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Abstract

In an open system, multi-agent computations must com-
pete for resources required for satisfying their goals. We de-
scribe CyberOrgs, a hierarchical model for acquisition and
control of resources for multi-agent systems in a market of
resources. Programming abstractions and constructs are in-
troduced for implementing systems of CyberOrgs. A proto-
type implementation of the model as an Actor program is
described, and scheduling approaches for an efficient im-
plementation are discussed.

1. Introduction

There are multiple sources of uncertainty in a computa-
tional environment. An application independent source of
uncertainty for a computation emanates from other compu-
tations competing for available resources. In an open sys-
tem where computations may enter or exit the system at
any time, this is a typical scenario. Coordinating resource
access by agents is hence critical to reduce uncertainty and
enable agents to make control decisions for best global per-
formance.

Ether [4] was the first language to address explicit allo-
cation of resource in concurrent systems, in which spon-
sors were assigned to processes to support their compu-
tations. In Quantum [5], computations require energy to
execute. Computation tasks are contained in hierarchical
groups which also serve as tanks of energy. When a group’s
computations terminate, its energy is absorbed by its par-
ent group.

2. CyberOrgs

CyberOrg (“Cyber Organization”) is a model for re-
source control in an open multi-agent system. Cyberorgs
organize computational resources as a market, and their

ownership and control hierarchically. Specifically, each cy-
berorg encapsulates a concurrent computation and re-
sources available for its execution. Cyberorgs also own
eCash with which they buy resources from other cy-
berorgs; however, they may not create eCash ex nihilo.

Cyberorgs organize resources as a tree. A cyberorg
hosted by another cyberorg receives resources from its
host in exchange for eCash payments, according to a
pre-negotiated contract.

Even though ownership relationships are represented as
a hierarchy, the ownership of a resource is absolute for the
duration of an ownership. This means that a cyberorg de-
cides autonomously whether to sell a resource during the
interval in which it owns it, for a part of that interval.

Although terms of ownership of resources are decided
between sellers and buyers, physical distribution of re-
sources between cyberorgs needs to be controlled at the lo-
cation of the resource. For example, processor cycles are
typically distributed by schedulers. A hierarchy of sched-
ulers independent of the hierarchy of cyberorgs is hence re-
quired for distributing processor cycles among cyberorgs or
parts of cyberorgs physically located on a single machine.

The CyberOrg model separates concerns of computa-
tions from those of the resources required to complete them.
We assume that computations are carried out by actors [1],
and we represent the resource requirements of each com-
putation by the sequence of resources required to complete
it. Ticks serve as the unit of a consumable resource such as
processor time. Every computation requires a certain num-
ber of ticks to complete.

Progress is represented by transitions occurring with in-
troduction of ticks into the system. When a tick is inserted
into a cyberorg, it may pass the tick on to a client cyberorg,
use it for progressing on its chores or on its actors. Whether
a tick is passed on to a client or used locally depends on the
contracts that the cyberorg has with its clients.

As illustrated in Figure 1, a new cyberorg is created by
using the isolate primitive, which collects a set of ac-
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Figure 1. Creation and Absorption

tors, messages, and electronic cash, and creates a new cy-
berorg hosted locally. A cyberorg disappears by assimilat-
ing into its host cyberorg using the asmlt primitive, relin-
quishing control of its contents to its host.

A cyberorg may realize that its resource requirements
have exceeded what is available by its contract with the host
cyberorg. This triggers its attempt to migrate. The tasks re-
quired for a cyberorg to migrate are: search (for a potential
host), negotiate (a contract with potential hosts), and mi-
grate (to a selected host).

An operational semantics of CyberOrgs can be found in
[3]. Preliminary analysis of the model has found cyberorgs
to hold the following properties.

• The amount of eCash in the system remains constant.

• If no new ticks are inserted into the root cyberorg, the
system will eventually become dormant.

• If transfer of eCash is limited to purchase of ticks, cy-
berorgs carrying eCash only migrate up the cyberorg
tree, and the price of ticks only reduces in fixed quan-
tums, then the system will eventually become dormant.

An executable specification of CyberOrgs has been de-
veloped using the formal specification language Maude [2].
Maude is an implementation of rewriting logic, which is
a logic particularly suited for modeling dynamic and con-
current systems because it enables one to define a system’s
states in modules and to express conditions that trigger state
transitions of the system as rewrite laws.

3. Prototype

A prototype CyberOrg implementation has been built us-
ing Actor Foundry, a library of Java classes supporting Ac-
tor functionality. Actor programs may be written and exe-
cuted in a run time that supports operational semantics of
the Actor model.

A system of cyberorgs is implemented by directly sub-
classing from CyberOrg and AppActor classes. There
are three important components of a CyberOrg system im-
plementation: cyberorg classes which implement a runtime
system for each class of cyberorgs, managing “tick” con-
sumption by local application actors, and securing “tick” re-
source for a cyberorg from other cyberorgs; application ac-

tor classes, which hold the behaviors of application actors;
and client and server negotiator classes implementing spe-
cific strategies for negotiating contracts.

An important hurdle in efficiently implementing cy-
berorgs is the model’s hierarchical structure. If cyberorgs
are implemented naively so that each cyberorg is repre-
sented by a scheduler, a system of cyberorgs would be
realized by a hierarchy of schedulers. Because schedul-
ing overhead is typically dominated by the cost of thread
suspension and resumption, suspension of any non-leaf cy-
berorg would also require suspension of all cyberorgs in
the path from it to the executing actor.

Our approach to implementing cyberorgs is by flattening
the schedule at run-time. Instead of launching a new sched-
uler for each cyberorg, all cyberorgs’ internal schedules are
merged into a single flat schedule of actors which preserves
all processor time allocations. Because the resulting sched-
ule is flat, there is virtually no additional scheduling over-
head resulting from the cyberorg infrastructure.

4. Conclusions

Agents sharing an execution environment invari-
ably compete for available resources, possibly in ways
impacting global performance of a multi-agent applica-
tion. CyberOrgs offer a model for acquisition and control
of resources for multi-agent applications, which allows ap-
plications to execute in an environment of predictable
resource availability. The model achieves a separa-
tion of concerns by representing resource requirements of
an application separately from its functionality. An exe-
cutable specification of the model has been developed using
the Maude specification language. Work is ongoing on de-
veloping an efficient implementation of CyberOrgs and
studying properties of systems of CyberOrgs.
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