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Abstract. We propose a fast algorithm for on-line path search in grid-
like undirected planar graphs with real edge costs (aka terrains). Our
algorithm depends on an off-line analysis of the graph, requiring poly-
logarithmic time and space. The off-line preprocessing constructs a hier-
archical representation which allows detection of features specific to the
terrain. While our algorithm is not guaranteed to find an optimal path,
we demonstrate empirically that it is very fast, and that the difference
from optimal is almost always small.

1 Introduction

Path planning through terrains is a problem often seen in areas including robotics
and computer games. By terrain, we mean a planar graph whose nodes are evenly
distributed across a portion of the plane, and in which each node is connected
to its nearby neighbours and only those. In terrains, edges have non-negative
weights representing the cost of traversing the edge (not necessarily distance).
The cost of a path is the sum of the weights on all edges along the path. We are
specifically interested in applications that require frequent path planning.

Applications requiring computation of shortest paths in graphs (not neces-
sarily terrains) are common; algorithms for this task are well-known. However,
general graph search algorithms do not consider the terrain’s properties, such
as regular connectivity and a tendency to contain regions of similar edge costs,
both of which can be exploited to improve search performance.

Our technique, called HTAP, uses a multiscale representation: a “pyramid”
of graphs, with the original graph at the bottom and each higher level being
a decimated version of the one immediately beneath. The construction of the
pyramid extracts features from the terrain so that important decisions about
path planning can be made at a higher level of abstraction. When a pathing query
is made, we iteratively perform queries at each level of the pyramid beginning
at the top; the results from higher levels restrict the region of the graph in
which we search at the current level. When we reach the lowest level, i.e., the
original graph, the search space is a narrow corridor of constant width. In Fig. 1
(right) we show an example terrain, and the corridor constructed using HTAP;
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Fig. 1. (left) Two levels of a pyramid: the path, marked in bold, and the corridor
derived from the path above, denoted with unfilled circles. (right) A sample terrain with
edge costs visualized in greyscale, with the corridor (marked in white) superimposed.
Darker regions are cheaper.

the terrain has 2432 = 59049 nodes, but the corridor has only 1284 nodes. The
HTAP technique is not guaranteed to find an optimal path. It is well-suited
to applications in which real-time path-planning is required, and in which the
penalty for slight deviations from optimality is not high. Our empirical results
(obtained from a prototype implementation which was not highly optimized)
indicate that HTAP can be used in real time for a wide range of terrain sizes.
The empirical results suggest linear-time on-line complexity for path planning,
although a proof of that claim has not yet been obtained. Empirically, the paths
returned by HTAP are rarely worse than 1.3 times the cost of the optimal path,
and usually much better than 1.1 times optimal.

2 Previous Work

Single source shortest path algorithms such as Dijkstra’s algorithm [4] can be
too expensive to use repeatedly for on-line or real-time queries. All-pairs algo-
rithms such as Johnson’s algorithm [7] have suitable on-line time complexity for
repeated path queries, but require quadratic space to store all the paths.

When heuristic information is available, the A∗ algorithm [5] is often used
to solve path planning problems. Its variants include: ε-admissible heuristics
[11] which attempt to speed up search by relaxing the optimality requirement;
iterative deepening A∗ [8], which improves the memory requirement of A∗ search;
and real-time A∗ [9]. For terrains, the performance of heuristic search methods
can be very slow, because good heuristics are difficult to find. The usual “air-
distance” heuristic does not always give a reasonable estimate of the cost-to-
goal in terrains with weighted edges, especially when edge costs and distances
are measured in different scales. The phenomenon of “flooding,” i.e., exploring
all vertices in an area near an obstacle to find a way around it, can increase
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the computational costs dramatically. If a terrain is maze-like, A∗ guided by a
distance heuristic often has to flood large fractions of the terrain to find a path.

Variants of heuristic search, including the use of way-points and multi-level
representations, are common in computer game applications [12]. Multi-level
representations in these applications usually stop with two levels. The computa-
tional costs of heuristic search (using A∗ or some variant) seem to be accepted
as unavoidable. Similar techniques for path-finding in robotics include the use
of potential fields, Voronoi regions in continuous domains, quad-tree representa-
tions of continuous space and wave-front propagation (flood-fill) [10].

Repeated path planning is central to the area of Intelligent Transportation
Systems, and researchers have proposed hierarchical representations to speed
up on-line processing [6, 3]. The connectivity in ITS graphs can be quite differ-
ent from terrains, so these methods for building hierarchies cannot be applied
directly and usefully to terrains.

Shortest path problems are also important in graph theory and computa-
tional geometry. Chiang and Mitchell [2] give algorithms for the problem of
computing shortest paths in a continuous plane containing a set of polygonal
obstacles. These require more than quadratic time and space for precomputa-
tion, while allowing sublinear time on-line processing. Arikati et al. [1] describe
a quadratic time preprocessing algorithm and a quadratic space hierarchical rep-
resentation of a planar graph for linear time on-line shortest path computation.

3 Algorithm

Our pyramid is a multiresolution representation of the graph: the base of the
pyramid is the original graph, and each level above the base is a graph with
constant-factor fewer nodes. The nodes at a given level which are also present
at the level above, we call survivors; the process of selecting survivors we call
decimation. Each node at the base level has a pointer up to its representative
at each higher level. We use immediate representative to refer to the nearest
survivor to an arbitrary-level node.

We have the notion of blocs, which are purely geometrically determined en-
tities, and regions, which are the Voronoi regions for a given subset of survivors.
(The Voronoi region for a survivor is the set of nodes closer to that survivor than
to any other survivor, where “closer” is with respect to optimal path length in
the original graph. Ties are broken arbitrarily.) In our implementation, a bloc
is a 3 × 3 grouping of nodes, but any constant grouping could have been used
instead. Each node at a level above the bottom has a collection of children –
nodes at the level below which are nearer to it than to any other node of its
level. See Fig. 2 (right) for a picture of the survivor-representative relationships,
and Fig. 2 (left) for the difference between blocs and regions.

3.1 Pyramid Representation

The base of the pyramid is the original graph and each upper level is a decimated
version of the level beneath. With each original node, we store pointers up to all
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of its representatives, one per level. With each upper node, we store two pointers:
one down to the node in the lower graph which occupies the same position in the
terrain, and one up to the node’s representative in the level above. A sketch of
the up pointers is in Fig. 2 (right); the marked node demonstrates the necessity
of maintaining a list of all representatives at the pyramid base, since the sequence
of representatives may differ from the sequence of immediate representatives.
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Fig. 2. (left) A sketch of a pyramid level: blocs, regions, and a single survivor per
bloc. Two levels of a pyramid. (right) In (a), links between nodes and their immediate
representatives; (b), links between bottom nodes and their representatives at all levels.
All links are directed upward.

In addition to the information in the pyramid structure, each level of the
pyramid is a proper graph, that is, it contains weighted edges between nodes.
Details on computing the graph connectivity and edge weights appear below.

3.2 Pyramid Construction

We repeatedly perform the following process, stopping when the newly created
level is the largest graph we are willing to risk searching exhaustively.

Suppose we are constructing a new level i, i > 0, where i = 0 is the bottom of
the pyramid. We perform the following steps, explained in greater detail below:

1. Divide the level into blocs.
2. Choose one node from each bloc to survive to the level above (decimation).
3. Find the Voronoi regions for the survivors, in the original graph.
4. Determine which pairs of survivors should be linked by edges.
5. Determine costs for the new edges from the previous step.

Division into blocs For each node in the current level, we assign a bloc
identifier based on its location in the terrain. In our implementation, 3×3 groups
of nodes were assigned to a single bloc.

Decimation From each bloc there will be a single survivor. The challenge is
to decimate the graph so as to best preserve its structure, from the point of view
of finding short paths. The nodes most worth preserving are those which lie on
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the greatest number of optimal paths among the entire ensemble of paths; unfor-
tunately, computing all paths is an extremely expensive task. We choose instead
to compute a proxy, inspired by the notion of parallel resistance in electrical
circuits. The resistance of a node R is given by

1/R = 1/c1 + 1/c2 + ... + 1/cn (1)

where cj is the cost of the jth edge to the node. Within a given bloc, the
node with the lowest resistance is the one used by the most paths, and hence
the one which survives to the level above. We use resistance because it is a
natural measure of the difficulty of traversing a node. Parallel resistance behaves
gracefully when new edges are added, decreasing monotonically as more paths
become available. Having some low-cost edges will give a node low resistance,
but even high-cost edges might be used by some paths.

Voronoi regions We next find the Voronoi regions for all survivors, mak-
ing use of breadth-first search from multiple initial points. Our distance metric
is path cost within the original graph. All bottom-level nodes fall within the
Voronoi region of some survivor; for each bottom-level node, we record which
survivor is closest. Also, if the new level i > 1, then for every node at level i− 1
we record which survivor at level i is closest (the immediate representatives)
using the already-determined Voronoi regions.

Placing edges Initially level i has no edges. We place a new edge between
every pair of nodes at level i whose Voronoi regions at the pyramid base are
linked by at least one edge.

Finding new edge costs The cost of the new edge is the path cost of
travelling between the two nodes in a subset of the original graph, where the
path is restricted to lie within the Voronoi regions of the two nodes in question.

3.3 Query Processing

Each shortest-path query consists of a start and end node. The overall pathfind-
ing exercise is a cascade of searches; at each level below the top, we find a path
by searching in a tightly restricted subset of the original graph.

We begin by finding the representatives of both nodes at the top level and
finding the optimal path through the entire top-level graph using A∗ (with the
air distance heuristic). Having found a path at a given level, we then mark all
children of the nodes on the path as eligible, and find the shortest path one level
down, searching only in the eligible corridor. The algorithm ends when a path is
found at the pyramid base. Fig. 1 suggests how the corridor is derived from the
path one level up and used to constrain the search space.

A subtask of the path query resolution process involves marking the children
of a given node, so that we can add the marked nodes to the corridor. However,
the nodes do not explicitly store their children. To mark a node’s children, we
perform the following: we first find a single child, then we flood to find all nodes
at the child’s level who share its representative. The nodes form a contiguous
region (recall that they are the Voronoi region for their representative) and
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therefore flood-fill can efficiently mark the region. The initial child is found by
going to the node’s location in the original graph (where pointers to all levels
are stored) then taking the pointer up to the proper level. Fig. 2 shows sketches
of the pyramid structure.

3.4 Complexity

Construction of the pyramid requires O(N logN) time, where N is the number
of nodes in the original graph. There are O(logN) levels in the pyramid, and
constructing each requires an investigation of every node at the pyramid base.
The memory footprint of the pyramid is O(N logN) because at the base level,
every node has a pointer up to every level above, and there are O(logN) levels.
There are O(N) nodes in total in the pyramid, from equation 2 below.

If our survival policy does a good job of making regions of approximately
equal size, then the run-time complexity of the algorithm is O(n), shown as
follows. At level i, we are seeking a path of length pin, where n is the length of
the bottom-level path, and the linear dimension of the graph was reduced by a
factor p < 1 at each level of the pyramid. The total computational cost is

n + pn + p2n + p3n + ... + pkn ≤ n(
∞∑

i=0

pi) = n/(1− p). (2)

In general, our algorithm is not guaranteed to find the shortest path. Our
empirical results are presented below. Here, following Pearl [11], we consider an
abbreviated analysis of the algorithm on a regular 4-connected lattice with each
edge having unit cost. In this kind of grid, an optimal path has the property that
each edge traversed on the path reduces the Manhattan distance to the goal. By
construction (assuming ties are broken in a deterministic manner), each level
in the pyramid is a regular lattice with uniform edge costs. An optimal path
at level k + 1 in the pyramid defines a corridor in the kth level of the pyramid
which contains an optimal path at level k.

4 Results

Next we report results from our experiments. Each experiment consisted of a
single path planning exercise. Endpoints were chosen at random within the map;
the optimal path was determined using A∗ with the air distance heuristic, and
compared to the path reported by HTAP. We compare the computational costs of
finding paths, in terms of the opened node count, and the path costs themselves,
expressed as the ratio of the optimal path to the HTAP path. In reporting the
computational costs of using the pyramid to answer path queries, we sum all
nodes in all corridors in the pyramid. Even though we might not open a given
node when searching the corridor, we had to visit the node to mark it eligible.

We tested HTAP on a number of different maps. Specific maps employed
were the noise map, where every edge had a cost chosen at random with uni-
form distribution over {1..255}; two maze maps, hand-drawn mazes whose edge
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Fig. 3. Visualizations of some of the graphs we used. Above, a simple maze, the Lena
image, and a terrain image; below, the mandrill image, the peppers image, and a
complex maze.

costs were either 1 (hallway) or 255 (wall); and various image maps, where stan-
dard test images were converted to greyscale and edge costs were derived from
pixel intensities. Image maps produced edge costs as follows: for two nodes (pix-
els) having intensities p1 and p2 respectively, the cost was max(1, (p1 + p2)/2).
Pictures of our maps are shown in Fig. 3.

We chose to use images because they share some characteristics with real
terrains. They have a wide range of edge costs, but pixel intensities (and the
derived edge costs) tend to be correlated, and in some cases it is possible to
divide the terrain into subregions within which costs are roughly uniform. The
presence of such subregions is a feature of real terrains. The images we used are
standard test images in the computer vision community.

The multiresolution representation allows us to find even long paths very
quickly; see Fig. 4 (left) for a time comparison between A∗ and HTAP. Strikingly,
the data points for HTAP are scarcely visible: on the scale of the graph, our
computational cost is near zero. The difference illustrated by the graph is the
difference between O(n2) and O(n). Our path costs are also shown by themselves,
where the O(n) behaviour is more apparent. There is some variation owing to
the slight differences among different region sizes. Each of these graphs shows
5000 random paths on the 729×729 noise map. Also of interest is the comparison
between our paths’ costs and the optimal paths’ costs, shown in Fig. 5; we show
an example to give the flavor, with detailed data in the table. From the graph
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we see that the cost of short paths is very likely to be near the optimal path
cost, and that while the ratio drops off somewhat as paths become very long, it
never drops off too far. Again, the results in the graph are for 5000 random paths
on the 729× 729 noise map. The results for the noise map are representative of
results on other maps.
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Fig. 4. (left) Comparison of computational costs for HTAP and for A∗. The HTAP data
points lie along the x-axis and are difficult to see. (right) The HTAP computational
costs alone. Note the change in range on the y-axis between the two figures.

In the table, we report cost differences in terms of the cumulative distribution:
what proportion of paths were within 1% of optimal, etc. Percentage values
represent the ratio of the optimal path to the reported path. We had virtually
no cases where the reported path was worse than 50%. Our results are better
for more structured images, which would be more susceptible to compression;
even for the largest noise map, however, 95% of our paths were within 25% of
optimal. Each table row summarizes the results from 5000 paths; in practice,
the results were stable to one decimal point after a few thousand trials.

We compared HTAP to A∗ because, of all search algorithms using the same
consistent, admissible heuristic, A∗ is optimal [11], and therefore serves as a
standard. However, a heuristic based on distance (as is common) will rarely
give good guidance to A∗ in a terrain whose costs are not commensurate with
distance. Better heuristics are not in general available. Variants of A∗ will also
suffer from the problem. For example, we performed some experiments with
A∗

ε [11], and found that A∗
ε performed extremely poorly. For large ε, A∗

ε wasted
enormous effort revisiting nodes for which the first paths found were suboptimal.
For small ε, A∗

ε was only marginally better than A∗. HTAP avoids these problems
by constraining A∗ (with a distance heuristic) to the corridor.
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Map size 1% 5% 10% 25%

noise 243 × 243 0.8 3.4 16.2 95.2

noise 729 × 729 0.1 0.6 3.8 98.4

simple maze 243 × 243 57.1 92.1 96.3 99.2

complex maze 340 × 340 57.1 68.6 77.5 92.6

Lena 512 × 512 25.3 78.4 89.4 97.3

mandrill 512 × 512 15.3 67.0 84.7 96.9

peppers 512 × 512 17.4 71.4 87.1 97.6

terrain 512 × 512 1.3 30.3 72.4 98.5

Fig. 5. (left) Scatter plot of path costs. The horizontal axis is raw path cost and the
vertical axis is the ratio of the costs of the optimal path and the reported path. (right)
Cumulative distribution of path costs.

5 Discussion

Empirical results for HTAP suggest that it is O(n) in the path length, rather
than the typical O(n2) for A∗ in terrains. It is extremely fast, two orders of
magnitude faster than A∗ on the maps that we tried. It can be applied to very
large maps; we have successfully used it on maps of size 729×729. It has the
disadvantage that it does not always return the optimal path, rather a path
whose cost is not much worse than optimal.

Although fast for long paths, our method incurs some overhead and hence
is not very fast for short paths. For extremely short paths, the corridor is more
egg-shaped than ribbon-shaped, and contains many more nodes than are needed.
However, for short paths it is also highly likely that the corridor contains the
optimal path. The longer the corridor, the more likely it is that some part of the
optimal path lies outside it.

Our algorithm is best able to find the optimal path when the original graph
is well represented by the pyramid: hence, large regions with near-uniform edge
costs lose little information when most of the edges are removed. Highly non-
uniform regions suffer more, which is why our results on the noise map come so
much further short of optimal. The maze maps were difficult because even small
lossiness in compression can translate into serious errors in the paths. Note,
however, that even in the difficult cases HTAP usually found a very good path.

6 Conclusions and Future Work

We have presented a fast method for finding short paths in the graph. Though
the method is not guaranteed to find the shortest path, with high probability it
finds a path not much more expensive than the optimal path – and moreover,
it finds a path of length n by searching only O(n) nodes. Our method depends
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on precomputing a multiresolution structure of size O(N logN) in the number
of nodes in the graph; the precomputation is expensive, but runtime queries
are processed very quickly. On a 1.8 GHz AMD processor, it requires about 7.5
minutes to compute the pyramid for a 729× 729 graph.

We have presented algorithms for building the pyramid and for exploiting it
for fast path planning. Future work involves optimizing the pyramid construction
and investigating the tradeoffs between performing more computation at runtime
and having a higher likelihood of finding the optimal path.

We are interested in investigating the tradeoffs between a wider corridor and
a better chance of finding the optimal path. We have considered only static
terrains so far, while some application areas involve dynamic terrains; we are
therefore interested in looking at incremental modification to the pyramid. Our
memory footprint right now is O(N logN) in the size of the original graph, and
we believe that we can reduce it to O(N). We are interested in looking at the
effects of different policies for node preservation. We want to investigate a hybrid
algorithm, in which a traditional method is first used, and HTAP is used only
when the traditional method does not quickly find the solution. Finally, we want
to perform more detailed analysis of HTAP’s complexity.
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