Decentralized Resource Control for Multi-Agent Systems

Nadeem Jamali, Indratmo, Xinghui Zhao
Department of Computer Science
University of Saskatchewan
57 Campus Drive
Saskatoon, SK, S7N 5A9, Canada
{n,jamali, j.indratmo, x.zhao} @usask.ca

Abstract

In an open system, multi-agent computations must com-
pete for resourcesrequired for satisfying their goals. We de-
scribe CyberOrgs, a hierarchical model for acquisition and
control of resources for multi-agent systems in a market of
resources. Programming abstractionsand constructsarein-
troduced for implementing systems of CyberOrgs. A proto-
type implementation of the model as an Actor programis
described, and scheduling approaches for an efficient im-
plementation are discussed.

1. Introduction

There are multiple sources of uncertainty in a computa-
tional environment. An application independent source of
uncertainty for a computation emanates from other compu-
tations competing for available resources. In an open sys-
tem where computations may enter or exit the system at
any time, this is a typical scenario. Coordinating resource
access by agentsis hence critical to reduce uncertainty and
enable agents to make control decisions for best global per-
formance.

Ether [4] was the first language to address explicit alo-
cation of resource in concurrent systems, in which spon-
sors were assigned to processes to support their compu-
tations. In Quantum [5], computations require energy to
execute. Computation tasks are contained in hierarchical
groups which also serve as tanks of energy. When agroup’s
computations terminate, its energy is absorbed by its par-
ent group.

2. CyberOrgs

CyberOrg (“Cyber Organization”) is a model for re-
source control in an open multi-agent system. Cyberorgs
organize computational resources as a market, and their

Gul A. Agha
Department of Computer Science
University of Illinois
201 N. Goodwin Avenue
Urbana, IL 61801, USA
agha@cs.uiuc.edu

ownership and control hierarchically. Specifically, each cy-
berorg encapsulates a concurrent computation and re-
sources available for its execution. Cyberorgs also own
eCash with which they buy resources from other cy-
berorgs; however, they may not create eCash ex nihilo.

Cyberorgs organize resources as a tree. A cyberorg
hosted by another cyberorg receives resources from its
host in exchange for eCash payments, according to a
pre-negotiated contract.

Even though ownership relationships are represented as
a hierarchy, the ownership of aresource is absolute for the
duration of an ownership. This means that a cyberorg de-
cides autonomously whether to sell a resource during the
interval in which it ownsit, for a part of that interval.

Although terms of ownership of resources are decided
between sellers and buyers, physical distribution of re-
sources between cyberorgs needs to be controlled at the lo-
cation of the resource. For example, processor cycles are
typically distributed by schedulers. A hierarchy of sched-
ulers independent of the hierarchy of cyberorgsis hencere-
quired for distributing processor cycles among cyberorgsor
parts of cyberorgs physically located on a single machine.

The CyberOrg model separates concerns of computa-
tionsfrom those of the resources required to complete them.
We assume that computations are carried out by actors[1],
and we represent the resource requirements of each com-
putation by the sequence of resources required to complete
it. Ticks serve as the unit of a consumable resource such as
processor time. Every computation requires a certain num-
ber of ticks to complete.

Progress is represented by transitions occurring with in-
troduction of ticks into the system. When atick is inserted
into a cyberorg, it may pass the tick on to a client cyberorg,
useit for progressing on its chores or on its actors. Whether
atick is passed on to aclient or used locally depends on the
contracts that the cyberorg has with its clients.

Asiillustrated in Figure 1, a new cyberorg is created by
using the i sol at e primitive, which collects a set of ac-



& ecan
o Ader
53 Adtor Message

b) asm t

aisolate

Figure 1. Creation and Absorption

tors, messages, and electronic cash, and creates a new cy-
berorg hosted locally. A cyberorg disappears by assimilat-
ing into its host cyberorgusingtheasm t primitive, relin-
quishing control of its contents to its host.

A cyberorg may realize that its resource regquirements
have exceeded what is avail able by its contract with the host
cyberorg. This triggers its attempt to migrate. The tasks re-
quired for a cyberorg to migrate are: search (for a potential
host), negotiate (a contract with potential hosts), and mi-
grate (to a selected host).

An operationa semantics of CyberOrgs can be found in
[3]. Preliminary analysis of the model has found cyberorgs
to hold the following properties.

e The amount of eCash in the system remains constant.

o If no new ticks are inserted into the root cyberorg, the
system will eventually become dormant.

o If transfer of eCashis limited to purchase of ticks, cy-
berorgs carrying eCash only migrate up the cyberorg
tree, and the price of ticks only reduces in fixed quan-
tums, then the system will eventually become dormant.

An executable specification of CyberOrgs has been de-
veloped using the formal specification language Maude [2].
Maude is an implementation of rewriting logic, which is
alogic particularly suited for modeling dynamic and con-
current systems because it enables one to define a system’s
states in modules and to express conditionsthat trigger state
transitions of the system as rewrite laws.

3. Prototype

A prototype CyberOrg implementation has been built us-
ing Actor Foundry, alibrary of Java classes supporting Ac-
tor functionality. Actor programs may be written and exe-
cuted in a run time that supports operational semantics of
the Actor model.

A system of cyberorgsis implemented by directly sub-
classing from Cyber Or g and AppAct or classes. There
are three important components of a CyberOrg system im-
plementation: cyberorg classes which implement a runtime
system for each class of cyberorgs, managing “tick” con-
sumption by local application actors, and securing “tick” re-
source for a cyberorg from other cyberorgs; application ac-

tor classes, which hold the behaviors of application actors;
and client and server negotiator classes implementing spe-
cific strategies for negotiating contracts.

An important hurdle in efficiently implementing cy-
berorgs is the model’s hierarchical structure. If cyberorgs
are implemented naively so that each cyberorg is repre-
sented by a scheduler, a system of cyberorgs would be
realized by a hierarchy of schedulers. Because schedul-
ing overhead is typically dominated by the cost of thread
suspension and resumption, suspension of any non-leaf cy-
berorg would aso require suspension of all cyberorgs in
the path from it to the executing actor.

Our approach to implementing cyberorgsis by flattening
the schedule at run-time. Instead of launching a new sched-
uler for each cyberorg, al cyberorgs’ internal schedulesare
merged into asingle flat schedule of actors which preserves
al processor time allocations. Because the resulting sched-
uleis flat, there is virtually no additional scheduling over-
head resulting from the cyberorg infrastructure.

4. Conclusions

Agents sharing an execution environment invari-
ably compete for available resources, possibly in ways
impacting global performance of a multi-agent applica-
tion. CyberOrgs offer a model for acquisition and control
of resources for multi-agent applications, which allows ap-
plications to execute in an environment of predictable
resource availability. The model achieves a separa-
tion of concerns by representing resource requirements of
an application separately from its functionality. An exe-
cutabl e specification of the model has been developed using
the Maude specification language. Work is ongoing on de-
veloping an efficient implementation of CyberOrgs and
studying properties of systems of CyberOrgs.

References

[1] G.Agha Actors: AModel of Concurrent Computation in Dis-
tributed Systems. MIT Press, Cambridge, Mass., 1986.

[2] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet,
J. Meseguer, and J. F. Quesada. A maude tutorial. Techni-
cal report, SRI International, Computer Science Lab, 2000.

[3] N. Jamali and G. Agha. Cyberorgs: A model for decentral-
ized resource control in multi-agent systems. In Proc. of WS
on Representation and Approaches for Time-Critical Decent.
Res./Role/Task Alloc. at AAMAS 03, Melbourne, 2003.

[4] W. A. Kornfeld and C. Hewitt. The scientific community
metaphor. |EEE Transactions on System, Man, and Cyber-
netics, 11(1):24-33, January 1981.

[5] L. Moreau and C. Queinnec. Distributed and multi-type re-
source management. In ECOOP’ 02 Wobrkshop on Resource
Management for Safe Languages, Spain, 2002.



