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Abstract

Mobile objects have gained a lot of attention in research and industry in the recent past,

but they also have a long history. Security is one of the key requirements of mobile

objects, and one of the most researched characteristics related to mobility. Resource man-

agement has been somewhat neglected in the past, but it is being increasingly addressed,

in both the context of security and QoS. In this paper we place a few systems supporting

mobile objects in perspective based upon how they address security and resource manage-

ment. We start with the theoretical model of Actors that supports concurrent mobile

objects in a programming environment. Then we describe task migration for the Mach

microkernel, a case of mobile objects supported by an operating system. Using the OMG

MASIF standard as an example, we then analyze middleware support for mobile objects.

Mobile Objects and Agents (MOA) system, is an example of middleware level support

based on Java.The active networks project, Conversant, supports object mobility at the

communication protocol level. We summarize these projects, comparing their security and

resource management, and conclude by deriving a few general observations on how secu-

rity and resource management have been applied and how they might evolve in the future. 

Keywords: security, resource management, mobility



2

1.  Introduction

In a distributed system, objects may migrate from one node to another for a variety of reasons.

The new location may provide a more suitable computational environment, it may offer cheaper

resources, or it may have data needed by the agent to satisfy its goals. The ability of an object to

exist in a resource space that is not entirely dedicated to its own computation raises security con-

cerns for the object itself, and raises performance and security concerns for the host environment.

Individual objects or groups of objects may exhibit undesirable resource consumptive behavior.

These reasons make it important to study ways of controlling resources used by mobile objects. 

Most of the work on security and resource management has been performed for stationary sys-

tems, such as the security of client server models and of programming environments, and resource

management in operating systems. A mobile object system must protect its own resources, includ-

ing the underlying environment (such as the operating system or a virtual machine, e.g. JVM, or

Tcl/Tk interpreter), file system, devices, memory, other (non)mobile objects, etc. In order to

achieve this, the mobile object system has to identify the incoming object as well the sender of the

object. The system must recognize the access rights of the incoming object and optionally support

its confidentiality. There are various possible threats and attacks on a mobile object system,

including denial of service attacks, unauthorized access, corruption of data, spamming, spoofing,

trojan horses, replay and eavesdropping [50]. These attacks can be performed through a mobile

object application or through mobile object systems, utilizing weaknesses in the communication

infrastructure, language, or mobile object system implementation.

The security and safety services of the underlying communication infrastructure and the program-

ming language enforce the security policies. The security policy is applied using the factors such

as the credentials of the communicating parties, the object classes, and the authority of the mobile

object. Policies may restrict or grant mobile object capabilities by setting resource consumption

limits and access permissions to resources. Multiple security policies may be set by the authority

that is represented by the mobile object and its system. 
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Mobile object systems use communication transport calls to transfer objects between systems.

Mutual authentication of object systems is typically required for these calls to succeed. Objects

are authenticated based on the authentication of the source object system, information about the

object itself, and possibly information about trusted authorities that can authenticate the object. 

Security and resource management significantly interplay in any system and this is especially

expressed in case of mobile object systems. In particular, denial of service security attacks are

typically achieved by exhausting resources of an attacked entity, e.g. by consuming all memory,

processing cycles or the communication bandwidth. A careful resource management can prevent

such attacks. In a similar manner, system security provides guarantees that resources are appropri-

ately used by users who have permission to do so. In case of mobile object systems, both security

and resource management are much harder to achieve because of the distributed and possibly dis-

connected state. Aspects such as scalability, fault tolerance, and real-time complicate security and

resource management for mobile object systems even further.

This paper is an overview of the research topics in security and resource management in mobile

object systems. We provide some practical experience drawn from five examples of mobile object

systems that we were involved in specifying, designing, and implementing. These systems have

achieved various stages of implementation, usage, and technology transfer, offering an interesting

mix of platforms and goals.

The rest of the paper is organized in the following manner. The five sections that follow describe

five different mobile objects systems and the security and resource management issues are

described. In particular, Section 2 describes the Actors model. Section 3 presents task migration

1977-
1991-1993

Actors (Theory/programming environment)

Mach Task Migration (Operating System)

1996-1998 MOA (middleware, Java)
1996-1998

1996-1998

MASIF (middleware, CORBA)

CONVERSANT (Active Networks)

Figure 1. Systems described.
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on top of the Mach microkernel. Section 4 analyzes MASIF, an OMG standard for mobile agent

systems. Section 5 describes Mobile Objects and Agents (MOA) project. Section 6 describes

CONVERSANT, an active networks project. In Section 7 we summarize the paper by making

some general observations garnered from the different systems we described. Given the survey

type of the paper, we briefly mention related research in each of the five sections that describe a

type of mobile object system.

2.  Actors

Actors were initially developed by Carl Hewitt [33] for conceptual modeling of open systems.

The idea was further refined by Gul Agha [2] to serve as a computational model for concurrent

computation in distributed systems. 

Actors extend the concept of objects to concurrent computation. Specifically, objects encapsulate

a state and a set of procedures that manipulate the state; actors extend this by also encapsulating a

thread of control. Actors are mobile. Each actor potentially executes in parallel with other actors

and may send messages to actors it knows the address of. Actor addresses may be communicated

in messages, allowing dynamic interconnection. Finally, new actors may be created; such actors

have their own unique address. A more concrete way to think of actors is as an abstraction over

concurrent architectures. An actor runtime system provides the interface to services such as global

addressing, memory management, fair scheduling, and communication. Actors are self-contained,

interactive, autonomous components of a computing system that communicate by asynchronous

message passing [2, 4]. This model abstracts over issues of low-level synchronization by encapsu-

lating the state of an object and its execution thread, and limiting communication to asynchronous

message passing. 

The model has been used as a basis for a number of programming languages and systems. Actor

implementations include Acore for AI applications at MIT [48], Cantor for scientific computa-

tions at Caltech [7], Rosette for systems architectures at MCC as a part of the InfoSleuth project

[73, 80], ActTalk for object-oriented programming at Université Paris [15], Act++ for Real-time

Systems at Virginia Tech [40], and ActorFoundry for Actor based mobile computation in Java at
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Illinois [60]. Recent agent implementations such as Aglets [46] and Concordia [81] also follow

actor semantics to varying degrees.

2.1  Resource Management

In an open system, agents may migrate from one node to another searching for computation envi-

ronments suitable for completing their tasks at affordable costs. These agents may also spawn

child agents to pursue subtasks. This makes it important to study ways of controlling the

resources that such agents or their ensembles could use in serving some particular interest. On the

one hand, we need a bounded resources model to control the amount of computational resources

consumed by agents serving an interest; on the other hand, we need a bounded autonomy model

for allowing coordination among agents.

The Actor model has been extended to explicitly model the location of agents on particular hosts

and the bounded computational resources that they may use. Hosts are actors that manage physi-

cal and logical resources of a node and offer them to agents interested in paying for them. A uni-

versal currency is used to pay for the cost of these resources. The behavior of an agent may be

interpreted in a suitable framework, e.g., the belief, desire, intent model [57].

To support a system where agents can use resources available ‘‘elsewhere’’ in a satisfactory way,

it is important to have some notion of an economy. Such an economy would provide the basis on

which nodes would allow agents to use their resources, and would serve as an environment that

would enable nodes and agents to get into binding contracts about the services needed.

Resource allocation in multi-agent systems is a problem that raises issues of reciprocity as well as

performance and security concerns. Nodes on the worldwide web, for instance, may be willing to

be part of a multi-agent system if they receive something in return for allowing foreign agents to

use their resources. From the performance and security perspective, agents migrating to a node

may exhibit undesirable resource consumptive behaviors, either individually, or as ensembles.

Similarly, network channels are a scarce resource requiring controls on how they may be used.

An economic model can be used to protect against resource consumptive behavior of agents in a

multi-agent system [3]. Note that control in agent systems is not based solely on programming
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structures, as agents may create or invoke other autonomous agents. Such autonomy makes it

important to devise explicit mechanisms for controlling the extent to which an expanding group

of agents, working on a single task, can utilize a system’s resources. In an open distributed sys-

tem, the problem is compounded by the ability of agents to exist in a resource space not entirely

dedicated to their computations alone. We need mechanisms to support bounding the resource uti-

lization of individual agents, or ensembles of agents working together, according to the terms

under which they are allowed access to those resources.

To implement an economic model, we will use the notion of a universal currency. Specifically,

resource allocation will be measured in a common currency called GCU (for global currency unit).

Every computational activity must be allocated GCUs which may be used in completing the task.

Each agent is allotted some subsistence GCUs at the time of its creation by its creator, and because

activity in message-based systems is triggered by a message, GCUs must also be allocated at the

time of sending a message. The GCUs so transferred are deducted from the accounts of the creator

or the sender, respectively.

An agent interested in migrating to a particular host must negotiate a contract with the host ahead

of the actual migration. Independent of the actual negotiation protocol, the purpose is to agree on

a function that would determine costs of resources that will be made available, possibly dependent

on the state of the host. Once the contract has been agreed, an agent may arrive at the node with a

certain number of GCUs. The GCUs held by an agent may be spent for purchasing computational

resources from the host as it computes, according to the negotiated contract.

To separate environmental concerns (such as the suitability of current host) from the application

code of agents, a reflective model is used. Reflection allows an application to monitor execution

of the underlying system and to modify it dynamically. Specifically, detection of an agent's need

to migrate and the process of migration are handled by a facilitator, that belongs in the meta-archi-

tecture which enables agents to continuously interaction with their environment. 

Application specific schedulers enhanced with a scheme to dynamically assign priorities to agents

may also be useful in bounding the autonomy of agents, allowing them to cooperate by resource

sharing. An agent may fine-tune priorities of its child agents or peer agents may themselves
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choose to lower their own priorities to allow others, working on more time-sensitive parts of the

application, to compute faster.

2.2  Security

The Actor model assumes that actor names are unforgeable and that message delivery is guaran-

teed; the model abstracts over implementation protocols which provide these guarantees. Other

security features have to be explicitly implemented in the model by enforcing interaction policies.

The resource management model described here serves to secure the system from chaotic

resource consumptive behavior which may otherwise be exhibited by actors or ensembles of

actors.

2.3  Actors Contributions and Lessons Learned

Actors provide a natural extension of the object-oriented paradigm to concurrent and distributed

computation. They support encapsulation, description as behavior templates, and re-usability via

libraries accessed using message-passing protocols. The locality properties of actors guarantee

that changes of representation and elaborations can be made independent of the interaction with,

and behavior of, other actors. Thus actors can support local instrumentation and monitoring which

provide important tools for analysis and debugging. Because the internal behavior of an actor is

encapsulated and cannot be observed directly, the Actor model supports heterogeneous, variable

grained objects. Specifically, the behavior of individual actors may be defined using any program-

ming language.

A rigorous theory of actor systems is developed in [5]. Specifically, various notions of testing

equivalence on actor expressions and instantaneous snapshots (configurations) are designed and

studied. The model provides fairness, namely that any enabled transition eventually fires. Fairness

is an important requirement for reasoning about eventuality properties. It is particularly relevant

in supporting modular reasoning: if we compose one configuration with another which has a non-

terminating computation, computation in the first configuration may nevertheless proceed as

before, for example, if actors in the two configurations do not interact.
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The work on Actor-based agents extends this body of work to mobile resource-bounded agents by

explicitly representing locations of agents and their resource allocations. This extension allows a

study of ways in which resource consumption may be controlled in an open distributed system. As

a result, support for resource management and security is provided in terms of dynamic control of

resource access and utilization by agents and agent ensembles.

2.4  Related Work

Actors is one of the earliest mobile object systems, however there were a few others, such as

Emerald [39], COOL [6], and SOS [68]. Similar to Actors, these systems rely on programming

language support for mobility. Ether [43] was the first language to address explicit allocation of

resource in concurrent systems. Sponsors were assigned to processes to support their computa-

tions. This idea was later incorporated in an actor language, Acore. Sponsor actors accompanied

computation requests, and they carried ticks that could be used in processing a request. Using a

similar scheme, in Telescript [79], processes were awarded funds in a currency (“teleticks”) which

they were supposed to use to accomplish their results. Quantum [56] uses a similar idea where

computations require energy to execute; energy is used as a transferable currency to access com-

putational resources.

3.  Task Migration on top of Mach 

The whole area of process and task migration is quite relevant for the today's mobile object sys-

tems, yet the community largely is oblivious of this fact. A great deal of experience and many les-

sons learned are relevant to today's systems and could be utilized to avoid making similar

mistakes or reinventing the same wheels. Examples include communication among the mobile

entities, delegation of the rights to mobile objects, resource management, etc.

The task migration project was conducted in the period 1991-1993 at the University of Kaiser-

slautern. A few versions of task migration and load distribution have been designed and imple-

mented on top of the Mach microkernel. All versions relied on distributed Interprocess

Communication (IPC) and in varying degrees, on distributed memory management support. An
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in-kernel version and a user level version relied entirely on distributed memory management,

while another user level version relied on an external implementation of the migration pager. This

work was used as the basis for two implementations of process migration for the OSF/1 server

[61, 70]. 

3.1  Security

In the task migration project, security was mostly addressed in exporting the task and kernel

thread ports representing the corresponding task and the associated threads. These ports are part

of the kernel internal state that has to be extracted and transferred to a destination node (see

Figure 2). Whoever holds a task port is capable of controlling the task (e.g. to suspend, resume

task and threads, read/write into address space, manage IPC space, etc.) by sending messages to

the task kernel port. 

In all versions of task migration, the task kernel port needed to be temporarily suspended, so that

all messages sent to it are not interpreted as commands, but rather as true messages that can be

queued and then restarted after migration. In normal operation, such messages are guaranteed to

execute in finite time. It is possible to compromise security when migrating the task kernel port.

While the port is in transfer, all messages sent to it are not interpreted as control messages that

Figure 2. Interposing Task Kernel Port. The task kernel port is extracted (interposed) on the source- and 

inserted on the destination-node. Messages sent to control the task are queued, and reactivated as a part of 

the second interposition on the destination node. Tasks that sent messages are blocked until migration fin-

ishes. 

task kernel port

 user
capabilitiesother state

(VM, threads)

Mach
task

Mach
taskmigration
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invoke certain kernel procedures, but are queued as regular messages. This changes the expected

behavior and in the case of problems with the transfer of the task kernel port, could indefinitely

delay the sender. The only possible way to protect arbitrary users from waiting on their task con-

trol message is to associate a timer with their request. Timeouts were not part of the task control

interfaces, so they have to be a configurable constant per kernel.

In user space migration implementations, the task kernel port is extracted from the user space (see

Figure 3). This is particularly dangerous since an arbitrary task can have its kernel port swapped.

There is no particular solution to this problem. Whoever possesses the task kernel port can harm

this underlying task with or without interposition. From the perspective of security, interposing on

a task kernel port can compromise its privacy and allow for arbitrary monitoring all tasks activi-

ties. This also compromises the integration of the kernel, since part of its internal state is exported,

and the kernel port semantics are changed. In kernel implementations this problem does not exist

as ports are always passed between the kernels. The port transfer is secured by standard (non-

mobile) security techniques between two stationary points.

Task kernel port interposition is related to subsequent work in the mobile agents area where agent

credentials are extracted prior to migration and the delegated to the remote instance. This is fur-

ther discussed in Section 4.

3.2  Resource Management

As a part of the task migration project, accounting and profiling of Mach tasks was performed for

the purpose of load balancing. The local and remote IPC, local and remote paging, lifetime, pro-

cessing time, and the number of migrations were all accounted for. Figure 4 describes how

accounting was extended for remote IPC (Mach already supported local IPC and VM accounting).

More details about accounting can be found in [55]. The microkernel was instrumented to collect

information at the node, task, and internal objects level. At the node level, information was

accounted for the number and size of messages across the network.

The information collected by kernel accounting was used for the purpose of distributed schedul-

ing decisions: where to migrate the tasks. Figure 5 demonstrates the benefits of taking IPC into
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account when migrating tasks. A number of tasks were started on a task migration testbed. A

sender initiated distributed scheduling algorithm was activated in two versions, one that consid-

ered IPC in making decisions and another that did not. More details on this experiment can be

found in [53]. This experiment demonstrates that in some cases load distribution decisions could

be improved by using information about the network IPC. The performance improvement is

driven by two factors. The obvious advantage comes from the fact that moving a client towards

the server improves the average task execution time. The less obvious advantage is the conse-

quence of the limited IPC bandwidth which could, similar to processor overload, become a bottle-

neck. Distributing IPC load from the client to a node that is not the server node still improves the

performance because although a single node is still the server, the client/server communication

takes place in parallel among the client nodes. 

Figure 3. Task State Transfer for Various Task Migration Versions: in all versions shared pages are 

migrated by the kernel, Simple Migration Server and Optimized Migrating introduce various levels of user 

space migration. Depending on the level at which state is transferred, the secure state might be exported 

outside of the same protection domain, exposing the migration to security risks.
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We also used the user space IPC profiler for the transparent instrumentation of the IPC traffic of a

task. The profiler was intended for off-line testing (its overhead renders it unsuitable for runtime

experiments). The profiler tracks the number of messages, their size and destination, the number

of capabilities, etc. To intercept message transfer, all capabilities are extracted from the profiled

task and substituted with proxy capabilities. Every message sent or received using an original
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Figure 4. Network and Local IPC Paths and Accounting.
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Figure 5. Using IPC Accounting to Improve Distributed Scheduling Decisions. Figure demonstrates

that better overall performance can be achieved when load distribution algorithm takes into ac-

count information on the communication of tasks, by migrating tasks to the servers they commu-

nicate with (above some threshold amount of communication).
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capability is received by the profiler. After being analyzed, messages are forwarded to their origi-

nal destination. 

During profiling, the ports carried in messages need to be exchanged to preserve consistency for

the receiver of the message and to allow the profiler to intercept the future messages communi-

cated with the profiled task through transferred ports. Figure 6 describes how the profiler inter-

poses between the profiled task and the other tasks in the system. Profiling is similar to the kernel

port interposition that is applied for user space migration. The kernel port interposition is also per-

formed for the profiled task in order to instrument the messages sent to the task kernel port. The

threat that such systems are exposed to is possible only if the task kernel port is possessed, which

is required in order to do the interposition. 

3.3  Mach Task Migration Contributions and Lessons Learned

A more complete list of the contributions of the Mach task migration project can be found in [49].

Security and resource management related contributions are the following.

Task 

IPC space

A IPC space

Task 
A

Task 

IPC space

A IPC space

Task 
A

 Profiler
taskIPC space

original messages, receive and send capabilities
proxy messages, receive and send capabilities 

Figure 6. Profiling Application’s IPC Activity: Profiling Application’s IPC Activity: after activating the 

IPC profiler, the original capabilities in the profiled task are substituted with the interpose capabilities, 

while the original capabilities are migrated to the profiler IPC space. All messages that are sent to or from 

the profiled task are accounted. Capabilities transferred in messages are also interposed.
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This project demonstrated that it was easy to implement and insulate from the other modules task

migration on top of the microkernels. This is on contrary to other migration implementations on

top of the monolithic operating systems.

A few task migration implementations demonstrated that capability based operating systems and

in particular microkernels are a convenient platform for mobility. Capabilities are suitable mecha-

nism for carrying and delegating access rights. Microkernels minimize the amount of resource

that need to be managed: processing, memory, and IPC (including their distributed extensions)

have been the only resources that were used for distributed scheduling.

Distributed IPC was found to be a powerful mechanism that significantly simplified implementa-

tion of task migration, however, it was also a source of significant complexity that required a lot

of attention and continuous improvements. Most of the complexity for transparent migration of

communication channels has been pushed from the mobility layer into the communication layer.

Fault tolerance was hard to achieve. A lot of residual dependency remained at each node, either

explicitly (as a part of the mobility support) or implicitly at other layers, such as distributed IPC or

distributed memory management.

3.4  Related Work

Security for task migration is impacted by the underlying environment, which consists of clusters

of systems connected in a local area network, typically within the same security domain. In these

systems there was not as much need for a secure communications infrastructure as is required for

wide area networks or the Web. Security work was done at CMU [65] and also by Trusted Infor-

mation Systems [66]. 

Interposition was researched by Jones [37] as a means for introducing new code into the system.

The concept of mediation [41] is also related to interposition and capability based systems. In

order to make scalable systems, the concept of the Key Distribution Center (KDC) is introduced,

which mediates the keys to all nodes. If some node wants to talk to other nodes, it needs to talk

first to KDC [41, 58]. In the case of Mach and capability interposition, all kernels on all nodes are
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part of a trust domain and all kernel ports are trusted. User level task migration breaks this con-

cepts. 

The work by Ford et al. [24, 25] bridges the gap between OS and agent work. Ford et al. introduce

the recursive virtual machines that allow the code to execute in a separate trusted domain. SPIN

system addresses security by enabling the secure execution of the code within the kernel. In par-

ticular it addresses the kernel extensibility by safely executing extensions within the kernel. [11]. 

Operating systems were instrumented to provide information on various physical and logical

resources, such as in COCANET [63], and in the work by Huang et al. [35]. This was done for the

purpose of load distribution and performance evaluation. In the Stealth scheduler [45], VM was

prioritized in order to reduce the impact of the visiting task. The same was planned for IPC but

was never actually implemented. Load information was used to decide whether to migrate pro-

cesses and to where [21].

For a general overview of process migration and load information management we recommend a

thorough survey paper [51] and an edited book on mobility [54]. 

4.  OMG MASIF

MASIF is an OMG standard for interoperability among mobile agent systems. It has been devel-

oped by Crystaliz, General Magic, GMD Fokus, IBM, and The Open Group. It extensively

addresses security but it leaves resource management for future standardization. The goal was

interoperability between the agent systems, in particular: agent transfer, class transfer, agent

management, agent and agent system names, agent system types, and location syntax. Non-

goals include interfaces between applications and the system, agent communication, and language
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interoperability. Choice of selected functionality for standardization and the level of complexity

are described in Table 1.More details about MASIF can be found in [17, 50, 59]. 

4.1  Security

The security capabilities of current CORBA implementations can be categorized as: no security,

proprietary security services, and conforming to CORBA security services [19]. The CORBA

security services can conform to CSI level 0, 1 or 2 as defined in [20]. Secure ORBs exchange

security information (a Credential object) about principals for remote operations. The information

in the Credential may be used for authentication.

CORBA security services offer client authentication services via the PrincipalAuthenticator

object. The client invokes the authenticate operation to establish its credentials. When the client

makes a request to create an agent, it makes the credentials available to the destination agent sys-

tem. The principal for the new agent is then obtained via these credentials. The agent system uses

this information to find and apply the appropriate security policies. A non-secure ORB does not

provide client authentication. If a client creates an agent in such an environment, the agent will be

marked as “not authenticated”.

CORBA security services can require mutual authentication of agent systems during migration.

Authentication can be one-hop and multi-hop. Most systems currently support one-hop authenti-

cator in which a one-hop authentication can be applied to objects traveling only one hop from

their source system. For any communication, the requestor may be able to specify its integrity,

confidentiality, replay detection, and authentication requirements. MASIF currently addresses

only one-hop authentication. 

Table 1. Functionality Standardized by MASIF and the Level of Complexity.

Function Addressed by MAF Level of Complexity to Support

agent management YES straightforward

agent tracking YES straightforward

agent communication NO N/A

agent transport YES complex
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Both the source and destination agent systems transfer credentials before an agent transfer occurs,

making it possible to apply security policies before transferring the agent, protecting agents from

illegitimate agent systems and agent systems from illegitimate agents. A non-secure ORB does

not provide mutual authentication of agent systems. An agent initially marked as authenticated is

marked as “not authenticated” if it visits a non-authenticated agent system.

The destination agent system must identify the principal on whose behalf an agent is acting. That

principal need not be authenticated by the agent system, certain applications may use application-

defined authentication. An agent system maintains the following information about an agent it is

hosting:

• The agent’s name (principal and identity)

• Whether the principal has been authenticated

• The algorithm used to authenticate agent

It is desirable that secure ORB implementations propagate the agent’s credentials across migra-

tion. If the destination agent system requires the sending agent system credentials, then this is

only possible using composite delegation, which involves both parties in the transfer request, and

propagates the credentials of the agent and the sending agent system. 

Figure 7. Delegation of credentials: one or more credentials can be propagated; the destination system 

chooses credentials it will use.
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Upon receiving an agent’s credentials, the receiving agent system establishes the agent’s creden-

tials as the invocation credentials of the agent. As a result, any operations invoked by the agent

will be subject to the policies associated with the agent’s principal. This approach also ensures the

continued propagation of the agent’s credentials when the agent makes other transfers.

If an agent system receives an agent from an untrusted agent system, it may choose to weaken the

agent’s credentials. For example, it may wish to treat the agent as unauthenticated.

The propagation of both agent credentials and agent system credentials is only possible with com-

posite delegation, available with ORB implementations that conform to CSI level 2. Delegation of

credentials is needed to identify an agent’s principals when an agent invokes a method on

CORBA objects. In CSI level 0 and 1 implementations, only one of the credentials of the agent or

the agent systems can be transmitted. If mutual authentication between agent systems is not

required (e.g. in a trusted environment), the agent’s credentials may be propagated to the destina-

tion agent system in lieu of the agent system’s credentials. In non-secure ORB implementations,

an agent’s credentials are not propagated between agent systems. 

Secure ORBs allow specification of the quality of security service and security level by setting the

security features of the invoker's credentials, or the quality of protection in an object reference.

These include: integrity, confidentiality, replay detection, misordering detection, and target

authentication.

4.2  Resource Management

MASIF has limited the amount of effort dedicated to resource management for a few reasons.

MASIF was intended to be a minimal specification and addressing resources would have violated

this goal. It is also hard to provide a single standard covering resource management for different

platforms and systems. Finally, it was intended for practical usage for a first reference implemen-

tation, and other agent features would be addressed later. For the time being, only the existing

CORBA support can be used for resource management. 
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4.3  MASIF Contributions and Lessons Learned

MASIF was a useful experience that demonstrated collaboration of implementors of a few mobile

agent systems who solved similar problems, sometimes finding different solutions. MASIF cor-

rectly limited the standard only to a limited set of mobile agent system interoperability features. 

MASIF demonstrated how to support mobility on top of an industrial middleware-based system,

such as CORBA. It demonstrated re-use of CORBA services, such as lifecycle, naming, external-

ization, and security.

MASIF offered an extensive analysis of industrial security support: what was possible to stan-

dardized at the time and what had to wait until security for mobility support matures, such as com-

posite delegation.

Nevertheless, MASIF happened too early in the development stage of the field of mobile agents.

There were only a few systems that adopted it and that were MASIF compliant, such as Grasshop-

per [14] and IBM Aglets [46]. 

4.4  Related Work

Within the FIPA organization there is another effort pursuing standardization of agent mobility

[22]. FIPA standardizes agents in general, and addresses mobility as just another capability of

agents. The MASIF team is participating in FIPA efforts and MASIF is a contender for agent

mobility support. FIPA explicitly addresses both security and resource management as require-

ments for agents and mobile agents. A number of projects at the recent ACTs event in Europe

have indicated their support for either the MASIF or FIPA standard [1].

5.  Mobile Objects and Agents (MOA)

The MOA project has been developed in The Open Group Research Institute between 1996 and

1998 for SECOM, utilizing funding provided by MITI, Japan. A few sites have been using MOA:

SECOM, University of Denver, INRIA, France, and University of Coimbra, Portugal. The goals
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of the project were maintaining communication channels across migration, resource management

and utilizing a component based model. More details about MOA can be found in [52].

5.1  Security

MOA is compatible with the JDK 1.1 security manager, however no security manager has actu-

ally been implemented. Many security features were left open for the next release, such as the

work on authentication, and authorization of agents. We have actually implemented only the fol-

lowing features.

The MOA object model was divided into the agent system and agent related parts (see Figure 8

for more details on each particular object see [52]). Furthermore, the agent-related part was

divided into the user and MOA system trust domain. The application can not make any changes to

the system part and only the owner of the agent application can modify parts of the agent proper-
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Negotiator
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Name Server 
and Locator

Monitor

user trust domain

MOA trust domain

PlaceAgent
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(Agent)
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Figure 8. MOA Objects: these are objects in the user trust domain and objects in the MOA infrastructure 

trust domain; the agent environment object is a container for all MOA objects.
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ties, while the rest of them are system dependent (see the following section for the more details on

agent properties). 

Thread switching was employed to extend the Java security model. Services are provided by

threads containing only trusted classes. When a MOA system thread has to switch trust bound-

aries (for example in the case of an incoming message, or opening a channel), the request is

passed to a system queue serviced by a pool of application threads allocated for that specific trust

domain. A thread from the pool processes requests by calling application specific methods. The

request resumes either upon receipt of the response, or upon the timeout, whichever happens first.

This prevents the application from stalling the system by thread exhaustion, or by impacting per-

formance through overuse of system threads. Resource usage is tracked on a per sandbox basis.

The performance implications of thread switching were not investigated in the initial MOA

implementation, cause it was assumed that the penalties were not significant compared to the

agent transfer time from the perspective of agent performance. From the perspective of the server

performance, scalability was lower priority than the deployment of agents. Therefore, we

assumed that the initial design and implementation based on context switching was an acceptable

solution.

Each agent has its own name space as defined by the bucket in which it is transported. A name

space consists primarily of bytecodes and serialized objects. One complication arises when an

agent returns to a place that it has left. In this case, the name space is a combination of the original

bytecodes and the returning objects. This is achieved by nesting the returning bucket (with the

meaning of classloader in this context) within the bucket of the remaining place.

MOA uses the standard JAR file format for passing agents. This format has provisions for digital

signatures, allowing for authentication. At the moment, although the design and implementation

of authentication mechanisms have been considered, MOA has not addressed authentication. For

example, the agent’s authenticity will be maintained as a part of the agent’s name object. The

agent name is internal to the MOA agent system and maintained only as a String, although it was

considered to upgrade it to an object in order to maintain security related information. 
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Agents are organized in families and generations, as presented in Figure 9 First generation agents

are named after the agent system where they were created. If cloned, agents are named after the

agent system (also called agent environment in MOA) of their first ancestor, extended with their

generation number, irrespective of the agent system where they were actually cloned. In other

words, each agent bears the sign of the original site responsible for initiating the agent family.

This is used as an ultimate source of information on the current agent location: as a last resort, the

home agent system can be queried for current location information. The place name consists of

the name of the agent it belongs to, extended with the agent system name where place currently

resides. The agent name syntax is presented in Figure 10. Agent environments are named using

host name and port number. Servers (e.g. name, application) have the same naming syntax. 

5.2  Resource Management 

One of the initial goals of the MOA project was to support extensive resource control of various

MOA resources. Resource management is deeply ingrained in the design decisions of many MOA

Figure 9. Naming of agents: agent names are organized around agent families and generations. Cloned 

agents always carry the name of its ancestor as a part of their name. 

agent agent_1

agent.1 agent.2

agent.2.1

the first family the second family

first generation

second generation

the first agent 

cloned agents 

Figure 10. MOA Named Objects: Agent Environment, Agent, Place and Server.

AEname (ae): h:p
AgentName (a):aehome#f_l.g
PlaceName: aowner%aeresiding
ServerName: h:p 

h - host name
p - port number
f - family name
l -launch number
g - generation number
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layers and components. This support would have been hard to add as an afterthought. The follow-

ing limits are enforced on MOA resources: 

• agent: lifetime, places, hops, channels, clones

• place: lifetime, nested places, channels, agents

• agent environment: agents, places, channels

These limits are verified by each MOA function that can impact the values, such as moving, or

opening a channel. Should the limits be exceeded, the function is interrupted and the appropriate

exception is thrown to the component that invoked the function. 

Prior to being accepted at a node, the agent negotiates for MOA resources: which and how many

it can utilize at the target MOA system. This is achieved by calculating local policy from the agent

policy and host policy. The agent local policy is enforced during its lifetime at the visiting MOA

system. Figure 11 presents how the policies are configured in MOA system. More details how

component based computing is applied in MOA is described in [52].

MOA did not address resource management unsupported by the JVM (e.g. memory, processing,

and communication). Whereas it would be possible to enforce some of these by modifying the

JVM, we refrained from any deviation from de facto standard solutions. Imposing resource limits

has impacted the design and implementation of the MOA system. Resource accounting and

checking of limits is performed at various levels of the system, such as in the communication

module, negotiation module, sandbox module, etc.

5.3  MOA Contributions and Lessons Learned

MOA demonstrated that many operating systems techniques can be applied in the development of

middleware systems. A substantial experience was drawn from the area of operating systems,

Figure 11. MOA Configuration of agent properties and agent and host policy. 

AgentProperties (owner, familyName, home/alternateHomeAE, lifeTime)
AgentPolicy (maxLifeTime, timeRemaining, maxChannel, remainingPlaces, maxThreads)
HostPolicy (maxLifeTime, timeRemain, maxChnl, remainPlaces, maxThrd)
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such as communication channels and messaging protocols; locating and naming of mobile agents;

resource management; negotiation policies, synchronization among agents, etc. Applying these

techniques at the middleware level is easier, and more robust, than at the operating system level.

Nevertheless, achieving transparency in communication (maintaining channels across migration)

was more complex to support than originally thought, despite relaxing compared to operating sys-

tem transparency. 

Applying some of the OS techniques to separating agents and agent system protection domains

proved to be useful for the initial prototype. It was an appropriate assumption to separate agent

application and system state.

Resource management was straightforward to design and implement, especially since it was

planned for from the very start of development. Resource management contributed in terms of

protecting hosts from overly demanding agents, by putting limitations on resource consumption.

Component-based computing has somewhat slowed us down during the development. The costs

existed both in terms of development effort, as well as run-time. The learning curve was high to

get accustomed to Java Beans; e.g. to provide additional methods to inspect/set properties; to take

care that all classes are serializable; to create jar files for both the agent application and agent sys-

tem; and to link (or wire) components once they are loaded. Nevertheless, the benefits have at

least returned the investment.

Immediate benefits of complying with the component model were stronger enforcement of com-

ponent boundaries than is the case with object boundaries. The components are loaded instead of

constructed and component boundaries enforced careful design of what is serialized, particularly

useful for application development.

5.4  Related Work

There is much related work on mobile agents and on security, Telescript provided seminal treat-

ment of security and resource management [79]. Other examples include: Tacoma addresses secu-

rity and fault tolerance [38], Ara addresses security and resource management by modifying the
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JVM [62], Agent Tcl provides some basic security support [28, 44], the Mole project [9], and

Concordia addresses security together with persistence. M0 [75] and Voyager [26] investigate

mobile agents as mobile objects. A capability based system is suggested in work by Hagimont and

Ismail [31] and protection of an agent application is researched in [64]. A new capability based

system was developed by Shapiro et al. [67]. Bryce and Vitek developed a mobile agent kernel

that addresses Java security limitations [16]. Security of mobile agents has been presented in a

book by Vigna [76]. A book by Bradshaw represents a good source of information on agents in

general [13]. Chess discusses security among other features of mobile agents [18]. 

6.  Conversant

Conversant is an active network prototype being built under a DARPA active networks program.

Active networks move extensibility properties into the network layer by allowing code to be

dynamically loaded into intermediate nodes on the network [72]. This has been demonstrated to

be useful for applications ranging from customized congestion control to web caching [12, 82].

Generally, the active network concept differs from the agent concept in that mobile code acts at a

lower level of abstraction. That is, the node’s network layer (e.g. protocol drivers and device driv-

ers) is visible and modifiable.

6.1  Security

Conversant uses Java as its execution environment and vehicle for mobile code. Java’s security

features, such as type-safety and namespace partitioning, are useful in enforcing controllable non

interference between mutually suspicious code. Although these features impose some runtime

overhead to ensure that safety, other research projects (e.g. SPIN [23, 69]) have shown that type

safe languages can efficiently be used for low level programming. 

Authentication and authorization are done using cryptographic key techniques. The end user is the

principal, and is authenticated using public key encryption. A special user, the system manager,

controls policies which map resource rights to users. A policy is a code module which determines

the validity of a resource request based on arbitrary criteria. We will build this infrastructure using
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features from Java’s latest version (JDK 2), which include classes that simplify the bookkeeping

necessary to maintain this information, as well as libraries for performing cryptography. Note that

the Conversant project has not yet addressed whether a secure transport mechanism (SSL, etc.)

will be used, or what the mechanisms for key distribution will be.

A problem with Java is that its security model was designed to protect the host platform from

malicious code, but not the Java code from performance interference or outright denial-of-service

attacks by other malicious Java code. Thus, the resulting environment is poorly suited as a multi-

processing environment [8]. Although the language’s type-safety prevents pointers from being

forged to point into another users private data space, numerous denial of service attacks on

resources are still possible. Interestingly, the hierarchical composition of units of mobile code in

Conversant fully exposes Java's vulnerability to denial-of-service attacks. This becomes clear in

the following example. Although both units A and B do pass individual authentication and integ-

rity checks, the composition of the two units (either A over B, or B over A) may inadvertently

result in a forever loop, or a resource hog (e.g., due to incompatibilities between A and B).

Because Conversant’s goal is reliable communications, it is crucial to thwart this type of attacks.

6.2  Resource Management 

The Conversant project has found it useful to characterize denial of service attacks in two ways.

First order and second order attacks. First order attacks may be carried out with relative ease; the

code capitalizes on overt loopholes, is simple to write, and it may cause damage quickly. Second

order attacks employ more subtle attacks, are difficult to prevent, and may be harder to imple-

ment.

In Java, first order denial of service attacks on physical resources come in two varieties. Firstly,

attacks may be made on the system heap. There is only one heap that is shared by all classes, and

there is no way to limit a particular thread from taking all of it. Secondly, a JVM which imple-

ments a thread scheduling algorithm that reschedules only when threads block (such as FIFO)

would allow a thread to enter an endless loop, thus denying other threads CPU cycles. 
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Second order denial of service attacks come in numerous flavors but frequently result from side

effects of VM implementation choices. With sufficient knowledge of the VM internals it is possi-

ble voluntarily to conduct such attacks. We hand-crafted evil programs to exacerbate such side

effects. In a first test case, the program relies on a feature of most VM implementations, where the

hashCode() method returns the virtual address of the object as an integer. Storing these integer

values in a memory area that is known to be scanned by a conservative garbage collector (such as

the stack) prevents the virtual machine from removing unreachable objects. In a second test case

an object finalizer is written such that it never returns. This rapidly hangs a VM wherein if it is

implemented such that a single thread is dedicated to handle object finalizations. One may also

play tricks against the heap fragmentation, to the degree that allocations can no longer be made

before the garbage collector can perform compaction. Worse yet, malicious code can set up non-

malicious code to trip over these deficiencies and carry the blame.

Clearly, in solving the aforementioned problems, changes must be made somewhere in the Java

system. The Conversant designers have evaluated four mechanisms: 

• Byte code editing. The byte code is modified prior to execution to conform to particular

coding conventions, such as placing a yield within loops. There is no dependency on the

VM implementation but the accuracy is severely limited and second order attacks may be

hard to detect.

• Explicit coding conventions. This technique imposes coding restrictions at the language

and standard packages levels. The classes are either statically verified and signed or

dynamically verified by a dedicated class loader. As compared to byte code editing, this

mechanism does not alter the original byte code, but may severely limit the expressiveness

of the JAVA language.

• Multiple JVM instantiations. In this “wrapper” approach, a process executes the JVM for

each and every principal. Thus, the underlying operating system, rather then the JVM,

enforces how often a given principal is scheduled and how much memory it receives. This

solution is attractive because it necessitates few changes to the JVM However, it may not

scale well as the number of principals - and thus the burden on the kernel in managing
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many processes - grows. Another problem is that we would like principals need to share

data and code amongst each other, and the IPC mechanisms necessary to enable such

communication across processes would hinder performance. 

The scalability problems of the wrapper approach may be mitigated if for each principal a

new JVM needs to be instantiated within the same process. Presumably distinct kernel

threads would be associated with each instantiation. This solution poses some complicated

technical problems: the JVM would have to be modified such that it could distinguish the

different JVM incarnations running within a single process, and a means would have to be

found to enforce memory limits on a per thread set basis.

• Direct JVM Modifications: Rewriting the JVM such that it partitions physical resources

fairly or on the basis of a “pay for what you use” policy in a multiuser environment. One

can modify it such that kernel threads are used, thereby ensuring the host OS’s scheduler

fairly shares the CPU. Fairly sharing the heap, on the other hand, is more complicated. On

the other hand, it is far more complicated to share the heap in a fair way (or unfairly, if the

policy says so). 

The problem is choosing whether to modify the runtime JVM, restrict the language and standard

packages or modify the semantics of the Java language itself. Modifying the language would con-

flict with Conversant’s goals of interoperability. The developer should continue to write in pure

Java (or some controlled subset), rather then a Conversant-specific derivation. On the other hand,

we expect the JVM to be specialized software that is eventually integrated into special-purpose

machines such as routers. The Conversant JVM already must be modified to meet the engineering

constraints of an embedded system. Thus, Conversant’s resolution is to thwart denial of service

attacks by changing the JVM without changing the language [10]. We chose to experiment our

resource control mechanisms within the Kaffe Java VM [42]. 

CPU control

Java threads and synchronization primitives were mapped to the equivalent verbs in the POSIX

standard. For configurations required to apply a fair access policy, we set the thread’s scheduling
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policy to round-robin, with a common priority value and the default quantum. For the pay for

what you use policy a feed-back based scheduling mechanism is more appropriate. A JVM Inter-

nal thread running at the highest priority periodically samples actual thread speed, defined as the

number of cycles used in the unit of time. 

If actual speed is greater than maximum one, the thread priority is temporarily depressed. A pro-

active kernel mechanism would be more efficient and is the subject of further studies.

Memory control

As illustrated in Figure 13., we have modified the VM’s heap management allows so that a new

private, independently garbage-collected heap is bound to newly created name-spaces (via class

loader instantiations). There is no need for objects in different name space to be in the same heap,

in that the Java model ensures that they are not mutually visible. Java defines a “null classloader”

which loads system classes (e.g. java.lang.* and java.util.*). These classes are shared by all enti-

ties within the JVM. Access still has to be made somehow to a “system heap” with its own gar-

bage collector, in which information pertaining to the null classloader would be stored. This

shared heap also needs to be impervious to denial of service attacks. So it is crucial that cross ref-
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erences from one heap to another cannot be made. Cross references are caught at runtime and

exceptions are thrown. The rules that determine which objects/classes get their memory estate

from which heap are shown in Table 2..  

With an implementation of such mechanisms, we have demonstrated that pathological resource

hog test cases do not intervene with concurrent well-behaved flows. The final prototype required

minimal changes to our active network test bed (ANTS) such that it be cross reference free.

Most of Conversant’s efforts were devote to on controlling the CPU and memory resources.

Resources such as network bandwidth or cache entries are more likely to be effectively controlled

via dedicated APIs.

Table 2. Heap allocation rules. Class instances allocation rules. In contrast, class 

objects are always loaded and initialized in the heap the classloader belongs to.

User Class System Class

User Thread User heap 
(foo.bar, ....)

User heap 
(java.*, threads, ....)

System Thread User heap System heap

Heap 1 Heap 2 Heap 3

System heap

Null loader

Loader 1 Loader 2 Loader 3

Private
User
Space

Private
System
SpaceB

java.lang, java.io, ...

foo.bar, ...foo.bar, ... jack.joe, ...

GC GC GC

GC

A D

C

Object A references B

A B

Figure 13. Binding private independent heaps to newly created JAVA name spaces.
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6.3  Conversant Contributions

Conversant is a runtime for active network nodes that 

• is explicitly designed to implement dynamic pay-for-what-you-use policies with the

comfort of a commodity type-safe language (Java) and with added systemic resilience to

resource theft and denial-of-service attacks among mutually suspicious code (above and

beyond Java traditional security); 

• provides a framework for the hierarchical composition of primitive building blocks

(micro-protocols); and

• provides APIs and toolkits to successfully negotiate resources (be it computation or

communication resources) in the Java-derived resource-safe system.

Nortel Networks’ recent Active Networks prototypes [36, 74] build upon many Conversant con-

cepts.

6.4  Related Work

ANTS is a an environment for processing active code that is written in pure Java [77, 78]. As in

MOA, this limits resource control to logical resources and bases most of its security on Java

abstractions (namespace partitioning, etc.) Joust, in contrast, is written using a custom JVM built

on top of the Scout operating system [32]. Although the custom JVM enables physical resource

control in principal, the emphasis in the Joust literature is fast-path optimizations rather then secu-

rity. PLAN is a programming language designed explicitly for active networks [30]. Resource

consumption is implicitly controlled because the language’s rules force programs to be written in

a way that consume a bounded amount of physical resources, the amount of which is statically

verifiable. To enable this, the rules are very strict (e.g. no loops are allowed in programs). APIs to

the host environment are provided to perform actions not expressible in the PLAN language; the

APIs are guarded using access control lists.
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7.  Summary 

In this section we summarize our observations in the areas security, resource management, and in

a general category.

7.1  Security Observations

In the field of security we have made the following observations:

• Security from historical perspective. Early theoretical systems and systems employing

task migration were generally not focused on security, though a few special dedicated

exceptions exist [65, 66]. Instead they concentrated on resource management issues. They

were designed for closed system where security does not have high priority, and resource

control is focused on performance, but not on protecting system against distributed attacks.

Early middleware systems addressed security thoroughly, however resource management

was somewhat neglected. This appears due to the dependency on the underlying operating

system for resource management, consequently there is less possibility for control from

the middleware system. Recent middleware systems, such as active networks and mobile

agents are focusing on both security and resource management. 

• Security has many facets. This is particularly true in those systems that admit mobile

code and distributed behavior. In most cases, designers quite aptly care about the integrity

of the system, and about the integrity of the communication among systems. This is

necessary, but not sufficient. Increasingly, the sophistication of Quality-of-Service classes

and pay-for-what-you-use policy models require the designers to appreciate non-

interference guarantees and resilience to denial-of-service attacks. Both the former and the

latter have hitherto fell off of the roadmap and feature lists of most products. We are five

years into the Java era, for instance, and yet it is still trivial for a Java application to mount

a denial-of-service attack, or to doctor system resources in the runtime in a way that some

other Java code will fail to execute next. Conversant’s atypical approach was to make non-

interference and resource safety the first, major stepping stone upon which the rest of the
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Conversant environment unfolds. Security is the most-researched aspect of mobile agents,

including MOA, MASIF as well as many other mobile agent systems [14, 27, 28, 38, 46,

62].

• Security is more easily compromised for mobile than for stationary systems. In the

case of Mach, this is obvious from the examples of interposition both at the kernel and

user level. The former even allows for compromising the kernel consistency. In the case of

today’s mobile agent systems, this is indicative based on the amount of existing work on

security with respect to mobility. 

• The client server security model is not an acceptable solution for mobile objects. This

is a model where an intermediate server is responsible for authentication and authorization

chores. Capability-based authentication is much more suitable for mobile agent systems,

such as Actor’s unforgeable names, Mach ports or MASIF’s use of certificates as a part of

the name. Capabilities appear to be highly appropriate for mobile objects because they are

easily transferred and do not introduce residual dependencies. 

• Naming is closely related to authentication. This is true in all systems described. Some

perform authentication exclusively based on the name String (without introducing any

cryptography). Actors abstracts the naming and security at the higher level. In others,

names are protected by operating system guarantees (e.g. in Mach), whereas in others the

mobile object identity consists of a combination of the authenticator and the name.

• Authorization policies for mobile object systems are still in an emergent state. In older

systems, they were not needed within the confines of a single trust domain. With the

requirement for larger systems, e.g. middleware systems such as CORBA and later Java,

authorization is being introduced into mobile object systems. As evidenced by the

evolution of MASIF or new security models of the JVM, these authorization policies are

still evolving.

• Protecting the arriving object from the visited system is rarely addressed. None of the

systems described in this paper have addressed this problem. This has not been an issue in

the past, however it is drawing interest in the past few years [64]. In the past more
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attention was paid that the incoming object does not impact the surrounding as a side

effect, e.g. to get clobbered memory in the case of Actors, or loose some state in the case

of migration. In the case of networking (Conversant) protecting the existing objects from

arriving ones has always been an issue. You need at least to look at the packet type

(header) to reject it. So this a potential source of attack, denial of service.

• Mediation of shared resources was always a hard problem to solve. In the case of

Mach, the distributed shared memory was a single hardest problem to solve even for

correctness only. Conversant has not addressed the problem of how to mediate shared

resources such as caches, networking tables, user credentials, such that it does not leave

the door open to denial of service attacks (e.g. creating too many entries over short period

of times). There is a clear distinction between resource partitioning (such as CPU,

Memory) and resource sharing, where principals access read/write some shared data. As

soon as you start to share resources (mostly for efficiency, to avoid duplicating resources)

then one must be ready to give up a bit on security against denial of service.

7.2  Resource Management Observations

The following observations have been drawn on the topic of resource management. 

• Past systems have addressed resource management issues in an ad hoc manner.

Actors early on supported the notion of sponsorship of activities. In task migration,

resources were accounted for both system and the incoming objects (tasks). Recently, with

the advent of QoS has this subject gained substantial attention. Currently, issues are

handled subject to the limitations of the underlying environment. For example, in Mach,

modifications to the microkernel were required to profile it for remote communication and

paging, while in Conversant, it was necessary to make modifications to the JVM. One of

the top conclusions for Conversant is that Java was a major step forward regarding

mobility and security but really lacks physical resource management. However, because of

the standardization and world-wide deployment, the changes for resource management are

much harder to deploy in nowadays systems than it was the case with early systems.
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• Mobile object systems typically offer a combination of logical and physical resource

management. All of the system types surveyed adhere to this model. Earlier systems were

more weighted towards logical resource management, which is much easier to achieve but

often has only a limited effect upon the system performance. For example, Actors

supported the notion of the meta-architectures. Physical resource management is harder to

manage and often requires modifications to the underlying environment. Load distribution

in Mach addressed processor, VM, and communication bandwidth. Recent QoS

requirements have caused newer systems to address these issues, as can be seen by the

work done in Conversant. The java language naturally fits in mobile object systems, since

it is an interpreted language, object oriented, especially designed for security and has a

well defined set of API packages, available at any node. Nevertheless, as the MOA and

Conversant projects point out the basic physical resources (CPU and Memory) are very

poorly handled in Java. Furthermore, there is a duality between resource management and

security, since insufficient resource management may lead to denial of service.

• Recent systems provide some form of negotiation between the arriving object and the

receiving object system. This negotiation is utilized in order to verify whether the

necessary resources are available at the system and to guarantee that the agent will not

abuse the system’s available resources. In Actors, the negotiation is abstracted at the meta-

architecture level. In MOA system, the resources are explicitly negotiated prior to

accepting the object at the visited host. Negotiation is typically asymmetric in that host is

privileged over the arriving object. Conversant also negotiates resources before the packets

(capsules) are evaluated. The negotiation is in fact performed end to end first.

• Clean OS abstractions and frameworks can be a useful starting point for mobile

object systems. Conversant’s experience in bringing resource safety into a system (Java)

that is inherently resource unsafe has once more demonstrated that clean OS abstractions

(e.g., Java’s name spaces) and frameworks (e.g., Java’s classloader) go a long way.

Conversant literally fork lifted the standard notion of Java name space and overloaded

with the new notion of non-interference guarantees. Without having name spaces as a
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starting point, it would have been woefully hard (or impossible) to bring resource safety

into Java and yet preserve compatibility with the Java legacy world. Similar observation

applies for security model and naming and locating in MOA.

7.3  General Observations

Some of the lessons learned from the presented cases of mobile object systems that could be

readily applied to future mobile object systems consist of the following: 

• Mobility is easy to implement in prototype stage. There are numerous implementations

of the Actors model. A few versions of Mach task migration have been implemented (and

many other variations of process migration). There are numerous implementations of

mobile agent systems. Active networks also achieved multiple incarnations and

derivations. 

• Transparent communication is a powerful but also very complex and fragile

mechanism to support. In the case of Mach, this is a single feature thad caused most

trouble and required most support. Nowadays, this is obvious from the difficulties in

supporting transparent communication and the lack of standardization for mobile systems.

End-to-end guarantees are hard to satisfy in the case of active network implementations. 

• Fault tolerance on top of mobility is hard to support. Early Actors systems addressed

fault tolerance by modular, dynamically loadable protocols. In the case of Mach, fault

tolerance is tied to dependencies that were sprinkled throughout the cluster. Today, failure

tolerance is still an issue for mobile agents. However, some of the mechanisms for

migration can be readily used for checkpointing. 

• Mobility is an interesting topic that attracts interest of researchers. It is evident from

the case studies we described as well as from numerous other implementations of the

mobile object systems. It may be interesting because it is a hard problem in general, and as

such it attracts researchers. Security and resource management make hard.
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• There are few if any commercially successful products in mobility area. This is true in

all classes of mobile systems we described. There were only few products supporting task

migration, only a couple of commercially available mobile agent systems, and active

networks still have not been deployed. However, some aspects of mobility are encroaching

into the networking area and networking seems to be the most promising area for mobility

deployment.

8.  Conclusion

In this paper we presented security and resource management as implemented in five different

types of mobile object systems. For each system type, for the purpose of clarity, we selected a sin-

gle project as a representative and noted related project work. It is important to note that the wide

range of system types provides a broader base from which we draw our conclusions. We began

with a theoretical model, then described task migration, a standard specification for mobile agent

systems, a mobile agent system, and an active networks project. For each of the systems presented

we have analyzed how they supported security and resource management and briefly mentioned

related work for each of the system types. Our findings are tersely summarized in Tables 3-5. A

more detailed comparison is beyond the scope of this paper. 

Security and resource management will continue to be important aspects of mobile object sys-

tems. Both are crucial for the safety and protection of the mobile objects as well as the hosting

systems. Security and resource management are addressed at various levels of the system and this

is likely to continue to be the case in future systems. QoS requirements supporting the secure and

guaranteed behavior of applications will require the utilization of a combination of techniques at

the networking, operating system, middleware and application levels. This paper attempted to

present a few examples illustrating how security and resource management have been addressed

at these different system levels. We believe that exciting developments await us, and having a his-

torical perspective going forward can be useful.
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Appendix  Summary of Presented Mobile Object Systems  

General 
Description

Actors
Mach Task
Migration

MASIF Standard MOA Conversant

Type middleware operating system
(microkernel)

specification
(standard)

mobile agent 
system active networks

Goals
modeling and 

building distrib. 
applications

load distribution, 
transparent migration 
at the µkernel level

interoperability among 
mobile agent systems

persist. comm. chn, 
resource manag. 

component model

dynamic comm. 
protocols, improved 

assurance & QoS

Status active frozen (Mach still lives) frozen ended ended

Time frame 1985- 1991-1993 1995- 1996- 1996-1998

Who used it
 MCC, MIT, 

University of Paris, 
etc.

Universities of 
Kaiserslautern, Utah and 

Louvain-la-Neuve

Grasshopper [27] (now)
Aglets and MOA

(in progress)

Cambridge, Grenoble RI, 
SECOM, INRIA, U. 
Denver & Portugal

N/A

References [2, 4] [53, 61] [50, 59] [52] [10]

Table 3. General Information about Systems Being Compared.

Resource 
Management

Actors
Mach Task
Migration

MASIF Standard MOA Conversant

physical
resources 

CPU, memory, disk, 
network bandwidth, and 
access rate guarantees

lifetime, processing, 
remote IPC & paging

not addressed
(relies on the OS) lifetime CPU, memory, bandwidth

logical
resources objects, messages communication 

channels future work MOA messages, places, 
channels, agents, etc.)

object cache, resource
and policy descriptors

object
granularity 

Single objects of 
encapsulated groups single task single agent single agent and

families of agents user-user connection

resource
policies

fair scheduling, 
interleaved execution local processing N/A suspend agent on 

overflow

fair share
&

pay for what you use

resource
negotiation 

 resource usage costs, 
access rate guarantees  kernel port transfer N/A

asymmetric negotiation, 
logical resources, 

arbitrary requirements
asymmetric

QoS Customization of 
language abstractions  N/A part of the transport N/A high-confidence via end-

to-end flows (“paths”)

Table 4. Comparison of Resource Management of Mobile Object Systems.

Security Actors
Mach Task
Migration

MASIF Standard MOA Conversant

Object owner autonomous
(meta model) task kernel port owner(s) creator creator of the first 

generation creator

Authentication name based policies kernel trusted capabilities one-hop, authenticator part 
of the name object

name based
(temporary)

private/public key 
encryption

Authorization name based policies same trust domain
capab. owner has all rights

credentials transferred 
during migration

name based
(temporary)

Java references 
(capabilities)

Delegation spawn new actor passing capabilities non-composite
(for the time being) can spawn, & “fork” none

Transport asynchronous message 
passing

in-kernel protocols 
NORMA IPC/DIPC CORBA IIOP sockets ANEP

Naming strings/patterns capability based string, authenticator, agent 
sys type string SNMP MIB

Management meta-level services
transparent extent. of 
kernel i/f: suspend, 

resume, kill
kill, suspend, resume

(group-based) kill, 
suspend, resume, 

debug

System 
administrator

Auditing multilevel services interposition of 
communication ports N/A logging logging

Table 5. Comparison of Security Aspects of Mobile Object Systems.



48


