
Distributed Coordination of Massively Multi-Agent
Systems

Nadeem Jamali and Xinghui Zhao

176 Thorvaldson Building, 110 Science Place
Department of Computer Science, University of Saskatchewan

Saskatoon, SK, S7N 5C9, Canada

Abstract. Coordination is a key problem in massively multi-agent systems. As
applications execute on distributed computer systems, coordination mechanisms
must scalably bridge the network distance between where decisions are made and
where they are to be enforced.
Our work on the CyberOrgs model1 addresses this challenge by encapsulating
distributed multi-agent computations along with computational and communica-
tion resources they require (for carrying out the application’s functions as well
as for coordinating actions of the agents) plus purchasing power represented by
an amount of eCash for acquiring additional resources. Resources are dened in
time and space, and are owned by cyberorgs. Resource ownership changes as a
result of trade between cyberorgs.
Ownership of resources coupled with an effective and scalable control structure
creates a predictable resource environment for multi-agent systems and their co-
ordination mechanisms to execute in. Particularly, the coordination mechanism
can reason about the possibility of successful coordinated action based on pre-
dictable communication and processing delays.
This paper presents our experience with hierarchical coordination of distributed
processor resource for a system of cyberorgs internally distributed across a num-
ber of physical nodes. We demonstrate that encapsulation of network resources
creates a scalable opportunity for reasoning about distributed coordinated action
to support decision making.
Experimental results show that the CyberOrgs based resource-aware approach
scalably increases opportunities for successful coordinated distributed actions in-
volving up to 1500 agents (in much larger systems) by reducing the delay in
determining their feasibility, as well as helps avoid attempts of infeasible actions.

1 Introduction

A multi-agent computation distributed over a network of computers faces a number of
sources of uncertainty. When an agent’s decision about the action to take next depends
on actions taken by other agents, agents must contend with the uncertainty of other
agents’ actions. When agents are distributed across a number of physical nodes, both
computational as well as resource uncertainties emerge.

Coordination between agents emerges as a key concern for achieving optimal results
[5], especially when the computations are distributed [4]. It turns out that requirements

1 The model is referred to as CyberOrgs, and the entities are referred to as cyberorgs.

of computation and coordination can be treated as separate and orthogonal dimensions
of computing [6], leading to an opportunity for separating concerns and addressing
coordination explicitly.

Coordination presents signicant challenges when agents execute in a distributed
environment with a number of processors connected by communication networks. Specif-
ically, coordination mechanisms must bridge the network distance between the agents
whose actions need coordination. This is a difcult problem because network delays
are generally unpredictable, in large part because network performance goals are typi-
cally systemic, and applications are free to engage in virtually unrestricted competition
for network resources, leading to resource dependencies. This is part of a more general
problem. In open systems [7], when there are both logical and resource dependencies [5]
between agents, resource dependencies sometimes lead to logical dependencies. Unre-
stricted competition for resources between agents collaborating to achieve a shared goal
may hamper progress toward the goal. Coordinating resource access by agents is hence
critical to reducing uncertainty and enabling agents to make control decisions for the
best global performance [12].

In a bounded resource environment, if a computation can launch other computations
as in a multi-agent system, it is difcult to control resource consumption reactively. If an
erroneous or malicious agent begins creating other agents with similar characteristics,
and if the only mechanism employed for identifying such agents is observation of their
own threatening behavior, the rate of growth in the number of agents can be shown to be
exponential. Intuitively, this means that irrespective of how conservatively the system
purges misbehaving agents, so long as the mechanism relies solely on the observation
of individuals’ suspicious activity, by the time the system reacts, it may be too late:
other agents have potentially been created about whose behavior the system will know
nothing until it has observed them individually.

Our approach to controlling such behavior is by bounding resource consumption
at the outset, and limiting resources available to a multi-agent computation. In this ap-
proach, each agent would receive a resource consumption allowance, which it could
utilize or give a part of to other agents. Our work on the CyberOrgs model [9] uses this
approach by encapsulating distributed multi-agent computations inside hierarchically
organized resource encapsulations. [10] described scheduling strategies for efciently
controlling processor resource for a hierarchy of cyberorgs.

The difculty of resource coordination is compounded by distribution of the re-
sources. A number of approaches have been used to address the problem. [13] intro-
duces a hierarchical scheduling scheme to apply a set of algorithms that enforce var-
ious processor usage constraints. Although the scheduling scheme is used for mobile
programs, the interaction paradigm is client/server. Furthermore, network resource is
not considered. [14] addresses network delay in the context of distributed scheduling,
and provides approximation algorithms for distributed task scheduling problems. This
approach focuses on specic global objectives of scheduling, such as minimizing the
makespan, minimizing the average completion time, etc. Therefore, for a given net-
work, they have specic ways to schedule the tasks, and no complex coordination is
involved. Furthermore, the tasks are assumed to be unrelated, and there are no inter-
actions or constraints between tasks. Coordination between distributed schedulers is

considered in [3], for providing multimedia to multiple clients without conict. Each
scheduler is located on one computer and only has a partial view of the global schedule,
requiring the schedulers to coordinate. Because the schedulers have the specic purpose
of preventing access conict, and the distributed clients do not interact with each other,
coordination is simple.

Our approach is to carry out resource coordination within distributed resource en-
capsulations provided by the CyberOrgs model. When a computation can rely on the
availability of computational and communication resources, its coordination mecha-
nisms can be assisted by the knowledge in making decisions about coordinated dis-
tributed action. This improves overall efciency by avoiding infeasible coordination
attempts.

2 CyberOrgs

CyberOrgs [9] is a model for resource sharing in a network of self-interested peers,
where application agents may migrate in order to avail themselves of remotely lo-
cated peer-owned resources. CyberOrgs organize computational and communication
resources as a market, and their control as a hierarchy. Specically, each cyberorg en-
capsulates one or more multi-agent distributed computations (to be referred to as com-
putations contained in the cyberorg), and an amount of eCash in a shared currency. Cy-
berorgs act as principals in a market of distributed resources, where they may use their
eCash to buy or sell resources among themselves. A cyberorg may use the resources so
acquired for carrying out its computations, or it may sell them to other cyberorgs.

CyberOrgs treat computational and communication resources as being dened in
time and space. In other words, a resource is not available for use before or after the in-
stant of time at which it exists. Sale of a resource is represented by a contract stipulating
availability of resources to the buyer for a cost. Delivery of resources to cyberorgs is de-
termined by a hierarchy of control decisions. In other words, cyberorg a makes control
decisions required for delivery of resources purchased from it by cyberorg b; cyberorg
b in turn makes control decisions determining how the resources purchased from it by
cyberorg c are to be delivered. Cyberorgs may pre-pay to buy resources which will exist
in the future. Cyberorg b may use the resources it owns only if the resources exist at a
time when the cyberorg is being hosted by a. In other words, after signing a contract, a
cyberorg must migrate to the prospective host cyberorg in order to avail itself of newly
acquired resources. Additionally, if b migrates from a while it owns future resources
through a contract with a, it cannot use those resources except if it eventually returns to
a and if it possesses resources which have not yet expired.

The CyberOrgs model separates concerns of computations from those of the re-
sources required to complete them.

We assume that computations are carried out by primitive agents called actors [1],
and we represent the resource requirements of each computation by the sequence of
resources required to complete it. Ticks serve as the unit of a consumable resource such
as processor time. Every computation requires a certain number of ticks to complete.

Progress is represented by transitions occurring with introduction of ticks into the
system. When a tick is inserted into a cyberorg, it may pass the tick on to a client

cyberorg, use it for progressing on its system operations (such as for carrying out prim-
itives) or on its actor computations. Whether a tick is passed on to a client or used
locally depends on the contracts that the cyberorg has with its clients.

As illustrated in Figure 1, a new cyberorg is created by using the isolate prim-
itive, which collects a set of actors, messages, and electronic cash, and creates a new
cyberorg hosted locally.2

$
$

$
$

isolate

Actor

eCash$

Actor Message

$$
$

$

a) CyberOrg Isolation

$$
$

$

assimilate

$
$

$
$

b) CyberOrg Assimilation

Fig. 1. Creation and Absorption

A cyberorg disappears by assimilating into its host cyberorg using theassimilate
primitive, relinquishing control of its contents to its host.

A cyberorg may realize that its resource requirements have exceeded what is avail-
able by its contract with the host cyberorg. This triggers its attempt to migrate. The
tasks required for a cyberorg to migrate are: search (for a potential host), negotiate (a
contract with potential hosts), and migrate (to a selected host).

A more formal treatment of the operational semantics may be found in [9].

3 Distributed Coordination

The way cyberorgs encapsulate computational and communication resources creates
unique opportunities for scalable distributed coordination. Because delivery of network
and processor resources to computations is controlled at a ne grain, idle resources are
known precisely. As a result, communication and processing delays in carrying out xed
length system communications required for coordination become predictable. This - in
turn - allows the distributed coordination components to reason about the feasibility
of coordinated action based on good estimates of delays, and attempt only promising
coordinated actions.

We use coordination of distributed processor resource delivery as an example of a
distributed coordination problem. A single cyberorg may be internally distributed in that
it may own computational resources at a number of physical nodes, on which its agents
reside. Network resources would be additionally required by the cyberorg to enable

2 These primitives bear some similarity to those of the Interaction Abstract Machines (IAM) [2].

communication between its distributed agents. Coordination decisions for the cyberorg
may be local to a processor, or they may involve multiple processors. In cyberorg im-
plementations, meta-agents called facilitators are responsible for making resource de-
cisions for cyberorgs and interacting with the the processor scheduler to secure those
resources. Facilitators, being agents, also require resources for executing. For a dis-
tributed cyberorg, there are as many facilitators as the number of processors on which
parts of the cyberorg are located. One way of organizing these facilitators is to desig-
nate one of them as the master facilitator. The master facilitator maintains information
required for global scheduling decisions; other (slave) facilitators maintain sufcient
information for making local scheduling decisions autonomously. Coordinated global
scheduling actions implementing cyberorg primitives offer a signicant challenge in the
context of unpredictable communication delays. However, cyberorgs allow communi-
cation as well as computation delays to be locally known based on knowledge of idle
resources. If a master facilitator knows the global state of network and remote proces-
sor resource availability, it can use that information to predict delays in communicating
with other facilitators, based on which it can determine whether a certain primitive op-
eration can in fact be carried out. Particularly, assessment of feasibility of a coordinated
action to implement a distributed cyberorg primitive can be made before actual com-
munication with other facilitators regarding the specic operation.

3.1 Coordination among distributed schedulers

Coordinated action involving a number of nodes hosting parts of a cyberorg requires
prior agreement between the nodes. Therefore, there is a minimum delay between when
the action is conceived and when it can actually be carried out at each of the nodes. If
this delay can somehow be estimated, actions requested for sooner than this delay can
be summarily dismissed. Given the benet of knowledge of resource availability in a
system of cyberorgs, here we attempt to calculate this delay.

Consider a 2-node (N1, N2) request for a coordinated primitive operation (Figure 2)
to be carried out across the nodes hosting a cyberorg. The delay ∆ in reaching agree-
ment consists of several parts: D1, the time delay from when the request is generated by
the master facilitator on N1 (or received from a slave) to when the request is scheduled
to be processed on N1; P (a), the computational cost of analyzing the request and cre-
ating distributed tasks (where a is the total number of agents involved in the request);
C(N1, N2), the network delay in sending a message from N1 to N2

3; D2, the delay
from when the request is received on N2 to when the request is scheduled to be pro-
cessed on N2; P (a2), the computational cost of interpreting the request, and evaluating
its feasibility on N2 (where a2 is the number of agents on node N2 involved in the
primitive); C(N2, N1), the network delay of sending an acknowledgment back from
N2 to N1; D3, the delay from receipt of the acknowledgment to when the message is
processed on N1. Therefore, the coordination cost should be:

∆ = D1 + P (a) + (C(N1, N2) + D2 + P (a2) + C(N2, N1)) + D3 (1)
3 We assume that clocks are synchronized within some epsilon.

1

t : request generated

C(N , N)

2

2 1

1

1

3

t : request received on N

2

4

c

t : request sent to N
C(N , N)

1N N2

t : ack sent to N

2

1

t : ack is processed

t : ack received on N

2

1

or received

21 2C(N , N)+D +P(a)+C(N , N)2 2
2

D +P(a)

D +P(a)

D

1

2

3

0

Fig. 2. Cost of coordination between distributed schedulers

The time delays D1, D2, and D3 can be estimated from details of CPU scheduling.
Figure 3 shows a scheduler cycle of length of l, where s is the time slice allocated to
the facilitator responsible for processing the primitive request. If the primitive request
arrives during the time interval [T0, Ts], probability of which is p = s

l , the delay would
be 0; if the request arrives during [Ts, Tl], probability of which is 1−p, the delay would
be non-zero. In the latter case, we can take an average delay as an approximation: l−s

2 .
Therefore, the approximation of time delay between when a request is received on a
node and when the request is scheduled is (p × 0) + (1 − p) × l−s

2 , which is:

D =
(l − s)2

2 × l
(2)

s TT T l0 s

l

Fig. 3. A scheduler cycle

The communication costs C(N1, N2) and C(N2, N1) can be estimated from details
of network resource control. In the current implementation, network control is message
based, and the unit of control is a cyberorg. If r is the network ow rate (messages
per second) that a cyberorg receives, the time delay of sending a message from an
agent in this cyberorg would be 1

r . Because a cyberorg processes its messages based
on a rst come rst serve rule, the actual time delay of sending the specic primitive
request would be m+1

r , where m is the number of messages to be processed before the
message carrying the primitive request. After the message in question is processed, it

goes through the network link between N1 and N2, and the delay is determined by the
bandwidth (b) of the network route and the size of the message (z).

C =
m + 1

r
+

z

b
(3)

For convenience, we use a function fN1,N2(r12, m12, z12, b12) to refer to this net-
work communication cost, where N1, N2 are names of nodes.

Using equations 1, 2, and 3, we obtain the approximation cost of achieving group
agreement for a coordinated distributed action, which is:

∆ = (l1−s1)2

l1
+ P (a) + fN1,N2(r12, m12, z12, b12) + (l2−s2)2

2×l2
+ P (a2)

+fN2,N1(r21, m21, z21, b21)
(4)

Although estimating P (a) for a general purpose computation would be difcult, be-
cause we are dealing with special purpose computations for assessing feasibility of local
actions, it is possible to obtain good estimates, so long as local resource availability is
known, which is in this case.

Equation 4 illustrates the coordination cost of a 2-node distributed primitive. This
can be generalized to the n-node case as follows:

∆ = (l1−s1)
2

l1
+ P (a) + max(fN1,Ni(r1i, m1i, z1i, b1i) + (li−si)

2

2×li
+ P (ai)

+fNi,N1(ri1, mi1, zi1, bi1))
(5)

for i in [2, n], where N1 is the node with the master facilitator of the cyberorg. l i is
the length of scheduler cycle on node N i, si is the time slice for which the facilitator
agent on node Ni is scheduled, and fNi,Nj() is the network communication cost of
sending a message from Ni to Nj , which depends on network ow rate the cyberorg
receives, number of messages to be processed before the specic message, the size of
message to be sent, and the network bandwidth between the two nodes, for the path
from Ni to Nj .

Optimistic Waits The master facilitator of an internally distributed cyberorg is re-
sponsible for making global decisions for the cyberorg, while slave facilitators of the
cyberorg are free to make local decisions involving agents on their own nodes.

A global decision of a master facilitator may require modifying resources available
to agents spread across multiple nodes. In order to guarantee that the corresponding ac-
tions associated with an n-node global decision will be performed successfully by time
t on all involved nodes, a master facilitator must generate the decision by time t ′, so that
t′ < t − ∆. However, some savings can be obtained by eliminating some communica-
tion. Particularly, if the master facilitator can calculate ∆ without explicitly communi-
cating with the slave facilitators, it can send requests to the slave facilitators to carry out
their parts of the global action, with the knowledge that all actions will indeed succeed.
Although this is not possible in general, if the the master facilitator receives periodic
updates from the slaves about their locally available resources, along with promises to

maintain those availabilities for certain time intervals, the master may be able to assess
feasibility of remote actions so long as the actions can be completed before expiration of
the resource availability promises received from the slaves. Specically, the master may
send requests for coordinated actions, wait for the ∆ it has independently calculated,
and then assume that the actions successfully took place.

If the coordinated action itself is required in the future, the master facilitator may
estimate the delay required for agreement on feasibility of the coordinated action in a
similar manner. In this case, instead of waiting for each slave facilitator to acknowledge
agreement, the master facilitator may be optimistic. In other words, the slave facilita-
tors no longer have to send acknowledgments; they only report back if they nd the
action infeasible. The master facilitator, in turn, waits for ∆ time for possible infeasi-
bility reports, rather than wait for each slave to acknowledge. The master would be able
to calculate this ∆ if the promises of resource availability received from the slaves do
not expire before the slaves nish assessing local feasibilities. Additionally, instead of
waiting to be informed by the master of global agreement, the slaves too optimistically
wait long enough to give the master a chance to inform them about possible cancellation
of the coordinated action. Because the master facilitator calculates ∆ prior to commu-
nication with the slaves, it can advise the slaves in the initial communication to wait for
a period ∆ + Tr, where Tr is the time the master would take to report cancellation to
them after it has received an infeasibility report from some slave. As a result, in the case
when global agreement is achieved, all parties are ready for coordinated action after a
delay of ∆ + Tr, without any need for communication after the initial requests from
the master facilitator. Furthermore, any cancellations too are known by all parties by
∆ + Tr.

4 Implementing CyberOrgs

Our implementation of CyberOrgs is developed by extending Actor Architecture [11],
which is a Java library and run-time system for supporting primitive agents. We extend
Actor Architecture by adding two key components: CyberOrg Manager and Scheduler
Manager.

A CyberOrgs platform is an instance of the system running on a single node, and
CyberOrg Manager is the central component of each CyberOrgs platform. All resource
control operations on a platform are carried out by the CyberOrg Manager. The results
of such operations are sent to Scheduler Manager, which schedules all agents in the
platform according to these results.

Algorithm 1 illustrates the algorithm of the Scheduler Manager. It schedules all
agents in a loop, and each agent is executed for an amount of time which is allocated to
it. After each scheduling cycle, the Scheduler Manager instructs the CyberOrg Manager
to update the availability of resources for every cyberorg.

Network resources can be viewed as virtual links between two computers (or nodes)
through which the connected computers may communicate with each other by exchang-
ing data. Therefore, a cyberorg which owns network resources must be distributed be-
tween multiple nodes, which makes the cyberorg internally distributed.

Algorithm 1 Scheduling Algorithm
1: while true do
2: if the length of the thread queue > 1 then
3: get the rst element from the front of queue;
4: if the rst element is the start ag then
5: tell CyberOrg Manager to refresh resource records for every cyberorg;
6: else
7: schedule the thread for required time slice;
8: if the thread is alive then
9: insert it at the end of the queue;

10: end if
11: end if
12: else
13: sleep for some time;
14: end if
15: end while

An internally distributed cyberorg may own CPU resources on multiple nodes.
The CPU resource on a single node can be represented using a tuple, (address,
ticks, ticksRate). Here, address is the IP address of corresponding node,
ticks is the total processor time (in milliseconds) the cyberorg can receive, and
ticksRate stipulates the rate at which CPU resources can be received (e.g., in mil-
liseconds per second).

In this prototype implementation, communication is abstracted as exchange of asyn-
chronous messages.4 Accordingly, network resource availability is abstracted as xed-
sized messages that can be sent within a unit of time. Therefore, network resources
can be represented by (link, flow, flowRate), where link identies the the
source and destination of the link, flow is the total number of messages that the cy-
berorg can send through the link, and flowRate species the number of messages
that the cyberorg can send within a unit of time (e.g., per second), which indicates the
rate of message ow.

To acquire these resources, a cyberorg negotiates contracts with other cyberorgs
who own the resources. In addition to specifying the type of resource, a contract also
stipulates the real-time interval (time) when the contract is in effect as well as the
amount of eCash that the cyberorg must pay for the resources (Price). The price may
be payable in full in advance (type: 0) or at regular intervals (type: 1).

Figure 4 shows an example contract. It applies to an internally distributed cyberorg
with agents located on two nodes: N1 with address “128.233.109.163” and N2 with
address “128.233.109.164”. The cyberorg is to receive 1000 milliseconds of processor
time on N1, at the rate of 10 milliseconds per second, as well as 2000 milliseconds on
N2, at the rate of 5 milliseconds per second. In every second, the cyberorg is allowed

4 Although we abstract over actual network bandwidth here by only accounting for messages,
we have independently studied the effectiveness of ne-grained network resource control for
cyberorgs. Preliminary results in this work show promise for effective ne grained control of
network resource delivery [8].

CPU Resource
(“128.233.109.163”, 1000, 10)
(“128.233.109.164”, 2000, 5)

Network Resource
((“128.233.109.163”, “128.233.109.164”), 10, 1)
((“128.233.109.164”, “128.233.109.163”), 15, 2)

Time
11:00:00
17:05:30
Price

1
5

Fig. 4. An Example Contract: CPU resources on two nodes; network resources connecting the
processors in both directions; start and end time for when the contract is in effect; price (1 is the
type of payment and 5 is the price in units of eCash)

to send 1 message from N1 to N2, and 2 messages from N2 to N1, as long as the
total numbers of messages being sent in the two directions are less than 10 and 15
respectively. The contract takes effect at time 11:00:00 and expires at 17:05:30, and the
cyberorg receiving the resources must pay 5 units of eCash per second, and the payment
is to be made in installments.

Network resource accounting and control are achieved by cooperation between the
CyberOrg Manager and the Scheduler Manager. Before sending out a message, the
platform checks with the CyberOrg Manager, which checks for availability of network
resources for the cyberorg requiring it. If there is enough resource, the message is sent
out, and the remaining amount of corresponding type of network resource (the specic
link) in the cyberorg is decremented. Otherwise, if enough network resource is not
available to the cyberorg, the message is blocked until the required network resource
becomes available.

As shown in Figure 5, an internally distributed cyberorg has agents located on dif-
ferent nodes, representing distributed parts of the cyberorg. Each part has its own local
facilitator agent, which is responsible for making local decisions and receiving requests
for primitive operations involving local agents. The master facilitator maintains global
information of the cyberorg, and it alone is responsible for enforcing global decisions of
the cyberorg by coordinating its actions with those of other (slave) facilitators. By de-
fault, the master facilitator is the facilitator located at the node on which the cyberorg’s
creation is originally requested requested. Slave facilitators, by themselves, only pos-
sess the resource knowledge of their own parts of the cyberorg, and a slave facilitator
can autonomously make local decisions involving agents in its own part of the cyberorg.

At an internally distributed cyberorg’s creation time, an initial contract is generated
by the creating cyberorg. This contract contains information about resources available
to the new cyberorg and the terms of their availability. The runtime system can examine
the contract to obtain IP addresses of involved nodes. The main part of cyberorg –
which holds the master facilitator – is created rst on the node where the creation is

Control

Node BNode A

3

2

1

Facilitator
Scheculer
CyberOrg Manager

Request

Agent

Fig. 5. Internally Distributed Cyberorg: master facilitator performs a primitive request on a remote
node (1: master facilitator sends a primitive request to an involved slave facilitator on Node B; 2:
slave facilitator tells CyberOrg Manager the requested primitive; 3: CyberOrg Manager controls
Scheduler Manager to make changes on resource allocation)

invoked. Afterwards, “create partial cyberorg” requests are sent to other involved nodes,
where parts of the cyberorg with slave facilitators are created asynchronously. When
the creation is completed on the slave nodes, “creation done” messages are sent to the
master facilitator, completing the creation when all replies have been received.

A distributed primitive operation invoked by an internally distributed cyberorg is
implemented through coordination between master and slave facilitators. The master
facilitator is responsible for analyzing the primitive request, identifying the nodes in-
volved, and sending instructions to relevant slave facilitators to carry out local actions.
On completion of their actions, the slave facilitators send reply messages to the master
facilitator, indicating success. When the last reply message reaches the master facilita-
tor, the distributed primitive operation is completed.

5 Experimental Results

A number of experiments were carried out to assess the effectiveness and scalability
of this approach. We collected results on delays in completing distributed schedule
update tasks involving up to 1500 agents distributed over networks of two and three
processors, representing systems with 104 or more total number of agents. Specically,
we compared the delay in achieving group agreement on feasibility of success or failure
of global updates to distributed processor schedules, when using and not using our
approach of exploiting predictability of resource availability in cyberorgs.

We applied the approach to an implementation of CyberOrgs. In the rst set of ex-
periments – in the absence of resource availability information – we used the pessimistic
approach of requiring a series of acknowledgments conrming that the requested up-
dates can indeed be carried out at the required time. In the second set, we relied on
knowledge of available resources to (optimistically) assume that the requests have been
satised unless a failure message is received by a deadline. The two alternatives are
depicted in Figure 6. Note that this is not a fair comparison because in the resource

unaware case, there is no guarantee of success of coordinated action until after the dis-
tributed actions have actually been attempted; nor is there a determination of failure, in
which case a backtrack is required wherever the actions did happen to succeed. How-
ever, short of indicating that no comparison is possible, this appears to be a reasonable
compromise.

request

N N N N0 1 2 3

tw1

tw2
test tw3

a) Resource!aware approach

t0

N N N N0 1 2 3

ack

ok

confirm

tconf

t0
request

b) Resource!unaware approach

Fig. 6. Resource-aware approach vs. resource-unaware approach. (a) Dotted lines represent possi-
ble infeasibility reports only received when some slave nds coordination action to be infeasible;
otherwise, no communication is required. test is the time by which the master as well as all slaves
can assume global agreement on coordinated action. (b) tconf is the time by which master facili-
tator knows that all slaves received knowledge of global agreement in time to attempt coordinated
action.

The distributed task in our experiments involved coordinated update of the dis-
tributed schedule being enforced for delivering processor resources to up to 1500 agents
of a cyberorg distributed across three physical processors. Each processor hosted up to
500 agents, scheduled by a local scheduler. Global update requests were received by
the cyberorg’s master facilitator. We carried out experiments to see the delay between
when a request is received by the master facilitator, and when all parties are ready for
coordinated action to be carried.

In the resource-unaware approach, the master facilitator sends requests for local up-
dates to the remote (slave) facilitators, which report to the master about likely success
or failure based on information of local resource availability. Note that without access
to this information about local resource availability and ability to assess feasibility of
local action given such constraints, it would be meaningless to plan on coordination
action short of actually attempting the action; therefore, we chose to allow the compet-
ing approach with this knowledge. Another alternative would have been to allow the
slave facilitators to construct an updated schedule and then report their ability or in-

ability to replace the active schedule at the requested time. In either case, if the master
received positive reports from all slaves in good time, it could then instruct each slave to
go ahead and carry out the actions. However, without knowledge of available network
bandwidth, there is no way of ensuring that all slaves receive instructions to proceed
with enough time remaining before the deadline to successfully carry them out. The
last step, therefore, has to be each slave reporting back to the master, and the master
sending instructions for backtracking in case the coordinated action has failed. We treat
the point when the master knows of success or failure (not after backtracks have been
completed) as the point when all parties are ready proceed. To summarize, despite sig-
nicant communication, there is no way of predicting success of a coordinated action,
short of actually attempting it, even when the distributed parties have the benet of local
resource information.

In comparison, in the resource-aware approach, slave facilitators periodically in-
form the master about their resource availability with promise of no change before an
expiration time.5 On receiving a new request for coordinated update, the master assesses
its feasibility based on information about the updates as well as the slaves involved.
Specically, if some slaves will not have sufcient resources to carry out their parts
of the coordinated action at the required time, the master summarily declines the re-
quest without ever communicating with the slaves; and if each slave will have sufcient
resources to carry out the coordinated action at the required time, the master simply
sends the requests, and prepares to carry out its part of the coordinated action at the
required time. If, however, the master cannot make a summary determination – because
the promises from slaves are expiring sooner than their resources would be required
– the master assesses whether the slaves have enough resources to make local assess-
ments of feasibility and report back by expirations of their promises. If so, the master
sends the requests, and if no slave reports infeasibility by the time they should be able to
(knowing their resources), the master assumes that all requests would be successful. If
it does receive an infeasibility report, the action is cancelled. Of course, the slaves now
have to be informed ahead of the time of coordinated action whether all slaves are ready
to proceed. This too is handled optimistically. In the initial request, slaves are informed
by the master about the time by which they would be informed if the coordinated action
were not feasible for some of the slaves. The master calculates this time by adding to
the time by which it would receive any infeasibility reports from the slaves, the time
its own nal report would take in arriving at the slaves, which in turn depends on the
master’s locally known network resource availability. The slaves too, in turn, guaran-
tee that they will have enough processor resources to process the incoming nal report
from the master at the time when they were instructed to expect the report. If the slaves
do not hear from the master by that time, they assume that all are ready for coordinated
action, and proceed at the time, without requiring any information. In other words, if the
coordinated action can be carried out by all parties at the required time, the only actual
communication required is the requests sent by the master to all the slaves, following
which, at specic times, each party knows that it is safe to proceed with the coordinated
action at the required time. If the resource availability promises held by the master are

5 It is assumed that the clocks are synchronized within some epsilon, which can be compensated
by making conservative estimates

not sufcient to know if the slaves can report infeasibility of their local actions reliably,
the master simply waits for the next resource updates from the slaves.

Figure 7 compares the delays described above for the two approaches for coordi-
nated update of schedules for up to 1500 agents distributed across two and three phys-
ical nodes. Note that the number of agents effected by an update would typically be
a fraction of the total number of agents in the system, meaning that the results apply
to systems of at least 104 agents. The graph shows that signicant savings in the de-
lay for global agreement on coordinated action are achieved using the CyberOrgs based
resource-aware approach. These savings are in addition to the savings achieve by avoid-
ing attempting infeasible actions, which cannot be avoided in the resource-unaware ap-
proach, even when local resource information is available. Furthermore, the penalty of
increasing number of agents linearly with the number of nodes is insignicant.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250 300 350 400 450 500

Co
or

di
na

tio
n

fe
as

ib
ilit

y
de

cis
io

n
co

st
 (s

ec
on

ds
)

Number of agents involved on each node

resource-aware, 2 nodes
resource-unaware, 2 nodes

resource-aware, 3 nodes
resource-unaware, 3 nodes

Fig. 7. Comparison of delay in achieving agreement on coordinated distributed schedule update.

6 Conclusion

Coordinating distributed multi-agent systems is a difcult problem because of unpre-
dictability of network and processor resource availability. Our approach of encapsu-
lating computational and communication resources in cyberorgs creates execution en-
vironments for distributed multi-agent systems with predictable resource availability.
Coordination mechanisms can exploit this predictability by computing expected delays
and using the information in decision making.

In this paper, we have presented a prototype implementation of cyberorgs distributed
over multiple processors. We have shared our experience with coordinating distributed

scheduling of processor resources, where a number of local schedulers coordinate to
enforce a global schedule for scheduling distributed processor resources.

Given the predictability of communication and processing delays in a system of
cyberorgs, it is possible for the coordination mechanism to reason about whether or
not a global scheduling change is feasible to enforce and to efciently achieve global
agreement on coordinated action. This achieves benets in avoiding attempts of infeasi-
ble global actions. This approach also reduces communication overhead, which reduces
the amount of time required in establishing that a coordinated distributed action is fea-
sible, which in turn leads to enabling actions which would otherwise be infeasible.
Experimental results show that the approach is effective and scalable.

Work is ongoing to extend these results to physical networks using approaches we
have developed for reifying network resource control for systems of cyberorgs [8]. We
are also examining the efciency and effectiveness of this approach to support a wider
class of coordination problems.

References
1. G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press,

Cambridge, Mass., 1986.
2. J.-M. Andreoli, P. Ciancarini, and R. Pareschi. Research Directions in Concurrent Object-

Oriented Programming, chapter Interaction Abstract Machines, pages 257–280. MIT, 1993.
3. W. J. Bolosky, R. P. Fitzgerald, and J. R. Douceur. Distributed schedule management in the

tiger video leserver. In Symposium on Operating Systems Principles, pages 212–223, 1997.
4. A. Bond and L. Gasser, editors. Readings in Distributed Artificial Intelligence. Morgan

Kaufman Publishers, San Mateo, California, 1988.
5. L. Gasser. DAI approaches to coordination. In N. M. Avouris and L. Gasser, editors, Dis-

tributed Artificial Intelligence: Theory and Praxis, pages 31–51. Kluwer Academic, 1992.
6. D. Gelernter and N. Carriero. Coordination languages and their signicance. Communica-

tions of the ACM, 35(2):97–107, February 1992.
7. C. Hewitt and P. de Jong. Open systems. In J. Mylopoulos, J. W. Schmidt, and M. L. Brodie,

editors, On Conceptual Modeling, chapter 6, pages 147–164. Springer, 1984.
8. N. Jamali and C. Liu. Reifying control of multi-owned network resources. In Proc. of the

IPDPS Intl Workshop on High-Level Parallel Programming Models and Supportive Environ-
ments, March 2007.

9. N. Jamali and X. Zhao. Hierarchical resource usage coordination for large-scale multi-agent
systems. In T. Ishida, L. Gasser, and H. Nakashima, editors, LNAI: Massively Multi-agent
Systems I, volume 3446, pages 40–54. Springer Verlag, 2005.

10. N. Jamali and X. Zhao. A scalable approach to multi-agent resource acquisition and control.
In Proc. of the Fourth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems
(AAMAS ’05), pages 868–875, Utrecht, July 2005. ACM.

11. M. Jang and G. Agha. On efcient communication and service agent discovery in multi-agent
systems. In Proc. of the International Workshop on Software Engineering for Large-Scale
Multi-Agent Systems (SELMAS ’04), pages 27–33, Edinburgh, May 2004.

12. N. R. Jennings. Commitments and conventions: The foundation of coordination in multi-
agent systems. The Knowledge Engineering Review, 8(3):223–250, 1993.

13. M. Lal and R. Pandey. A scheduling scheme for controlling allocation of CPU resources for
mobile programs. J. AAMAS, 5(1):7–43, 2002.

14. C. Phillips, C. Stein, and J. Wein. Task scheduling in networks. SIAM Journal on Discrete
Mathematics, 10(4):573–598, 1997.

