cost, 
etc. The relation between these 3 utilities can be represented by: uc = f(uo, ui). In 
many cases, f can be treated as additively separable:  f(uo,ui) =  g(uo) + h(ui) for 
some functions g and h.  We assume that f is separable in this way. 

We make the further simplification of assuming that the on-line cost of meta-
reasoning is negligible, by designing our meta-reasoning to have negligible costs, 



compared to the object-level algorithm. In our approach, there are non-negligible 
costs off-line in compilation and analysis, which we assume can be amortized over 
the use of a meta-reasoning system, but we ensure that on-line costs are negligible. 

A simple approach to meta-reasoning is due to [Russell & Wefald, 1991]. Suppose 
the system maintains a “current best answer” a, which will be returned if it is 
interrupted during inference. The work of the future computation is to refine a for a 
higher utility. The algorithm is given as follows: 

Step 1.  Keep performing the object-level computation with highest expected net 
value (uc), until none has positive expected net value. 

Step 2.  Return answer a that is preferred according to Step 1. 
More assumptions can be made to simplify the estimated computations [Russell & 

Wefald, 1991].  Meta-greedy algorithms consider only single computational steps, 
estimate their ultimate effect, and then choose the step that appears to have the highest 
benefit.  The single-step assumption assumes the value of a partial computation as a 
complete computation, as if the system only had time for one more complete 
computation step.  This assumption can cause underestimation of the value of some 
computations.  The expensive alternative is to search for an optimal sequence of steps. 

2. A Meta-Reasoning COP Solver 

The task of computing the expected utility uc for each action is hard because of the 
uncertainty in the results of computation.  A meta-reasoning agent should select its 
current best action by making explicit numerical estimates of the utilities of action 
outcomes.  Statistical knowledge of the probability distributions over the results of 
computation can be used for future utility estimates of actions. Thus, our meta-
reasoning system consists of  

• branch-and-bound search combined with consistency propagation in VCSPs 
• a statistical model for the outcome of a computational step 
• a user preference model of the costs of computation, and the value of a solution 

2.1 The branch-and-bound search method 

Recent research has been devoted to building COP frameworks extended from 
constraint satisfaction problem (CSP) frameworks, including valued-CSPs (VCSPs) 
[Schiex et al. 1995] and Semiring-based CSPs (SCSPs) [Bistarelli et al. 1996]. Early 
approaches to COP solving use partial consistency propagation, combined with 
branch and bound search, such as Russian Doll Search [Verfaillie et al. 1996] and 
partial consistency propagation [Schiex et al. 1995]. More recently, Schiex [2000] 
proposed a definition of node and arc consistency in a VCSP framework. 

The constraint propagation we use is based on Larrosa’s variation [2002] of 
Schiex’s approach, as implemented in [Zheng and Horsch 2003]. It consists of the 
systematic repetition of projections of constraint costs from the (binary) constraints in 
C to unary constraints over variables involved in the constraint, and then to a special 
0-ary constraint for the entire COP instance. This method achieves node and arc 



consistency in a VCSP framework, and can also prune the inconsistent values from 
variables’ domains. The 0-ary constraint gathers the projected costs from the binary 
constraints and the unary constraints, and becomes a good lower bound (lb) for use in 
branch-and-bound search. The upper bound in the search is the valuation of the 
current best solution. Furthermore, the unary constraints on each variable provide a 
value-ordering heuristic, which has been shown to be effective [Zheng & Horsch 
2003]. This combination of soft arc consistency, with branch-and-bound search, using 
the value ordering heuristic (BB-SRFL-H) is the object-level solver.  

The solving algorithm is parameterized by a time bound that acts as a hard 
deadline: once the time bound is reached, the solving will stop, reporting the current 
best solution. The solving algorithm can also be interrupted by the meta-reasoner, 
which can halt the solver, and report the current best solution, even if the total time is 
not reached. The solver reports data to the meta-reasoner at regular intervals, as well 
as when the current best solution is updated.  This data is outlined below. 

2.2 The meta-reasoning problem 

The objective of meta-reasoning, as mentioned above, is to maximize the expected 
comprehensive utility uc, which is a combination of object-level utility uo and 
inference related utility ui.  In this system, the object-level utility uo is defined as the 
value of the solution quality, and the inference-related utility ui is the cost of 
achieving uo, mainly the required time.  With the assumption that these two utilities 
can be separated additively, the relation is simply uc = g(uo) + h(ui). This equation 
can be expressed in terms of cost.  Suppose cc, co and ci are respectively the cost for 
uc, uo and ui (cc = -uc, co = -uo and ci = -ui).  The objective of maximizing uc is the 
objective of minimizing cc. 

 

0

5

10

15

20

10 100 1000 10000 100000 1e+06

Co
st

 ($
)

time delay (ms)

Solution Cost
Comprehensive Cost

Time delay model: y=(1/30000)*x

 
Fig. 1. An example graph of the combined cost cc from solution cost co and time 

cost ci.  The optimal cc occurs just before the 10 second point. 
 
To compute cc, we have to choose functions g and h.  Here we use “dollar ($)” 

units to describe the costs, just for convenience. For the object-level cost co, ( the 
solution cost), we suppose the violation of any constraint costs $1. The cost function 



for ci will depend on the user.  For example, every 30 seconds of time delay costs the 
user $1.  These are arbitrary choices that do not affect the design of the meta-reasoner, 
and a later section will give a detailed discussion on user preference models.  

The task for the meta-reasoner is to analyze data at short intervals, to predict or 
observe the point when the minimal cc (maximal uc) is achieved, at which point it 
should make the decision to halt computation.  Figure 1 shows the graph of cc based 
on a solved problem. Initially, the solution improves quickly and the increase of the 
time cost was insignificant, so the combined cost cc decreases with the update of 
solutions. As time goes on, cc will increase if there is no update.  But a new update 
would still reduce cc.  The figure shows the ideal stopping point at the place of the 
minimal cc: the point after an update and before a long “no-update” period was about 
to start.  This long interval would accumulate a high time cost, and even a new update 
to the solution does not pay off. 

This ideal analysis was obtained in retrospect using a solved problem.  However, 
for most problems, the solver cannot be certain if there will be another quick update 
after the update that it just found.  The task of our meta-reasoner  is to predict the stop 
point that achieves the expected maximal comprehensive utility uc.  The meta-greedy 
assumption is used to simplify the situation: the system will consider only one step at 
every meta-reasoning  point. Thus, our system takes the estimation of maximizing the 
next step’s utility instead of directly maximizing the final decision’s utility.  At every 
short interval, say 1 second, the solver will pause and the meta-reasoner will consider, 
as we outline below, whether or not to let the object level solver continue.  

 

0 Time

Solution Cost

s0 s1 s1'
ub0

ub1'

x' secs
x secs  

 
Fig. 2. A visualization for the notation that will be used throughout the method. 

 
The following notation is used to derive the meta-reasoning process: 

• s0: the previous state at which the solution was updated most recently; 
• ub0: the cost of the best solution (upper bound) at s0; 
• s1: the current meta-reasoning state; we assume that there is no update from s0 

(from the definition of s0), and the solution cost for s1 is still ub0. 
• x: the number of meta-reasoning decision intervals passed from s0 to s1.  If  meta-

reasoning is performed every second, the time between s0 and s1 is x seconds. 
• s1’: the state that the meta-reasoner  predicts to have the next update after s1. 



• ub1’: the next update of solution cost, or the solution cost at s1’; 
• x’: the time from the current meta-reasoning  state s1 to the next update state s1’ 
• Uc: the utility function for uc   
• Uo: the utility function for uo 
• Ui: the utility function for ui 
 
With the knowledge of how much the update will cost the user (from ub0 to the 
predicted ub1’), the task for the meta-reasoner  is to decide whether to continue from 
s1 to s1’, based on the knowledge that it already has, and its prediction of how long s1 
to s1’ will take, and whether it will be less than the cost the user is willing to accept. 

The meta-reasoner will say “continue” if it believes in an increase of uc, and on the 
contrary “halt”. The change of uc brought by the action of “continue” can be 
expressed in Equation 2 (from s0 to s1’).    

( ) ( 1')
( ) ( 0)

( ) ( 1') ( 0)

c c

c c

c c c

U continue U s
U halt U s

U continue U s U s

=
=

∆ = −

 
(1) 

Since state s1’ is unknown, its real utility is uncertain, which we will model in 
Equation 3 by the expected utility EUc(s1’).   

( ) ( 1') ( 0)c c cEU continue EU s U s∆ = −  (2) 

With the knowledge of state s1, we can rewrite this as follows:  

( ) ( ( 1') ( 1)) ( ( 1) ( 0))c c c c cEU continue EU s U s U s U s∆ = − + −  (3) 

Equation 4 estimates the utility change in two periods: from s0 to s1 and from s1 to 
s1’.  Using the additive separation assumption, Uc can be replaced by Uo and Ui. 
Since there is no update from s0 to s1, the change of object-level utility 

( 1) ( 0)o oU s U s−  is 0; the change of the inference-related utility is the function of the 
time spent for this period (x seconds as known), which can be expressed as  ( )iU x .  
From s1 to s1’, the computation is based on prediction.  The expected solution cost is 
ub1’ as mentioned, and the expected time from s1 to s1’ is x’.  Thus the change of 
utility can be expressed as (| 1' 0 |) ( ')o iEU ub ub EU x− + .   

( ) (| 1' 0|) ( ') 0 ( )c o i iEU continue EU ub ub EU x U x∆ = − + + +  (4) 

Equation 5 can be expressed using probabilities and utilities:  

1' '
( ) ( 1') (| 1' 0|) ( ') ( ') ( )c o i i

ub x
EU continue P ub U ub ub P x U x U x∆ = × − + × +∑ ∑  (5) 

Equation 6 is the equation used in the meta-reasoner. If the estimated expected change 
in computing one more step is positive, solving will continue. We assume that the 
user preference model for costs due to time produces a single, global optimal uc.  
Otherwise, the meta-reasoner may halt the system when it detects a local maximum. 
Notice that ui only included the cost of solving; recall we require that the meta-
reasoning costs be negligible. If the probabilities P(ub’) and P(x’), and the utilities Uo 



are available cheaply during on-line computation, the meta-reasoning costs will be 
negligible.  The probabilities will come from a simple statistical model (Section 2.3), 
and the utility functions will be based on different user models (Section 2.4). 

bproj

nds

ub

binccsub'

uproj

unaccs

ccs

numBks

aveBKDepth

frontierSize

x'

 
Fig. 3. The statistical model for predicting ub0’ and x’. 

2.3 A Statistical Model For Predicting Outcomes Of Computation 

To obtain probabilities for ub1’ and x’ in Equation 6, we used a simple model based 
on  a naïve Bayes classifier,  extending it to 3 layers.  The variables ub1’ and x’ are 
considered the classifications, and we used the following features which are easily 
available during the runtime of the solving mechanism: 

1. ub0 : the cost of the current best solution. 
2. nds : the number of nodes in the search tree visited since last solution update. 
3. bproj : the number of binary projections from last solution update. 
4. binccs : the number of binary constraint checks since last solution update. 
5. uproj : the number of unary projections since last solution update. 
6. unaccs : the number of unary constraint checks since last solution update. 
7. ccs : the number of checks since last solution update.  This is a second level 

feature, which is the sum of features 3 to 6. 
8. numBks : the number of backtracks since last solution update. 
9. aveBKDepth : the average depth of search. 
10.frontierSize : the length of the current unvisited node list for the search. 

According to the naïve Bayes model, the features are assumed to be conditionally 
independent given the classifications.  Our modified model puts ub0, the value of the 
current best assignment, as a parent to the classifications, acting as a kind of switch. 
For example, if the input of current solution cost ub0 equals to 5, the probability of 
nextub being larger than 5 will be 0, because they can only be better than the current 
best solution.  The model is shown in Figure 3. 

To generate the training data, we solved randomly generated training problem 
instances using the same object level algorithm (BB-SRFL-H), reporting data at every 
point where an obvious change is observed.  We tried three different strategies for 



reporting runtime data.  One alternative was to report at the point where a search node 
was visited; the second reported data when a backtrack occurred.  Experiments 
showed that both of these two options produced too trivial information and very large 
data files, so we used a third option: whenever the solving algorithm found a solution 
which was better than the current best one, it reported the new solution cost, the time 
spent, the number of nodes, checks and all the input features mentioned in above. 

The data are distributed over a wide range, and therefore were “discretized” into 
abstract states by visual inspection of the distribution of the data for each variable.  
This has two consequences.  First, the summations in Equation 6 are feasible with 
discretized values, and second, the computed change in expected value is an 
approximation of the actual change. 

The statistical model was constructed using the maximum a posterior hypothesis 
(MAP) learning rule, as is common in naïve Bayes models.  Problem sets of 2, 5, 10, 
20, 50, 100, 200, 400 and 800 COPs were used to generate training data and smaller 
numbers of testing data were used to test the models. Five statistical models were 
constructed from training data collected by solving COP instances.  The average error 
rate for each set of 5 models was measured by counting correct predictions of ub’ on a 
test set, as well as by computing the predicted error in the expectation of ub’ for the 
test set.  The error rates converged for trials greater than 200 COP instances. 
Specifically, the average prediction accuracy for the 200 instance models was 72% 
(standard deviation: 0.02), and the relative accuracy in the predicted ub1’ for these 
models was 86% (st. dev. 0.004). Therefore, we used one of the five models 
constructed using 200 COP instances as the model to be used in our system. 

2.4 User Preference Models 

We have assumed that time is the main resource cost in this system.  Future work can 
include other costs such as the memory cost. Focusing on the time cost, we introduce 
different user preference models in this section. Several classes of utility functions of 
ui (time) have been examined, including urgency, deadline, and urgent-deadline 
situations [Horvitz 1988]. Section 2.2 demonstrated meta-reasoning  with a simple 
time model wherein 30 seconds costs $1. However, different users may have different 
requirements about urgency and deadlines. To measure how the time delay affects the 
solving and the decisions, utility functions are associated with time delay.   

We focus on urgency models, rather than deadlines. Where there are pure 
deadlines, the utility function Ui has two stages: before the deadline, Ui=0, and after 
the deadline Ui=-∞. Thus, meta-reasoning is not even useful for pure deadlines. 

An urgency model is a general class of utility functions in which the cost increases 
monotonically as the time delay increases. We focus on the urgency model to convert 
time to utilities for the computation of expected value (see Equation 6).  If the system 
is trapped in a long proof without any solution improvement, the cost will increase 
significantly. Our urgency models are linear with time as examples only; our 
approach is not limited to linear models. 



3. Experimental Results 

This section reports on the experiments of testing our solver for several different user 
models.  The performance of our meta-reasoner solver is compared with the results 
from the original non-meta-reasoning solver.  

For complete generality, a meta-reasoning system would be able to solve many 
different kinds of COP instances.  However, in this system we focus on a very 
specific class of COP instance: randomly generated Max-CSPs with 17 variables, 8 
values, a constraint density of 0.5, and an average constraint tightness of 0.5.  Our 
implementation is limited to problems from this class, but our design can be extended 
to any class; we are pursuing the open research issue of developing an approach that 
can be used for many classes of COP problems. Our experiments use very small COP 
instances, because of the need to solve them completely to analyze the results.  The 
details of our experimentation follow. 

3.1 Testing the Meta-reasoning Solver 

We tested the meta-reasoner on 50 random problems from the same class as above, 
using the user model from Section 2.3: each 30 seconds delay costs the user $1. 
Figures 4, 5 and 6 are the graphs showing the comparison between using the meta-
reasoning  solver and the same solver without the meta-reasoning.  The graphs show 
the result for each of the problems in terms of the solution costs and the time spent. 

 

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40 45 50

So
lu

tio
n 

Co
st

Problem Instances

meta-Solving
non-meta-Solving

 
Fig. 4. Comparison on solution costs on 50 COPs.  The average difference is 1.84 

and the standard deviation is 1.40, in favour of the non-metareasoning solving. 
In Figure 4, the x-axis shows the independent problem instances and the y-axis 

shows the solution costs from the two solvers.  The solution cost for non-meta-solving 
is the cost of the solution at the end of the complete solving, and the solution cost for 
meta-solving is the cost of the current best solution at the point where the solver 
decided to stop. From Figure 4, we can see that using the meta-solver results in 
solutions that are about 2 constraint violations worse on average.  

 



0

50000

100000

150000

200000

250000

300000

350000

0 5 10 15 20 25 30 35 40 45 50

Ti
m

e 
De

la
y 

(m
s)

Problem Instances

meta-Solving
non-meta-Solving

 
Fig. 5. Comparison on used time, on 50 problem instances as above.  The average 

time difference is 53 seconds and the standard deviation is 55 seconds. 
 
Figure 5 shows the comparison of the run time of the two methods.  Here, the y-

axis shows the amount of time used.  The meta-solver almost always stops before the 
non-meta-solver does, and on average, about 53 seconds sooner.  In a few cases, the 
two solvers require nearly exactly the same time. 

-6

-4

-2

0

2

4

6

8

0 5 10 15 20 25 30 35 40 45 50

Mo
ne

y (
$)

Problem Instances

Saved Money by meta-Solving against non-meta-Solving
y=0

 
Fig. 6. Difference in comprehensive utility between the two solvers. The average difference in 
“dollars” is -0.05 and the standard deviation is 2.17, in favour of the non-metareasoning solver. 

Figure 6 compares the comprehensive utility of the two solvers, using $1 per 
violation, and $1 per 30 seconds.  The average uc is –$0.05, which is close to zero as 
one would expect, given that two violations equals one minute’s computation. 

 

3.2 Testing Different User Preference Models 

To see how our meta-reasoning  solver provides different results for different user 
models, 7 user models were tested with 50 COPs.  These 7 models were just examples 



that show the time cost from expensive to cheap: M1 (1s = $1), M2 (5s = $1), M3 
(10s = $1), M4 (20s = $1), M5 (30s = $1), M6 (60s = $1), and M7 (120s = $1).   
 

-10

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7

Sa
ve

d 
M

on
ey

 C
om

pa
re

d 
to

 n
on

-M
et

a 
($

)

7 Models, Expensive to Cheap

Average Saved Money on Different Models
y=0

 
Fig. 7. Average difference in comprehensive utility using the metareasoning solving 
on 7 user preference models.  
 
Figure 7 shows the average of the saving on these 7 models.  The x-axis is the 7 
models, from expensive to cheap, and the y-axis is the average saving for these 50 
COP instances using these 7 models.  This figure shows that our meta-reasoner  pays 
off when time is expensive, but is comparable to the complete solver if time is cheap. 

4. Summary and Future Work 

We designed and implemented a decision theoretic meta-reasoning COP.  The system 
is able to make run-time trade-offs based on a model of expected comprehensive 
utility.  A traditional machine learning method was used to build a model of the way a 
COP solver improves solutions.  Different user models were used to test the system’s 
adaptability and its advantages or disadvantages according to different time urgency.  
Experiments suggest that this system is useful on expensive time models, but on 
average did not perform badly in cases when time was cheap. 

Currently the meta-reasoner  only provides the solver with the decision to halt or to 
continue, providing no other help during the solving. We are developing a meta-
reasoner to predict the next ub value. This could be used as an expected upper bound, 
which could be used to limit search. This is similar to the binary choice meta-reasoner 
of Carlsson et al [1996]; however, we expect the ub from the meta-reasoner will be 
more accurate than the binary choice algorithm, and thus we should have fewer wrong 
predictions and fewer backtracks. 

The design of the system is not limited to any specific variety of VCSP.  However, 
the implementation that was tested is specific to a class of very small VCSP.  This 
limitation was imposed by the need to test the solver on problems for which the best 
objective solution (ignoring computational costs) is feasible to compute. We are 



currently working on testing the design on larger problems.  To extend the approach 
to a wider class of problem, the features used to estimate expectations and 
probabilities need to be made independent of the problem class. We do not claim that 
the features presented in our model are optimal in any sense.  A different  set of 
relationships or features may improve the accuracy of the predictions.   

The Bayesian model was designed so that inference in the model would be easy, 
but because it is based on the “naïve Bayes” assumption, the manual construction of 
the network leaves significant space for improvement.  Learning a model structure 
from the data may improve the predictive power of the meta-reasoner, but the choice 
of model has to take on-line meta-reasoning costs into account. 

Acknowledgements 
 
The second author acknowledges support by NSERC through RGPIN2387870-01. 

References 

Boddy, M. and Dean, T. 1994. Decision-Theoretic Deliberation Scheduling for Problem 
Solving in Time-Constrained Environments.  Artificial Intelligence, Volume 67, Number 2, 
pp 245-286, 1994. 

Bistarelli, S.; Fargier, H.; Montanari, U.; Rossi, F.; Schiex, T.; and Verfaille, G. 1996.  
Semiring-based CSPs and valued CSPs: Basic properties. In M. Jampel, E. C. Freuder, and 
M. Maher, editors, Over-Constrained Systems, Volume 1106 of Lecture Notes in Computer 
Science, pp111-150. Springer, Berlin, 1996. 

Carlsson, M.; Ottosson, G.  1996.  Anytime Frequency Allocation with Soft Constraints.  CP96 
Pre-Conference Workshop on Applications.  1996 

Dean, T.; Kaelbling, L.; Kirman, J.; Nicholson, A. 1995. Planning Under Time Constraints in 
Stochastic Domains. Artificial Intelligence, Volume 76, Number 1-2, Pages 35-74, 1995. 

Horvitz, E. J.  1988.  Reasoning under Varying and Uncertain Resource Constraints.  In 
Proceedings of the National Conference on AI (AAAI-88), pp 111-116. 1988. 

Horvitz, E. J.  1989.  Reasoning about Beliefs and Actions under Computational Resource 
Constraints.  In Uncertainty in Artificial Intelligence 3. Elsevier Science Publishers, 1989. 

Horvitz, E. J.; Ruan, Y.; Gomes, C.; Kautz, H.; Selman, B. and Chickering, D. M.  2001.  A 
Bayesian Approach to Tackling Hard Computational Problems.  Proceedings of the 
Seventeenth Conference on Uncertainty in Artificial Intelligence, pp235-244, 2001. 

Larrosa, J.  2002.  Node and Arc Consistency in Weighted CSP.  In Proceedings of the 18th 
National Conference on Artificial Intelligence  (AAAI-2002), pp48-53 2002 .  

Russell, S.; Wefald, E.  1991. The principles of meta-reasoning.  1st International Conference 
on Knowledge Representation and Reasoning, pp406-411. Morgan Kaufmann.  1991 

Schiex, T.  2000.  Arc consistency for soft constraints. In CP-2000, pp411-424, 2000. 
Schiex, T.; Fargier, H.; and Verfaillie, G.  1995.  Valued Constraint Satisfaction Problems: 

Hard and Easy Problems.  In Proc. of the 14th International Joint Conference on Artificial 
Intelligence (IJCAI-95), pp 631--637.  1995. 

Verfaillie, G.; Lemâıtre, M.; and Schiex, T.  1996.  Russian doll search. In AAAI-96, pp181–
187, 1996. 

Zheng, J. and Horsch, M. C. 2003. A Comparison of Consistency Propagation Algorithms in 
Constraint Optimization.  In Proceedings of the Sixteenth Canadian Conference on Artificial 
Intelligence, pp160-174, 2003. 


