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Abstract. Scalable coordination is a key challenge in deploying massively multi-
agent systems. Resource usage is one part of agent behavior which naturally lends
itself to abstraction. CyberOrgs is a model for hierarchical coordination of re-
source usage by multi-agent applications in a network of peer-owned resources.
Programming constructs based on CyberOrgs allow resource trade and control
reification while maintaining a separation between functional and resource con-
cerns. An operational semantics of CyberOrgs is presented. Expressive power of
programming constructs based on CyberOrgs is illustrated with examples.
Hierarchical control presents challenges in scalability. However, some types of re-
source coordination are amenable to efficient implementation using CyberOrgs.
Hierarchical control of processor time, for instance, can be implemented scalably
by efficiently flattening the hierarchical schedule on the fly. Experimental results
demonstrate scalability of the technique. Generalizations of this solution for hi-
erarchical control of processor, network and other computational resources in a
distributed system are discussed.

1 Introduction

A computation distributed into semi-autonomous subcomputations collectively solving
a problem, inevitably suffers from a degree of uncertainty. In the context of multi-agent
systems, when an agent’s decision about the action to take next depends on actions taken
by other agents, coordination between the agents is required to achieve optimal results
[5]. Not only is coordination recognized as a key concern in distributed computing [4],
it has also been argued that computation and coordination are separate and orthogo-
nal dimensions of all useful computing [6], necessitating coordination to be addressed
explicitly.

Computations sharing an execution space inevitably compete for the resources in
that space. In an open system [7], there may be both logical and resource dependen-
cies [5] between agents, with the resource dependencies sometimes leading to logical
dependencies. Unrestricted competition for resources between agents collaborating to
achieve a shared goal may hamper progress toward the goal. Coordinating resource ac-
cess by agents is hence critical to reducing uncertainty and enabling agents to make
control decisions for the best global performance [9].



In a bounded resource environment, if a computation can launch other computations
as in a multi-agent system, it is difficult to control resource consumption reactively. If an
erroneous or malicious agent begins creating other agents with similar characteristics,
and if the only mechanism employed for identifying such agents is observation of their
own threatening behavior, the rate of growth in the number of agents can be shown
to be exponential. Intuitively, this means that irrespective of how conservatively the
system tries to purge misbehaving agents, so long as the mechanism relies solely on the
observation of suspicious activity, by the time the system reacts, it may be already too
late: other agents have potentially been created about whose behavior the system will
know nothing until it has observed them individually.

A back of the envelope calculation illustrates the difficulty. Consider a scheduler
that schedules agents for fixed time slices in a round robin fashion. If the probability of
an agent creating another agent when given an opportunity is p, and the system purges
an agent when it observes its behavior to exhibit a creation probability of k, if we begin
with n such agents, at the end of the end of the c th cycle of the scheduler, the number
agents is (n(1 − p/k))c, which represents an exponential growth.

An effective mechanism for controlling such behavior would require tracking groups
of agents. In other words, at the time of purging an agent, if there were a way of iden-
tifying other agents whose creation is rooted at the purged agent, all of them could be
purged together. However, because of the exponential growth described above, a book-
keeping solution of this problem is impractical. Specifically, the cost of maintaining
information about which agents are created by which other agents – to be used for
purging all agents which were created (directly or indirectly) by an agent being purged
– also grows exponentially.

An alternate approach to control is by bounding resource consumption at the outset,
and limiting resources available to a computation and all sub-computations originating
from it. In this approach, each agent would receive a resource consumption allowance,
which it could utilize or give a part of to other agents.

Ether [11] was the first language to address explicit allocation of resource in concur-
rent systems. Sponsors were assigned to processes to support their computations. This
idea was later incorporated in the Actor language Acore [13]. Sponsor actors accom-
panied computation requests, and they carried ticks that could be used in processing a
request. Using a similar scheme, in Telescript [16], processes were awarded funds in
terms of teleclicks which they were supposed to use to accomplish their results.

The Quantum [14] framework is the most relevant to our work on CyberOrgs. Mo-
tivated by the need for managing finite resources shared by multiple computations,
Quantum models resources as energy which computations require for execution. Com-
putation tasks are contained in groups which also serve as tanks of energy. Groups are
hierarchical, so that a group may create subgroups with its subcomputations. When
a group’s computations terminate, its energy is absorbed into the energy of its parent
group; when it has exhausted its energy, it may receive more energy from its parent.
Although the original formulation of Quantum did not support migration over multiple
hosts, it has since been extended [15] to handle management of distributed and multi-
type resources, which does address migration in a limited manner.



2 CyberOrgs

CyberOrgs [8] is a model for resource sharing in a network of self-interested peers,
where application agents may migrate in order to make avail of remotely located peer-
owned resources. CyberOrgs organize computational resources as a market, and their
control as a hierarchy. Specifically, each cyberorg encapsulates one or more multi-agent
computations (to be referred to as computations contained in the cyberorg), and dis-
tributed resources available to it (to be referred to as resources owned by the cyberorg)
for carrying out its computations or for resale. Cyberorgs act as principals in a market
of resources, where they can buy or sell resources among themselves using eCash in
a shared currency. To avail themselves of acquired resources, cyberorgs migrate in the
space of cyberorgs.

CyberOrgs treat computational resources as being defined in time and space. Sale of
a resource is represented by a contract stipulating availability of resources to the buyer
for a cost. Delivery of resources to cyberorgs is determined by a hierarchy of control
decisions. In other words, cyberorg a makes control decisions required for delivery of
resources purchased from it by cyberorg b; cyberorg b in turn makes control decisions
determining how the resources purchased from it by cyberorg c are to be delivered.

Our approach in formalizing CyberOrgs is to separate concerns of computations
from those of the resources required to complete them. Because our focus is on the
usage of resources, we represent the resource requirements of each computation by the
sequence of resources required to complete the computation. To simplify the model,
we assume that resource requirements are known in advance. As an instantiation, we
assume that the computations are carried out by systems of actors.

2.1 Actors

Actors [1] provide a formal model for building and representing the behavior of concur-
rent objects and thus serve as a foundation for concurrent object-oriented programming.

Actors are autonomous, interacting computing elements, which encapsulate a be-
havior (data and procedure) as well as a process. Different actors carry out their ac-
tions asynchronously and communicate with each other by sending messages. The ba-
sic mechanism for communication is also asynchronous and buffered; however, other
forms of message passing can be defined in the context of the model. Finally, actors
may be dynamically created and reconfigured, which provides considerable flexibility
in organizing concurrent activity.

It is possible to extend any sequential language with actor constructs. For example,
the call-by-value λ-calculus is extended in [3].

Agents are naturally modeled by the Actor formalism. In fact, many implemen-
tations of agents have typically been implementations of actor systems. An actor is
autonomous and persistent. Actors are inherently concurrent and autonomous enabling
efficient parallel execution [10] and facilitating mobility [2].

2.2 Instantiating CyberOrgs with Actors

An instantaneous snapshot of a system of cyberorgs is represented by
〈〈
Γ |M|C|Θ|D〉〉

.
Γ represents the set of cyberorgs in the system, M is a name table which maps cy-



berorgs and actors to cyberorgs hosting them, C is the set of contracts between client
cyberorgs and their host cyberorgs, Θ is the multiset of directed resources in the system,
and finally D is a matrix which keeps track of distances between cyberorgs and actors.

The hosting relationship between two cyberorgs is not represented by syntactic con-
tainment. Instead, M maintains information about which cyberorg each cyberorg is
hosted by. However, the containment of actors within cyberorgs is represented as syn-
tactic containment as shown later.

We abstract computational resources as ticks, which determine the granularity of
availability and consumption of resources. In other words, resources are provided to
cyberorgs in terms of numbers of ticks, and computations consume resources in mul-
tiples of ticks. Ticks are defined in time and space and are sequentially ordered. If a
tick is available in a cyberorg which cannot consume it, or if it is available at a time at
which it cannot be consumed, it expires. Because a tick is the basic unit of resource,
introduction of ticks into the system defines the system clock. The clock advances as
ticks are introduced; consequently, absolute rates of availability of ticks to cyberorgs
are with respect to the introduction of ticks into the system.

Because the model abstracts over physical machines, distances among cyberorgs,
among actors, and between cyberorgs and actors are explicitly represented with D. The
distance from a cyberorg is defined only when all actors of the cyberorg are at zero
distance from each other. In other words, if a cyberorg is distributed over a distance, it’s
distance from actors or other cyberorgs is undefined.

Each cyberorg in the system is represented by [[α, µ, $]]ξ,ω
ci

, where α represents a set
of actors whose computation is managed by the cyberorg,; µ is a set of actor messages
with local or remote recipients; $ is the amount of eCash in the cyberorg;; ξ and ω are
the resources required by the cyberorg for execution, and those offered by it to potential
clients, respectively; and ci is the cyberorg’s unique name.

The current state of an actor in the model, at any instant, is represented by a state in
the future and the resources required to reach that state. Specifically, actor a’s state is
written as [n ◦ s]a, where s is the state it would reach after receiving n ticks. An actor
is said to have reached a state when the count of ticks required has reached zero.

Progress Progress in a system of cyberorgs is represented by transitions occurring
with introduction of ticks into the system. When a tick is inserted into a cyberorg, the
cyberorg may pass it on to a client cyberorg, it may use it for progressing on one of its
actors. Whether a tick is passed on to a client or used locally depends on the contracts
that the cyberorg has with its clients.

Contracts determine the total number of ticks that the clients must receive, and the
rates at which they must receive them. Rates of receipt of ticks are as a ratio of the total
number of ticks inserted into the system at the root. Contracts also determine the costs
which the clients are supposed to be charged for the ticks.

Surplus ticks after a cyberorg’s contractual obligations to its clients have been sat-
isfied, may be distributed among the local actors.

When the function Tc1 representing the decision process for cyberorg c1 returns
actor a as the recipient of the tick t(c1) for c1, given the cyberorg’s state st(c1) and its



set of contracts co(c1), the system progresses by decrementing the number of ticks to
a’s next state from n to n − 1.

〈〈
[[{[n ◦ e]a, α}, µ, $]]ξ,ω

c1
, Γ |M|C|t(c1), Θ|D〉〉

−→ 〈〈
[[{[(n − 1) ◦ e]a, α′}, µ′, $]]ξ

′,ω′

c1
, Γ |M|C|Θ|D〉〉

Tc1(st(c1), co(c1)) = a, n > 0

As a result of delivery of this tick to actor a, new actors and messages may be
created in the cyberorg, changing the set of other actors from α to α ′, and the multiset
of messages from µ to µ′. Similarly, the resource offerings and requirements of the
cyberorg may also change.

When an actor’s number of ticks required to reach the next state reduces to zero,
the state is said to be reached. At this point, the state may be rewritten to reflect the
number of ticks required to reach the following state e ′. Because this is a rewriting of
the current state rather than a change of state, the transition does not require any ticks
to carry out.

〈〈
[[{[0 ◦ e]a, α}, µ, $]]ξ,ω

c1
, Γ |M|C|Θ|D〉〉

−→ 〈〈
[[{[n ◦ e′]a, α′}, µ′, $]]ξ

′,ω′

c1
, Γ |M|C|Θ|D〉〉

If there is a cyberorg c2 being hosted by c1 and the new tick is to be passed on to
c2, then, the tick is redirected to c2, and an amount of eCash ∆ representing the cost of
the tick – determined by the contract co(c1, c2) between c1 and c2, and st(c1), the state
of c1 – is transferred from c2 to c1.

〈〈
[[α1, µ1, $1]]

ξ1,ω1
c1

, [[α2, µ2, $2]]
ξ2,ω2
c2

, Γ |M|C|Θ|D〉〉

−→ 〈〈
[[α1, µ1, $1 + ∆]]ξ

′
1,ω′

1
c1

, [[α2, µ2, $2 − ∆]]ξ2,ω2
c2

, Γ |M|C|t(c2), Θ|D〉〉

if < c1, c2 >∈ M, Tc1(st(c1), co(c1)) = c2, where ∆ = costt(st(c1), co(c1, c2))

If there are no active actors or cyberorgs to be given a tick, the tick expires:

〈〈
[[α, µ, $]]ξ,ω

c1
, Γ |M|C|t(c1), Θ|D〉〉 −→ 〈〈

[[α, µ, $]]ξ
′,ω′

c1
, Γ |M|C|Θ|D〉〉

Tc1(st(c1), co(c1)) = φ

CyberOrgs Primitives In addition to transitions corresponding to progress in actor
computations, there are a number of transitions in the system which correspond to Cy-
berOrgs primitives. These transitions happen through invocation of CyberOrgs com-
mands from helper actors, which in turn are created by the cyberorg’s facilitator actor.
A facilitator actor monitors the state of the current host as well as the cyberorg’s re-
source requirements, and creates helpers to carry out CyberOrgs primitives. Facilitators
and helpers are different from application actors hosted by a cyberorg in that they do
not have names, and hence, may not receive messages from other actors. They also do
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Fig. 1. Creation and Absorption

not participate in the computations pursued by the application actors. Finally, because
no actors have helpers’ names, they safely disappear from the system after carrying out
their operations.
Creation and Absorption. As illustrated in Figure 1a, a new cyberorg is created by using
the isolate primitive, which collects a set of actors, messages, and electronic cash,
and creates a new cyberorg hosted locally. The construct isolate takes as parameters
a subset of the actors in c1, α2, a subset of the messages, µ2, and a part of its cash
$2, as well as representations of what the new cyberorg aught to offer other cyberorgs
and require from other cyberorgs (currently c 1 itself), and creates a new cyberorg inside
c1’s boundaries with a fresh name c2. As a result, a new entry is placed in the name
table depicting c2’s presence inside c1, and entries for locations for actors inside c2 are
modified to depict the change.

〈〈
[[{[0 ◦ isolate(α2, µ2, $2, ξ2, ω2)]φ, α1}, µ1, $1]]

ξ1,ω1
c1

, Γ |M|C|Θ|D〉〉

−→ 〈〈
[[α1 − α2, µ1 − µ2, $1 − $2]]

ξ′
1,ω′

1
c1

, [[α2, µ2, $2]]
ξ2,ω2
c2

, Γ |M′|C′|Θ|D〉〉

α2 ⊂ α1, µ2 ⊂ µ1, $2 ≤ $1, c2 fresh

As shown in Figure 1b, a cyberorg disappears by assimilating into its host cyberorg
using the asmlt primitive, relinquishing control of its contents - actors, messages and
eCash - to its host. The assimilating cyberorg disappears, and its host becomes the
container for its contents.

〈〈
[[α1, µ1, $1]]

ξ1,ω1
c1

, [[{[0 ◦ asmlt]φ, α2}, µ2, $2]]
ξ2,ω2
c2

, Γ |M|C|Θ|D〉〉

−→ 〈〈
[[α1 ∪ α2, µ1 ∪ µ2, $1 + $2]]

ξ′
1,ω′

1
c1

, Γ |M′|C′|Θ|D〉〉

if < c1, c2 >∈ M, � ∃c3 such that < c2, c3 >∈ M
Assimilation of a client cyberorg into its host can potentially be a dangerous opera-

tion to allow. Although the primitive hands the client’s eCash to the host to use at its dis-
cretion, its computations also join the host’s computations and may interact or interfere
in undesirable ways. The host is however protected because it alone decides whether
the assimilated cyberorg’s computations are allowed to advance in their processing. In



other words, when a cyberorg decides to assimilate into its host, it relinquishes all con-
trol over its contents: its contract with the host dissolves, its eCash is added to the host’s
eCash, and its computations may or may not receive any ticks from the host without any
contractual obligations.
Mobility. A facilitator may realize that its resource requirements exceed what is avail-
able by its contract with the host cyberorg. As a result, it creates a helper to search for
alternate hosts:

〈〈
[[α, µ, $]]ξ,ω

c1
, Γ |M|C|Θ|D〉〉

−→ 〈〈
[[{[n ◦ search(ξ)]φ, α}, µ, $]]ξ,ω

c1
, Γ |M|C|Θ|D〉〉

if ξ > av(co(c1, c2)) where < c1, c2 >∈ M
Cyberorgs may migrate from one host (cyberorg) to another. However, this must be

preceded by negotiation of the terms under which the client may be hosted. The tasks
required for a cyberorg to migrate are as follows: 1

1. Search for a potential host. This makes use of the yellow page services provided by
the system to search for cyberorgs which may offer needed ticks for an acceptable
price.

〈〈
[[{[0 ◦ search(ξ1)]φ, α1}, µ1, $1]]

ξ1,ω1
c1

, Γ |M|C|Θ|D〉〉

−→ 〈〈
[[{[n ◦ negotiate(C)]φ, α1}, µ1, $1]]

ξ1,ω1
c1

, Γ |M|C|Θ|D〉〉

where C is the set of cyberorgs found {ck, ck+1, · · · , cl}, possibly including c1

2. Negotiate a contract with potential hosts. Negotiation involves interaction with po-
tential hosts for possible access to their ticks. Negotiation may be initiated by a
cyberorg wanting to migrate itself or wanting to migrate part of its computation.
On successful culmination of a negotiation, a contract is reached with a potential
host cyberorg, which would hold between the migrating cyberorg and the host 2.

〈〈
[[{[0 ◦ negotiate(C)]φ, α1}, µ1, $1]]

ξ1,ω1
c1

, [[α2, µ2, $2]]
ξ2,ω2
c2

, Γ |M|C|Θ|D〉〉

−→ 〈〈
[[{[n ◦ migrate(c2)]φ, α1}, µ1, $1]]

ξ1,ω1
c1

, [[α2, µ2, $2]]
ξ2,ω2
c2

, Γ |M|C′|Θ|D〉〉

if C �= φ, where c2 ∈ C = {ck, ck+1, · · · , cl} such that ξ1 < ω2, C′ ⊇ C
If there are no cyberorgs which can serve c1’s resource requirements, no negotiation
can happen, and c1 adapts to its current resource availability:

〈〈
[[{[0 ◦ negotiate(C)]φ, α1}, µ1, $1]]

ξ1,ω1
c1

, Γ |M|C|Θ|D〉〉

−→ 〈〈
[[α1, µ1, $1]]

ξ′
1,ω1

c1
, Γ |M|C|Θ|D〉〉

if C = φ∨ � ∃ci ∈ C = {ck, ck+1, · · · , cl} such that ξ1 < ωi

1 Migration of a part of a cyberorg’s computation would require isolation first.
2 A migrating cyberorg may not exist at the time of negotiation; it may be created following a

successful negotiation.
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3. Migrate to the selected host. If a contract has been successfully negotiated, a client
can relocate to the host using the migrate primitive as shown in Figure 2.
〈〈
[[{[0 ◦ migrate(c2)]φ, α1}, µ1, $1]]

ξ1,ω1
c1

, [[α2, µ2, $2]]
ξ2,ω2
c2

, Γ |M|C|Θ|D〉〉

−→ 〈〈
[[α1, µ1, $1]]

ξ′
1,ω′

1
c1

, [[α2, µ2, $2]]
ξ′
2,ω′

2
c2

, Γ |M′|C|Θ|D′〉〉

if {co(c1, c2)} ∈ C
where M′ reflects the change in location of c1

where D′ is the revised distance matrix representing any changes in distances that
might have occurred as a result of migration.
If a contract was not successfully negotiated, and c1 adapts to its current resource
availability:
〈〈
[[{[0 ◦ migrate(c2)]φ, α1, µ1, $1]]

ξ1,ω1
c1

, [[α2, µ2, $2]]
ξ2,ω2
c2

, Γ |M|C|Θ|D〉〉

−→ 〈〈
[[α1, µ1, $1]]

ξ′
1,ω′

1
c1

, [[α2, µ2, $2]]
ξ2,ω2
c2

, Γ |M|C|Θ|D〉〉

if {co(c1, c2)} �∈ C
Cyberorgs progress as a result of insertion of ticks into the system, one tick at a time.

On receiving a tick, a cyberorg determines whether to pass it on to a client cyberorg, one
of its computations, or use it to perform one of its system tasks, based on the contracts
it is obliged to honor, and needs of its local computations it must complete.

Insertion of ticks one at a time, and their expiration when no computation is ready to
use them is a simpler representation of the way processor resource becomes available,
than granting of an approximate number of ticks followed by corrective mechanisms.
It may also be viewed as a more accurate modeling in an ideal world where resource
needs are known a priori or may be dictated.

Furthermore, awarding ticks one at a time allows management of rates of use of
resource. cyberorgs may offer absolute rates of availability of resources as functions of
ticks becoming available to the root cyberorg.

It is acknowledged that for an implementation to manage processor ticks one at a
time, would mean incurring prohibitive overheads. Transfers of ticks from server cy-
berorgs to client cyberorgs - which are stipulated by contracts - may be easily opti-
mized because known contracts rather than needs of clients determine how many ticks



to provide. Awarding of ticks by cyberorgs to the computations they manage may be
approximated by using a scheme that guesses and then adjusts as necessary.

Distribution of resources a local decision but the decision process is not shown. This
can be used for resource-oriented coordination.

If a tick is received by a cyberorg when it does not have a computation or a cyberorg
that can use it, the tick expires. This is consistent with the nature of many resources.
For example, processor cycles can be used only if there is a task that can use them;
they cannot be saved for future use. If there are no tasks ready for execution, the cycles
pass unutilized. Similarly for network bandwidth. If communications are not ready to
proceed at a time when there is idle bandwidth, it goes to waste; it may not be saved for
future use.

3 Prototype

A prototype implementation of CyberOrgs has been built using Actor Foundry [12],
a library of Java classes supporting Actor functionality. Actor Foundry is meant to be
a research tool, and hence is designed with the goals of modularity and extensibility
rather than pure efficiency. Actor programs may be written and executed in a run time
that supports operational semantics of the Actor model. Specifically, cyberorgs are im-
plemented as a library of Actor Foundry code.

A cyberorg system consists of actors carrying out application tasks (which we will
call application actors), and cyberorgs managing resource utilization of the actors. The
unit of resource is a tick. Each method of an actor requires a number of ticks to exe-
cute, depending on the parameters passed to it. Ticks are transferred between cyberorgs
based on contracts between them. These contracts are negotiated bilaterally between the
cyberorgs. Ticks received by a cyberorg are autonomously distributed by the cyberorg
among the application actors it manages. Ticks received by an actor may be used by the
actor for invoking any of the methods ready for invocation (as a result of received mes-
sages). Both cyberorgs and actors use their own tick distribution/utilization strategies.

3.1 Implementing an Application

To implement an application as a system of cyberorgs, a programmer writes classes
defining the cyberorgs, and the application actors. A cyberorg class definition identifies
events that would trigger cyberorg behaviors, as well as defines these behaviors in terms
of basic cyberorg primitives. Application actor classes are similar to actor classes in Ac-
tor Foundry, except that for each method defined, the class contains another method to
compute the resource requirements of executing the method with the passed parameters.

Cyberorgs may pick from a number of available negotiation protocols to use for
negotiating contracts. The two negotiating parties would communicate using a basic
pre-negotiation protocol to decide which negotiation protocol to use. These protocols
may either be provided as part of a library, or they may be written by a programmer
especially for a particular application.

A system of cyberorgs is implemented by directly subclassing from Cyberorg and
AppActor classes, which are subclasses of the Actor class of Actor Foundry. Addi-



tionally, a programmer may customize negotiation protocols and strategies to suit the
application.

public void checkForTriggers() {
if (activeActors.numElements() > 30)

chores.enqueue("isolate");
if (activeActors.numElements() < 3)

chores.enqueue("assimilate");
if (neededTicks > myTickRate)

chores.enqueue("migrate");
}

Fig. 3. checkForTriggers method.

Cyberorgs A class of cyberorgs can be implemented as a subclass of the Cyberorg
class. By subclassing from the Cyberorg class, the implemented class inherits a cy-
berorg’s behavior, which provides a runtime system, which manages the consumption of
ticks by application actors, and secures tick resource for their execution from other cy-
berorgs. The class typically contains one method overriding the checkForTriggers
method defined in the CyberOrg class which is invoked periodically to see if a cy-
berorg primitive needs to be triggered. This method may rely on local information
about the cyberorg as well as information about its host cyberorg, which is available
from the host cyberorg upon request. Figure 3 shows an example implementation of
checkForTriggers. This method checks for three conditions: if the number of ac-
tors in the cyberorg exceeds a threshold, the isolate primitive is triggered to create a
new cyberorg; if the number of actors drops below a threshold, the assimilate primitive
is triggered to merges the cyberorg’s contents into its hosting cyberorg; if the number
of ticks required is greater than the rate of availability of ticks as stipulated by the con-
tract with the current host, the migrate primitive is triggered. Additionally, a cyberorg
class may also override methods for the behaviors to be triggered when a particular
primitive operation is to be carried out. For example, a possible implementation of the
initiateMigrationSequence method for carrying out the migrate primitive is
shown in Figure 4.

In addition to being triggered in response to the state, primitive cyberorg operations
may also be explicitly requested by application actors. A cyberorg class may override
default methods for servicing such requests.

Finally, a cyberorg class may override the method for distributing ticks among its
application actors, which - by default - distributes a fixed identical number of ticks to
each active application actor at a time. The class may also override the method contain-
ing the default negotiation strategy which accepts any price for selling ticks so long as
it does not represent a loss,3 and any price for buying ticks that the cyberorg has enough
eCash to pay.

3 meaning that the price paid for obtaining the ticks is lower than the price at which they are
being sold.



public void initiateMigrationSequence() {

// ask YP service to find a potential server

ActorName server =
call (myYellowPages, myCurrentRequirements().ticks(),

myCurrentRequirements().ticksRate());

// attempt to negotiate with the server

send (server, "resRequest", self(),
myCurrentRequirements().ticks(),
myCurrentRequirements().ticksRate());

// if the server is interested in negotiation,
// contract negotiations commence. If a contract
// is successfully negotiated, the cyberorg is
// migrated.

}

Fig. 4. initiateMigrateSequence method

Application Actors Implementation of a class of application actors subclasses from the
AppActor class. The class defines methods describing behaviors for the application
actors as they are defined in subclasses of the Actor class in Actor Foundry. However,
instead of the usual Actor class primitives of create and send, the programmer uses
createActor and sendMessage respectively, with otherwise identical syntax as
for class Actor.

For each behavior method, the programmer also includes a method which returns an
integer estimating the number of ticks required for the method’s completion given the
parameters. By convention, the names of these methods are the behavior method names
concatenated with the string “Cost”.

Negotiators Cyberorgs may instantiate given classes of client and server negotiators
for negotiating on their behalf or define their own negotiator classes subclassed from
the given classes, in which they may customize their negotiation strategies. In either
case, negotiators agree on a communication protocol prior to commencing negotiation,
and the negotiation behavior must conform to the agreed protocol for the negotiation to
successfully conclude.

3.2 User Interface

A user can interface with the system using the Actor Foundry shell program called
ashell. ashell makes the user the root cyberorg for the system. The user initiates
an application run by creating a cyberorg of the desired Cyberorg class with a desired
amount of eCash; and next creating an application actor of the desired AppActor class,



which would in turn be managed by the cyberorg. Following these creations, the compu-
tation progresses simply as the user provides ticks to the cyberorg by sending it tick()
messages with an integer parameter specifying the number of ticks being given. Only
the user may create eCash or provide ticks.

4 Scheduling Cyberorgs

An important hurdle in efficiently implementing CyberOrgs is the model’s hierarchical
structure. A naive way to enforce the hierarchical schedule of a cyberorg tree would be
by implementing a hierarchy of schedulers. The overhead incurred by such a hierarchi-
cal scheduler would be prohibitive even for a single processor.

It turns out that enforcing cyberorgs’ hierarchical distribution of cpu time does not
require a hierarchical scheduler. Because availability of resources is in terms of what
is available to the root cyberorg, and the availability for each cyberorg is in terms of
resources its parent possesses (as stipulated by their contract), absolute availability of
resources for each cyberorg can be maintained by simply looking at the contract and the
parent’s resources. By simple induction, the absolute resource availability for each cy-
berorg can hence be maintained in time proportional to the number of changes. Conse-
quently, a global schedule can be created in which each cyberorg receives the resources
it is promised as a function of the resources entering the system.. In other words, in-
stead of launching a new scheduler for each cyberorg, all cyberorgs’ internal schedules
are composed into a single flat schedule of actors which is equivalent to the hierar-
chical schedule. Maintenance of the flat schedule can happen on the fly in response to
primitive cyberorg operations, with a constant cost for each type of update.

A number of experiments were carried out on a prototypical Java implementation
of the efficient scheduler for cyberorgs, to compare the overhead with the overhead of
using a simple fair scheduler, or of letting Java’s default scheduler schedule the threads.

4.1 CyberOrgs Scheduler

The scheduler is implemented using two classes. The Scheduler class defines a
thread scheduler which simply schedules threads (corresponding to actors at the tree’s
leaves) for amounts of time for which they are to be scheduled. The scheduler uses
Java’s suspend and resume primitives to schedule threads. Another class, Sche-
duleManager, defines an update manager which receives requests for updating the
cyberorg tree, and carries out the required changes in the flat schedule.

There are two parameters used by the system for managing the overhead by adjust-
ing the granularity of control. Parameter smallestSlice puts a lower limit on how
small a request for time slice can be, and parameter. However, requests for smaller time
slices are not outrightly rejected. When a time slice lower than smallestSlice is
requested, the time slices of each thread are scaled up so that the newest thread receives
at least smallestSlice. The cost of this scale-up is in the total amount of time that
one cycle of the scheduler takes, which coarsens the granularity of control. The second
parameter, largestSlice, puts an upper limit on the size of a slice. This parameter
becomes relevant at the time of accommodating a request for a time slice smaller than



smallestSlice. If the scale-up required to award the new time slice is such that the
highest time slices becomes larger than largestSlice, then the request is denied.

Threads CyberOrg Scheduler Fair Scheduler No
(Actors) Height Cyberorgs Time Max Time Mean Time Min Time Scheduler

10 2 4 356 14 272 8 280 2 334 319
50 4 17 1040 183 999 33 1087 2 1022 1020

100 3 15 1967 146 1878 17 1969 2 2016 2201
200 4 27 4058 250 3720 15 3750 2 3775 3399
300 5 40 5372 370 5412 19 5908 2 6074 5017
400 5 67 7544 356 6685 21 7202 2 7931 6299
500 5 59 8946 239 7823 13 8313 2 9043 7922
600 5 71 11040 352 10121 11 10507 2 10943 9938
700 5 102 13866 390 11607 11 12736 2 13291 10906
800 5 74 14754 330 14203 11 14359 2 15614 12892
900 6 129 17061 634 15617 16 16177 2 16568 13998
1000 6 140 18736 324 16548 14 17715 2 18087 16781

Table 1. Comparison of scheduling choices for cpu intensive computations. Time is in millisec-
onds. Height is height of cyberorg tree; Cyberorgs is the final number of cyberorgs. Columns min,
mean and max show time slices used by a fair scheduler corresponding to the minimum, mean
and maximum of time slices awarded by the cyberorg scheduler for the same number of threads.

4.2 Experiments

Experiments were carried out for comparing performance of four broad scheduling
choices for cpu intensive computations (Table 1). The first choice was to allow Java’s
default thread scheduler to schedule the concurrently executing threads carrying out
the computations; second was a fair scheduler that awarded uniform time slices to all
threads; third was the cyberorg scheduler for scheduling cyberorgs according to the re-
quested time slice allocations. The final choice was to sequentialize all computations
carried out concurrently in the previous cases, to be carried out by a single thread.

Because there is a relationship between the sizes of time slices and the scheduling
overhead, to keep the comparison fair, the fair scheduler experiments were carried out
with three different time slices, corresponding to the smallest, mean and largest time
slices for which the cyberorg scheduler scheduled its actor threads.

As illustrated by the graph corresponding to Table 1 in Figure 5, no significant over-
head is incurred in enforcing the hierarchical schedule of a tree of cyberorgs. Specifi-
cally, the overhead is proportional to the number of threads (actors) in the system irre-
spective of the number of cyberorgs and the height of the cyberorg tree.
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4.3 Distributed Hierarchical Scheduler

A distributed scheduler would control processor resources on a number of connected
machines. However, implementing such a scheduler is complicated by communication
delays. Specifically, a fine-grained cpu scheduler must be local to the processes it is
scheduling. A distributed scheduler, therefore, must be a network of communicating lo-
cal schedulers. Schedules for such a scheduler must explicitly address communication
delays. In the context of CyberOrgs, it is possible to create such schedules by examining
communication delays which can be estimated once the network resource is controlled.
In other words, once an amount of network bandwidth has been secured for a cyberorg,
cpu scheduling of its distributed agents may rely on predictable communication de-
lays. Work is currently ongoing to implement efficient hierarchical control of network
bandwidth and to develop a distributed version of the CyberOrg scheduler.

5 Conclusions

Agents sharing an execution environment invariably compete for available resources,
possibly in ways impacting global performance of a multi-agent application. However,
resource usage is one aspect of multi-agent behavior which naturally lends itself to
abstraction. CyberOrgs offer a model for hierarchical coordination of resource usage
by multi-agent applications in a network of peer-owned resources, allowing multi-
agent applications to execute in an environment of predictable resource availability.
The model achieves a separation of concerns by representing resource requirements
of an application separately from its functionality. We have introduced programming



constructs for implementing systems of cyberorgs as well as described scheduling tech-
niques for efficient distribution of processor resource.

Work is ongoing to generalize the method of flattening a hierarchical schedule to
achieve efficient distribution and control of other computational resources. A distributed
version of the cyberorg scheduler is under development which relies on predictability
of communication delays resulting from effective control of network bandwidth.
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