
Evaluating Code Clone Genealogies at Release Level: An Empirical Study

Ripon K. Saha, Muhammad Asaduzzaman, Minhaz F. Zibran, Chanchal K. Roy, and Kevin A. Schneider
Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada S7N 5C9

{ripon.saha, md.asad, minhaz.zibran, chanchal.roy, kevin.schneider}@usask.ca

Abstract

Code clone genealogies show how clone groups
evolve with the evolution of the associated software
system, and thus could provide important insights on
the maintenance implications of clones. In this paper,
we provide an in-depth empirical study for evaluating
clone genealogies in evolving open source systems at
the release level. We develop a clone genealogy
extractor, examine 17 open source C, Java, C++ and
C# systems of diverse varieties and study different
dimensions of how clone groups evolve with the
evolution of the software systems. Our study shows that
majority of the clone groups of the clone genealogies
either propagate without any syntactic changes or
change consistently in the subsequent releases, and
that many of the genealogies remain alive during the
evolution. These findings seem to be consistent with the
findings of a previous study that clones may not be as
detrimental in software maintenance as believed to be
(at least by many of us), and that instead of
aggressively refactoring clones, we should possibly
focus on tracking and managing clones during the
evolution of software systems.

1. Introduction

Programmers often copy code fragments and then
paste them with or without modifications during
software development. Such duplicated code fragments
are known as software clones or code clones. Previous
studies have shown that systems contain duplicate code
in amounts ranging from 5-15% of the code-base [23]
to as high as 50% [22]. Despite their usefulness [12,
15], the presence of identical or near identical code
fragments may add to the difficulties of software
maintenance. For example, if a bug is detected in a
code fragment, all the fragments similar to it should be
investigated to check for the same bug and when
enhancing or adapting a piece of code, duplicated
fragments can multiply the work to be done [19]. Code
clones are also considered as one of the bad smells of a
software system [3, 10]. Consequently, identification
and management of software clones has now become

an essential part of software maintenance. However,
due to the intense use of template-based programming
[12], a certain amount of clones are likely acceptable.

Previous studies were highly influenced by the idea
that clones are harmful and can be removed through
refactoring [15]. This notion has been challenged by
the work of Kim et al. [15]. They provided a clone
genealogy model and analyzed the clone genealogies
of two open source software systems. While a clone
group consists of a set of code fragments in a particular
version of a software that are clones to each other, a
genealogy of a clone group describes how the code
fragments of that clone group propagate during the
evolution of the subject system. Each clone genealogy
consists of a set of clone lineages that originate from
the same clone group (source). A clone lineage is a
directed acyclic graph that describes the evolution
history of a clone group from the beginning to the final
release of the software system. The empirical study
described by Kim et al. on code clone genealogy
reveals that clones are not always harmful.
Programmers intentionally practice code cloning to
achieve certain benefits [12, 13]. During the
development of a software system, many clones are
short lived. Refactoring them aggressively can
overburden the developers. Their study also shows that
many long-lived consistently changing clones are not
locally refactorable. Such clones cannot be removed
from the system through refactoring [15].

We are motivated by the work of Kim et al. [15].
They were the first to analyze clone genealogies.
However, they only analyzed two small Java systems.
They also speculated that the selected systems might
not have captured the characteristics of larger systems
and thus, further empirical evaluations need to be
carried out for larger systems of different languages.
After Kim et al. several other researchers also
investigated the maintenance implications of clones.
Kapser and Godfrey [12] conducted several studies in
the area and showed that clones might not always be
harmful and even could be useful in a number of ways.
Krinke [16, 17] studied change types and the stability
of code clones based on the changes between the
revisions of several open source systems. Although he
analyzed several systems written in C, C++ and Java,

he did not focus on evaluating clone genealogies.
Bettenburg et al. [5] analyzed inconsistent changes of
code clones to determine their contribution to software
defects. They also noted the importance of a release
level empirical study compared to that at the revision
level. However, to the best of our knowledge, no
further extensive empirical evaluations have been
carried out to examine the code clone genealogies with
different languages or variable program sizes.

In this paper, we followed the footsteps of Kim et
al. [15] by conducting an in-depth empirical study on
the evaluation of clone genealogies in 17 open source
systems covering four popular programming
languages, C, Java, C++ and C#. However, unlike Kim
et al. [15], we did not work at the revision level; rather,
we analyzed the evolution of clones at the release level
since they are less affected by short term
experimentations of the developers in the software
development process [5]. The systems are selected
from different areas and have rich development
histories. In particular, we focus on the following two
research questions:

(1) How do the clone genealogies look like in open
source software written in different languages and of
different sizes with variable release histories?

(2) Do clone genealogies at the release level share
any common quantitative characteristics, and do any
particular type of genealogies exhibit higher longevity
than the others?

With an extensive study of 17 open source systems
written in four different languages, we have reached
the following conclusions:

(1) Most of the clone groups are propagated through
subsequent releases either without any changes or with
changes only in identifier renaming. Many of them
reach to the final releases of the subject systems and
contribute to the number of alive genealogies. We have
found that, on average about 67% of the genealogies
among all systems do not have any addition or deletion
of lines or any syntactic changes. Moreover, an
average of roughly 69% of these syntactically similar
genealogies reach to the final releases.

(2) We have observed that from about 11% to 38%
of the genealogies are changed consistently over the
entire course of the evolution.

(3) Among the dead genealogies, many of them are
removed within a few releases.

(4) Clone evolution is not highly affected by
development languages or project sizes.

The rest of the paper is organized as follows.
Section 2 outlines the study approach. In Section 3, we
describe the experimental setup and then present the
results of the case study in Section 4. Section 5
describes the threats to the validity of our study and in
Section 6 we discuss some other studies related to ours.

Finally, Section 7 concludes the paper with our future
plans.

2. Study Approach

Our primary objective is to study how code clones
evolve over different releases during system evolution
in terms of the clone genealogy. In addition to this, we
also want to investigate whether the findings by Kim et
al. [14, 15] based on two small Java systems also hold
for other systems of diverse varieties, varying system
sizes and systems written in different programming
languages. Our objective is not to validate the findings
of Kim et al. by replicating the same experiment with
exactly the same settings, rather we wanted to examine
how code clones evolve in software systems of varying
sizes written in different programming languages using
their clone genealogy model. Thus, we develop a clone
genealogy extractor similar to theirs except that the
location overlapping function is replaced by a snippet
matching algorithm. Kim et al. developed a diff based
location tracker that maps the line numbers of a snippet
to its old line numbers in the previous release. They
also discussed that the location overlapping function
did not work well when lines are modified or reordered
in a file because diff cannot capture such changes. The
purpose of the location overlapping function was to
find out the exact mapping of a clone group from the
previous release to the next. To fulfill the same
objective we have developed a location independent
approach, snippet matching function that maps a clone
group from the previous release to its next based on
identifier matching. The following paragraph discusses
how our modified Clone Genealogy Extractor (CGE)
works.

2.1. Clone Genealogy Extractor

Our clone genealogy extractor automatically

extracts clone genealogies across the releases of a
program. The steps are summarized as follows: (1)
first, we collect multiple releases of a program and
then sort them in chronological order; (2) second, we
run CCFinderX on all these releases with a batch
processor; (3) third, we collect the clone group
information on each release produced by CCFinderX;
and (4) finally, the output and the intermediate files
generated by CCFinderX are then used as input for the
CGE.

In order to map clone groups of successive releases,
the CGE uses both TextSimilarity and SnippetMatching
functions as described below. The CGE maps clone
groups based on the highest text similarity and snippet
matching scores. If the highest text similarity score is

different from the highest snippet matching score, the
heuristic selects both of them in order to avoid
ambiguity. The following subsections describe the
TextSimilarity and SnippetMatching techniques.

2.2. Text Similarity

The text similarity between two code snippets C1
and C2 is determined by calculating the common
tokens sequence with respect to their token sizes. By
considering tokens generated by CCFinderX, we count
the textual matches across releases. Equation (1) below
describes the TextSimilarity function. Here |C1| and |C2|
are the token sizes of code snippets of C1 and C2
respectively. |C1∩C2| is the size of common ordered
tokens between C1 and C2, calculated using the longest
common subsequence (LCS) algorithm. In order to
have consistency with Kim et al., we used a text
similarity heuristic of 0.3. With this similarity
threshold, the length and size of the genealogies are
neither overestimated nor underestimated [15].

| |
| | | |21

21
1

2
C+C
CC

=)C,rity(CTextSimila 2
∩ (1)

2.3. Snippet Matching

By applying the text similarity heuristic, we can

eliminate many uninteresting mappings that are not
syntactically similar. However, the text similarity score
itself is not always enough to get better result. In
snippet matching, on the other hand, we match the
snippets based on the similarity of identifiers. The text
similarity function produces a higher value than the
given threshold for all of the mappings that are
syntactically similar. However, in such cases, it is
highly probable that they have different identifier
names. The snippet matching algorithm is applied on
all the mappings produced by the text similarity
function above. The algorithm takes two code
fragments and produces a value between 0 and 1 to
reveal how much these snippets are identical by their
identifier names. We first extract the identifiers from
each of the snippets and then apply LCS algorithm on
them to find the matching score as follows:

€

SnippetMatching(Si, S j) =
LCS(ISi, IS j)

len ISi()
+

LCS(ISi, IS j)

len IS j()

"

$

% $

&
'
$

($
/ 2 (2)

where,

€

ISi= {set of identifiers of snippet,

€

Si},

€

IS j =
{set of identifiers of snippet,

€

S j}, and

€

LCS(ISi, IS j) =
{Longest common subsequence for the identifiers of
the snippets

€

Si and

€

S j}.
 It is possible that some of the identifiers might be

common between two code snippets of two different
clone groups of two successive releases, but it is

unlikely that they maintain the same sequence and
produce a higher similarity value. Again, it is possible
that some identifiers might be renamed in the next
release. In such cases, the same snippets in two
releases might produce very low snippet matching
similarity value. To overcome such situations, we
calculate the snippet matching values for all possible
pairs between two clone groups of two successive
releases and take the one with the maximum similarity
value. There is a threat to this approach in the cases
where all the identifier names of all snippets in the
same clone group are changed/renamed in the next
release. However, in our experience, such a situation is
very unlikely to occur.

Fig. 1 represents a clone genealogy that consists of
three clone lineages marked with different line styles.
All the three lineages evolve from the same clone
group that consists of three code snippets (A, B, C) and
is called the source of the lineages. Each clone lineage
describes how a sink node evolves from the source
node. For example, the sink of one of the clone
lineages that consists of two code snippets (E, G)
evolves from the source node with addition and
inconsistent changes, subtraction and inconsistent
change, addition and consistent changes evolutions
patterns through the release history. Thus, a clone
genealogy captures the evolution of a clone group
through the release history, and all the lineages that
belong to a clone genealogy originated from that clone
group.

For each system, we have collected the total number
of genealogies including the number of alive and dead
genealogies. By alive genealogies we mean the
genealogies of which at least one lineage reaches to the
final release. On the other hand, if none of the lineages
of a genealogy reaches to the final release, we call that
genealogy as a dead genealogy. We then study what
proportion of the genealogies are changed consistently
and what proportion of them remain syntactically the
same.

Figure 1. Clone genealogy

3. Experimental Setup

In this section we provide a brief overview of the
systems we have studied, and the clone detection tool
we used for the experiment.

3.1. Subject Systems

We studied 17 open source software systems [6, 26]
covering four different programming languages, C,
C++, Java and C# as shown in Table 1. The sizes of
these systems range from approximately 9K to 204K
source lines of code (SLOC), excluding comments and
blank lines. The systems are selected from different
domains such as text editor, email client, graphics
library, test framework and so on.

3.2. Clone Detection

We used the AIST CCFinderX [7] to detect code
clones in each release. CCFinderX is a major revision
of CCFinder [11]. CCFinderX is instructed to detect
clones with TKS (minimum number of distinct types of

Table 1. Subject systems
Lang

Subject
System

SLOC Duration
No. of
Releases

JUnit
2,179-
8,785

2003-05-12 to
2009-12-08

20

CAROL
2,812-
11,694

2002-11-12 to
2005-04-13

10

dnsjava
11,025-
23,334

2001-03-29 to
2009-11-21

22

JabRef
11,352-
74,104

2003-11-30 to
2010-04-14

33

Java

iText
51,860-
82,164

2002-03-07 to
2008-01-25

49

KeePass
14,789-
43,644

2003-11-17 to
2006-10-14

35

Notepad++
26,937-
81,980

2003-11-25 to
2007-02-04

30

7-Zip
71,638-
100,823

2003-12-11 to
2009-02-03

45

C++

eMule
6,803-
203,780

2002-07-07 to
2010-04-07 73

Wget
14,209-
40,021

1998-09-23 to
2009-09-22

17

Conky
7,029-
42,060

2005-07-20 to
2010-03-30

70

ZABBIX
12,468-
70,890

2004-03-23 to
2010-01-27

28

C

Claws Mail
126,247-
203,783

2005-03-19 to
2010-01-31

47

NAnt
686-
52,533

2001-07-19 to
2007-12-08

22

iTextSharp
33,545-
163,890

2003-02-04 to
2007-03-08

26

Process
Hacker

10,349-
123,878

2008-10-17 to
2010-01-23

38

C#

ZedGraph
2,439-
26,433

2004-08-02 to
2008-12-12

28

tokens) set to 12 (default setting). In order to detect
clones of large enough for practical significance, we
set the minimum token length to 30. The same value
for the minimum token length was also used in other
research projects in the past [15].

4. Study Results

This section presents the results of our study. Since
the subject of this paper is code clone evolution in
terms of the clone genealogy, at first we characterize
different types of genealogies and then discuss our
findings pertaining to them.

4.1. Clone Genealogies

This subsection characterizes the evolution of clone
groups in terms of genealogies. We will focus on four
types of genealogies, (1) alive genealogy, (2) dead
genealogy, (3) syntactically similar genealogy, and (4)
consistently changed genealogy in order to discuss the
evolution characteristics. A genealogy is called alive
genealogy (AG), if it contains at least one clone group
up to the final release; otherwise, it is marked as a dead
genealogy (DG). The term syntactically similar
genealogy (SSG) refers to those genealogies in which
the clone groups are propagated through subsequent
releases either without any changes or with changes
only in formatting and identifiers (e.g., renaming of
identifiers) in their code snippets. No lines are added
or deleted in the snippets. However, cloned snippets
could be moved from one location to another in the same
file of the subsequent releases. Consistently changed
genealogy (CCG) means genealogies in which all the
clone groups have at least one consistently changed
pattern of any sort (e.g., addition of a new line to all
the snippets of the clone groups). Table 2 presents the
total number of genealogies and the proportions of the
four types of genealogies mentioned above.

From Table 2 we see that the proportions of alive
and dead genealogies are not largely affected by
programming languages or program sizes. For Java, C
and C++ systems, the values are very close. The
proportions of alive genealogies of these systems vary
from 69% to 72% whereas C# systems contain almost
76% of alive genealogies, the highest among the four
languages. On the other hand, when we examined the
subject systems in terms of program size (Table 3) we
can see that in general, the average proportions of alive
genealogies increased with the increase of program
size. It means more genealogies disappeared from
the smaller systems compared to that of the
larger ones, which suggests that perhaps clones are
more manageable in systems with a smaller size

Table 2. Clone genealogies
System Total #

of Gen.
AG
(%)

DG
 (%)

SSG
(%)

CCG
(%)

JUnit 127 78.74 21.26 81.89 15.75
CAROL 141 44.68 55.32 56.73 38.30
dnsjava 417 82.97 17.03 85.37 12.23
JabRef 1132 73.41 26.59 66.25 26.06
iText 1568 68.75 31.25 74.62 20.22
Avg. of Java Systems 71.43 28.57 72.67 21.77
KeePass 790 70.76 29.24 73.54 20.63
Notepad++ 977 81.99 18.01 73.69 19.86
7-Zip 1427 65.38 34.62 64.62 24.46
eMule 3547 66.08 33.92 59.57 29.86
Avg. of C++ Systems 68.79 31.21 64.32 26.18
Wget 206 57.77 42.23 60.68 28.64
Conky 1328 53.69 46.31 82.45 11.97
ZABBIX 1026 65.79 34.21 49.31 28.65
Claws Mail 2363 85.57 14.43 63.26 27.08
Avg. of C Systems 71.68 28.32 65.43 23.40
NAnt 625 76.96 23.04 55.20 34.08
iTextSharp 2666 77.16 22.84 86.38 10.43
Process
Hacker

950 71.79 28.21 73.26 20.32

ZedGraph 374 76.74 23.26 62.83 24.87
Avg. of C# Systems 76.00 24.00 77.55 16.84
Avg. of all Systems 70.33 29.67 66.56 24.28

Table 3. Distribution of genealogies by
program size

Program Size AG (%) DG(%) SSG(%) CCG (%)
<50K 64.65 33.35 76.15 17.71
50K-100K 71.04 28.96 65.32 24.60
>100K 74.58 25.42 69.36 22.78

compared to a larger one. Thus, a clone tracking and
maintenance tool might be more effective for larger
systems. In the following subsections we will have a
closer look at the four types of genealogies.

4.2. Consistently Changed Genealogies

From Table 2 we see that the number of
consistently changed genealogy varies from 10.43% to
38.30% for the subject systems. The average number
of consistently changed genealogies varies in terms of
program size (17.71% to 24.6%) or implementation
language (16.84% to 26.18%). As we see the variations
are not too drastic and do not reveal any systematic
change pattern. However, from our study we see that
the number of consistently changed genealogies is not
very high (on average 24.28%).

Among the subject systems, CAROL and dnsjava
were analyzed by Kim et al. [15]. Even though they
studied at the revision level and we studied at the
release level, we observed a similar proportion of
consistently changed genealogies in CAROL. However,
there is a bit difference in the number of genealogies
detected. They found 122 genealogies from which 13
were eliminated due to template based programming,
whereas, we found 141 genealogies. It should be noted

that we did not consider template based programming
because we believe that such clones are nevertheless
clones. Moreover, we have considered release level
candidates and applied a combination of snippet
matching and text similarity algorithms (discussed
earlier). For dnsjava, on the other hand, we
experienced a significant difference from them.
Possible reasons could be that Kim et al. [15]
considered revisions until November 2004 whereas we
studied releases until November 2009, and some major
changes took place in the code-base of dnsjava in May
2005. This might have caused many new clones, and
most of the new clone groups were propagated to the
final release contributing to the higher proportion of
alive genealogies.

4.3. Alive Genealogies

In this study, we have found that a substantial
proportion of genealogies of all systems are alive,
which is 70.33% of total genealogies on average (Table
2). For example, out of 3547 genealogies in eMule,
2344 have at least one clone group in the final release,
thus about 66% of total genealogies in eMule are
counted as alive. For dnsjava, Notepad++, and Claws
Mail the proportions of alive genealogies are even
more than 80%. The only exception is CAROL, in
which nearly 45% of all genealogies are found alive.
The CAROL project is now closed and a lot of
refactoring was done in the final release [6], which is
probably a reason for this relatively low number of
alive genealogies compared to others.

One possible reason behind this large number of
alive genealogies is that a significant number of clone
groups were created in just a couple of releases prior to
the final release, and they are counted as alive since it
is unknown when they will be removed in the future
releases. Table 4 presents the total number of alive
genealogies, genealogies that are created within final
five releases and the alive genealogies that survive
more than half of the release histories for each system.
From the table we can get a fairly complete picture of
alive genealogies including their lifetimes.

The numbers vary across subject systems possibly
due to variable lengths of release histories we have
considered. However, for most systems, recently
created alive genealogies are not negligible (on average
23.11% for all subject systems within five releases)
and a large proportion of alive genealogies survive for
more than half of the release histories (47.57% on
average). Many of the recently created alive
genealogies might or might not be continued in
later releases. However, this dualism indicates the
importance of incorporating language specific IDE

Table 4. Alive genealogies
System AG AG created

within recent
five releases

AG that survive
more than half of
release histories

JUnit 100 31 (31%) 68 (68%)
dnsjava 346 15 (4.34%) 82 (23%)
CAROL 63 47 (74.60%) 17 (26.98%)
JabRef 831 72 (8.66%) 400 (48.13%)
iText 1078 490 (45.45%) 765 (70.96%)
KeePass 559 163 (29.16%) 241(43.11%)
Notepad 801 59 (7.36%) 587 (73.3%)
7-Zip 933 34 (3.64%) 678 (72.66%)
eMule 2344 385 (16.42%) 365 (15.57%)
Wget 119 16 (13.44%) 74 (62.18%)
Conky 713 490 (68.74%) 136(19.07%)
ZABBIX 675 11 (1.62%) 467 (69.18%)
Claws Mail 2022 46 (2.29%) 1335(66.02%)
NAnt 481 275 (57.17%) 62 (12.89%)
iTextSharp 2057 864 (42%) 1094 (53.18%)
Process Hacker 682 236 (34.60%) 158 (33.17%)
ZedGraph 287 23(8.01%) 174 (60.63%)
 Avg. of all systems 23.11% 47.57%

based clone evolution tracker that may assist managing
clones instead of applying refactoring aggressively
immediately when clones are encountered.

4.4. Syntactically Similar Genealogies

We further investigate what proportion of clone
genealogies remains syntactically the same throughout
the evolution. It is important to study such SSGs
because clone groups of these genealogies seem stable
during the evolution, and thus one may not need any
extra care for them (because where there is probability
of change, there is a fear of inconsistent changes).
Thus, aggressively refactoring them might not be
worthwhile. We have noticed that an enormous
proportion of clone genealogies are syntactically
similar, and on average 66.56% of all the subject
systems (Table 2). The highest proportion of
syntactically similar genealogies is found in
iTextSharp, roughly 86%, whereas the lowest is nearly
50% for ZABBIX. If we look at them by language
(Table 2) we see that the numbers of such genealogies
in C and C++ systems are lower than the systems of
the other two languages. About 64.32% and 65.43% of
genealogies are syntactically similar for C++ and C
systems respectively whereas for the systems of the
other two languages the value varies from 72.67% to
77.55%. We also noticed variations in terms of
program sizes (Table 3). In particular, systems with
sizes ranging from 50K to 100K LOC show fewer
syntactically similar genealogies compared to the
systems of the other two size ranges.

We further examine whether there are any
relationships between these syntactically similar
genealogies and alive genealogies. From Table 5, we

notice that on average 69.04% of syntactically similar
genealogies reached to the final releases of the subject
systems. On the other hand, on average about 66.61%
of alive genealogies did not change syntactically
throughout their entire lifetimes. These indicate that
most of the clone groups that do not change
syntactically are unlikely to be removed during the
evolution of the software systems. SSGs are cost-
effective in the sense that they require little or no
maintenance effort. Instead of aggressively refactoring
them, we may track the evolution of such clones so that
we can differentiate them from other types of
genealogies, those may require more care. In terms of
program size, the proportion of syntactically similar
alive genealogies over SSG increases with the increase
of program size (Table 6). It means more SSGs were
propagated to the final releases in larger systems than
those of smaller ones. This implies that possibly for
smaller systems developers can handle clones more
effectively than that for larger ones. However, no
strong change relationship was observed for the
proportions of alive SSGs over the total number of
alive genealogies.

Table 5. Syntactically similar genealogies
System Alive

SSG
% of alive SSG
of total SSG

% of alive SSG
of total AG

JUnit 85 81.73 85.00
CAROL 34 42.50 53.97
dnsjava 310 87.08 89.60
JabRef 530 70.67 63.78
iText 811 69.32 75.23
Avg. of Java Systems 71.95 73.20
KeePass 402 69.19 71.91
Notepad++ 568 78.89 70.91
7-Zip 586 63.56 62.8
eMule 1262 59.73 53.83
Avg. of C++ Systems 64.99 60.77
Wget 60 48.00 50.42
Conky 590 53.88 82.74
ZABBIX 279 55.13 41.33
Claws Mail 1220 81.60 60.33
Avg. of C Systems 66.72 60.90
NAnt 235 68.12 48.86
iTextSharp 1734 75.29 84.30
Process
Hacker

505 72.56 74.04

ZedGraph 175 74.47 60.98
Avg. of C# Systems 74.02 75.53
Avg. of all Systems 69.04 66.61

Table 6. Syntactically similar genealogies by

program size
Program Size % of alive SSG of

total SSG
% of alive SSG of
total AG

<50K 64.29 75.72
50K-100K 68.18 62.70
>100K 71.45 66.44

4.5. Dead Genealogies and Volatile Clones

We were also interested to see how long dead
genealogies survive in the systems in terms of the
number of releases. For this purpose, we used the term
k-volatile genealogy, which refers to a dead genealogy
that disappears within k versions.

To visualize this scenario, we used the same
approach defined by Kim et al. [15] as follows:

Let, f(k) denotes the number of genealogies with
age k, fdead(k) denotes the number of dead genealogies
with age k, CDFdead(k) denotes the cumulative
distribution function of fdead(k) and it is the ratio of k-
volatile genealogies among all dead genealogies.
Rvolatile(k) denotes the ratio of k volatile genealogies
among all genealogies in a system.

Fig. 2(a-d) represents CDFdead(k) and Rvolatile(k) for
the largest and smallest subject systems for each of the
language categories. Here, the horizontal axes
represent the ages of the genealogies in terms of
releases and vertical axes represents the values of

€

CDFdead (k) or (k)Rvolatile .
Figs. 2(a) and 2(c) represent the CDFdead(k) and

Rvolatile(k) for the largest systems of each of the
language categories respectively. The largest Java
system is iText. We can see from the graph that for this
system, 16% of all dead genealogies (5% of all
genealogies) disappeared within six releases. In Claws
Mail (largest C system), 28% of all dead genealogies
(5% of all genealogies) disappeared within five
releases, and within 10 releases roughly 50% of all
dead genealogies (7% of all genealogies) disappeared.
For eMule (largest C++ system), 33% of all dead
genealogies disappeared within only five releases. For
the largest C# system, iTextSharp we found that the
initial value for CDFdead(k) and thus also Rvolatile(k) to
be smaller compared to the other systems. The possible
reason behind this difference is that a higher number of
dead genealogies (in total 382) span over 19 releases,
which is more than 50% of all dead genealogies.

The same attributes for the smallest systems of
each language categories are provided in Figs. 2(b) and
2(d). The smallest Java system in our study is JUnit.
We found that all the dead genealogies (about 21% of
all genealogies) of this system disappeared within six
releases from when they were created.

KeePass Password Safe is the smallest C++ system
with 43K LOC in its final version. Among the dead
genealogies for this system, 12% disappeared within
five releases. The smallest C system, Wget also shows
a similar trend but with a much higher ratio. In this
particular scenario, 60% of all dead genealogies (25%
of all genealogies) disappeared within only six releases

and about 97% of all dead genealogies (40% of all
genealogies) disappeared within 10 releases. When we
plot the same attribute for ZedGraph (smallest C#
system), we found that this system maintains a similar
trend (12% of all genealogies and approximately 52%
of all dead genealogies disappeared within five
releases).

The above data did not reveal any systematic
relationship between CDFdead(k) and Rvolatile(k) for the
language categories. However, we have found that
even at the release level, the number of volatile clones
was not negligible. Moreover, many of them propagate
through subsequent releases without any changes.
These findings indicate that aggressive refactoring is
possibly not a cost-effective solution for such clones
and may call for alternative measures such as tracking
and managing them in their evolution.

5. Threats to Validity

One of the major threats to this study is that the
clone detector we used might have missed certain
clones in the systems (false negatives) or detected
clones that are not clones in practice (false positives).
We used CCFinderX with settings (minimum token
length of 30 and minimum token set size of 12) that
allow it to detect clones of reasonable size. Although
with this setting, some clones might have been missed
or some false positive clones might have been
considered, we have chosen to use CCFinderX in our
study to be consistent with the study of Kim et al. [15]
since one of our research objectives was to investigate
whether software systems of different languages and of
different sizes and varieties show similar trends at the
clone genealogy level to that observed by Kim et al.
Moreover, CCFinder is recognized as a state of the art
clone detector having high recall, although its precision
is lower than some other tools [4].

A major part of this study is to map the clone
groups from one release of a system to the next for
extracting clone genealogies. While we have manually
verified all the clone genealogies of some small
systems, it was very difficult to manually verify the
genealogies for all the systems. In our experience,
although we did not find any false positive mappings
(at least within our given settings and heuristics)
except a few due to CCFinder finding false positive
clones, we cannot guarantee that there are no false
positive mappings in the results.

Another threat to this study is the limited number of
samples. However, to our knowledge this is the first
study on the maintenance implications of clones, and
in particular on evaluating clone genealogies that
considers 17 open source systems of different

(a)

€

CDFdead (k) for the largest systems

(b)

€

CDFdead (k) for the smallest systems

(c)

€

Rvolatile (k) for the largest systems

(d)

€

Rvolatile (k) for the smallest systems

Figure 2.

€

CDFdead (k) and

€

Rvolatile (k) for the largest and smallest systems of each language category

languages of diverse varieties. Since all the systems in
our study are open source, one may argue that a similar
study on industrial systems may produce different
results.

6. Related Work

Studying the evolution of clones is not a new topic

and there have been several such studies. While they
differ significantly in many aspects, they are also
related to this study. Lagüe et al. [18] studied the
evolution of clones with six versions of a large
telecommunication software system and concluded that
although a significant number of clones were removed
during the evolution, the overall cloning density
increased over time. Antoniol et al. [1] and Li et al.
[19] studied the evolution of the Linux kernel and
observed that although clone coverage increased early
in the development, it stabilized over time. Our study
differs from theirs by addressing how code fragments
of a clone group change with respect to the other

fragments of that group during system evolution.
In recent years, studying the maintenance

implications of clones, which is also one of the
objectives of our study, has become an active research
topic. Kapser and Godfrey [12] conducted large-scale
empirical studies and concluded that clones are not
necessarily harmful and found several patterns of
clones that could be useful in many cases. Juergens et
al. [10], on the other hand, argued that unintentionally
created inconsistent clones always leads to faults, and
concluded that clones could be harmful in software
maintenance. While we also studied the maintenance
implications of clones, our study significantly differs
from theirs in the sense that they did not study the
evolution of clones.

Krinke [16] analyzed many revisions of five open
source software systems and found that half of the
changes to code clone groups are inconsistent and that
corrective changes following inconsistent changes are
rare. In another study [17], he found that cloned codes
are more stable than non-cloned codes and thus require

less maintenance effort compared to non-cloned code.
Our study differs from his in that we work on releases
instead of revisions, and that we particularly focus on
evaluating clone genealogies.

Bettenburg et al. [5] studied the inconsistent
changes of clones at the release level. They noted that
the number of defects through inconsistent changes is
possibly substantially lower at the release level than at
the revision level. They reported that many clones are
created during the software development process due
to the experimentation of developers, which the
developers can manage well. Thus they worked at the
release level instead of the revision level. In order to
avoid the affect of such short-term clones, we also
choose to work at the release level. However, while
they focus on finding the relation of inconsistent
changes to software defects for two open source
systems, we particularly focus on evaluating clone
genealogies using 17 open source systems written in
four different languages.

Lozano et al. [20, 21] conducted several studies on
the maintenance implications of clones. While they
could not find any systematic relationships between
cloning and maintenance efforts, they concluded that
change efforts might increase for a method when it has
clones. Although the underlying clone detection tool is
the same as ours, their approach is different from ours
in many aspects. In particular, they work on the
revision level, whereas we work on the release level
and that they focus on the changes at the function level,
whereas we focus on the clone level itself. Moreover,
they studied only Java systems, which might have also
affected the findings.

Göde [9] proposed a computationally efficient
approach that models type-1 (identical code fragments
except for variations in whitespace and comments)
clone evolution based on the source code changes
made between consecutive program versions of several
open source systems. While he concluded that the ratio
of clones decreased in the majority of the systems and
cloned fragments survived more than a year on
average, no general conclusion on the consistent or
inconsistent changes to clone groups was proposed.
Our work differs from his in several ways. In
particular, he used an incremental clone evolution
model and only considered type-1 clones whereas we
considered both type-1 and type-2 (where syntactically
similar fragments are also considered clones) clones,
and that he worked at the revision level whereas we
worked at the release level. Bakota et al. [3] proposed a
machine learning approach for detecting inconsistent
clone evolution situations and found different ‘bad
smells’ using twelve versions of Mozilla Firefox.
However, they studied the evolution patterns of cloned
fragments whereas we studied clone groups, and they

worked at the revision level (and only 12 monthly
revisions of Mozilla Firefox) whereas we studied
release versions of many systems written in different
languages.

Thummalapenta et al. [27] performed an empirical
evaluation on four open source C and Java systems for
investigating to what extent clones are consistently
propagated or independently evolved. While they
focused on identifying evolution of cloned codes over
time and relating the evolution pattern with other
parameters (clone granularity, clone radius and cloned
code fault-proneness), we focus on evaluating clone
genealogies with 17 open source software systems
covering four popular programming languages.
 The most closely related work to ours is the study
of Kim et al. [15], which is also one of the motivations
of our study. However, they studied only two small
Java systems and at the revision level. On the other
hand, we studied at the release level and with 17
diverse varieties of open source systems written in four
different programming languages. Furthermore, instead
of location mapping, we have used snippet matching
together with text similarity for mapping the clone
groups from one version to the next. This allows us to
map clone groups even when lines are modified or
reordered in the next version. Aversano et al. [2]
extended the clone evolution model of Kim et al. [15]
by grouping inconsistent changes to independent and
late evolution classes. Again, they studied only two
open source Java systems namely ArgoUML and
dnsjava and reported contradictory findings for the
consistently changed clone groups.

7. Conclusion

In this paper, we have presented an empirical
study for evaluating code clone genealogies using 17
diverse categories of open source software systems
written in four different programming languages. We
have set up our experiment based on the genealogy
model of Kim et al. [15] and extended their empirical
study in different dimensions. While Kim et al.
concentrated on the consistently changed genealogies,
and the nature of volatile clones by analyzing two
small Java systems, we attempted to draw a more
detailed picture of clone genealogies by analyzing a
larger number of systems, and systems written in
different development languages, systems of varying
size, and systems with varying development histories.
Kim et al. found that (at the revision level) from 36%
to 38% of genealogies were changed consistently,
whereas we have found that (at the release level) from
11% to 38% of genealogies were changed consistently,
which does not seem contradictory. Again, they

reported that volatile clones were disappearing within a
short time from the systems and noted that from 48%
to 72% of volatile clones were disappearing within
eight check-ins. We also found that even at the release
level many volatile clones disappear within a few
releases. In addition, our study reveals some other
interesting characteristics of code clone genealogies.
We have found that for all subject systems, many
genealogies are alive and long-lived, which implies
that more clone groups are created than those that are
removed. In most of the genealogies for the subject
systems, clone groups are propagated through releases
either without any change or with changes just in
identifier renaming. Hence, it is possible that these
types of genealogies do not need any extra care during
software maintenance. Also, they are less likely to be
removed from the systems, and on average almost 69%
of them reached to the final release. Moreover, on
average nearly 67% of total alive genealogies did not
contain any line additions or deletions or identifier
renaming. Since we have studied a variety of systems,
the results also indicate that it is possible that such a
trend holds even when the systems are implemented in
different languages, are from different areas and are of
different sizes. We have noticed that clones are perhaps
more manageable in smaller systems compared to
larger ones. In addition to continuing our empirical
study with very large (e.g., for Linux Kernel releases)
systems and with systems of other interesting
programming/scripting languages (e.g., Python), we
plan to adapt our genealogy extractor to the NiCad [24]
clone detection tool. NiCad can accurately detect near-
miss clones [24, 25], even when statements are added,
deleted or modified in the copied fragments, and thus
will enable us to conduct a similar study for such near-
miss clones as well.

Acknowledgements: The authors would like to thank
the four anonymous reviewers for their valuable
comments, suggestions, and corrections in improving
the paper. This work is supported in part by the Natural
Sciences and Engineering Research Council of Canada.

8. References

[1] G. Antoniol, U. Villano, E. Merlo, and M. D. Penta,

“Analyzing Cloning Evolution in the Linux Kernel”,
Infor. & Soft. Tech., 44(13), 2002, pp. 755–765.

[2] L. Aversano, L. Cerulo, and M.D. Penta, “How Clones
are Maintained: An Empirical Study”, in CSMR,
Amsterdam, 2007, pp. 81-90.

[3] T. Bakota, R. Ferenc, and T. Gyimothy, “Clone Smells
in Software Evolution”, in ICSM, Paris, 2007, pp. 24–33.

[4] S. Bellon, R. Koschke, G. Antoniol, J. Krinke and E.
Merlo, “Comparison and Evaluation of Clone Detection
Tools”, IEEE Transactions on Soft. Eng., 33(9), 2007,
pp. 577-591.

[5] N. Bettenburg, W. Shang, W. Ibrahim, B. Adams, Y.
Zou, and A.E. Hassan, “An Empirical Study on
Inconsistent Changes to Code Clones at Release Level”,
in WCRE, Lille, 2009, pp. 85-94.

[6] The CAROL: http://carol.ow2.org/ (March, 2010)
[7] The CCFinder: www.ccfinder.net (February, 2010)
[8] R. Geiger, B. Fluri, H.C. Gall, and M. Pinzger,

“Relation of Code Clones and Change Couplings”, in
FASE, Vienna, 2006, pp. 411-425.

[9] N. Göde, “Evolution of Type-1 Clones”, in SCAM,
Edmonton, 2009, pp. 77-86.

[10] E. Juergens, F. Deissenboeck, B. Hummel, and S.
Wagner, “Do Code Clones Matter?”, in ICSE,
Vancouver, 2009, pp. 485-495.

[11] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A
Multi-Linguistic Token-Based Code Clone Detection
System for Large Scale Source Code”, IEEE
Transactions on Soft. Eng., 28(7), 2002, pp. 654-670.

[12] C.J. Kapser, and M.W. Godfrey, ““Cloning Considered
Harmful” Considered Harmful: Patterns of Cloning in
Software”, Emp. Soft. Eng., 13(6), 2008, pp. 645-692.

[13] M. Kim, L. Bergman, T. Lau, and D. Notkin, “An
Ethnographic Study of Copy and Paste Programming
Practices in OOPL”, in Sym. on Emp. Soft. Eng.,
Redondo Beach, 2004, pp. 83-92.

[14] M. Kim, and D. Notkin, “Using a Clone Genealogy
Extractor for Understanding and Supporting Evolution
of Code Clones”, in MSR, Saint Louis, 2005, pp. 17-23.

[15] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An
Empirical Study of Code Clone Genealogies”, in FSE,
Lisbon, 2005, pp. 187-196.

[16] J. Krinke, “A Study of Consistent and Inconsistent
Changes to Code Clones”, in WCRE, Vancouver, 2007,
pp. 170-178.

[17] J. Krinke, “Is Cloned Code More Stable Than Non-
Cloned Code?”, in SCAM, Beijing, 2008, pp. 57-66.

[18] B. Lagüe, D. Proulx, J. Mayrand, E. Merlo, and J.P.
Hudepohl, “Assessing the Benefits of Incorporating
Function Clone Detection in a Development Process”,
in ICSM, Bari, 1997, pp. 314-321.

[19] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: A
Tool for Finding Copy-Paste and Related Bugs in
Operating System Code”, in OSDI, San Francisco, 2004,
pp. 289–302.

[20] A. Lozano, and M. Wermelinger, “Assessing the Effect
of Clones on Changeability”, in ICSM, Beijing, 2008,
pp. 227-236.

[21] A. Lozano, M. Wermelinger, and B. Nuseibeh,
“Evaluating the Harmfulness of Cloning: A Change
Based Experiment”, in MSR, Minneapolis, 2007, pp. 18-
21.

[22] M. Rieger, S. Ducasse, and M. Lanza, “Insights into
System–Wide Code Duplication”, in WCRE, Delft
University of Technology, 2004, pp. 100-109.

[23] C.K. Roy, and J.R. Cordy, A Survey on Software Clone
Detection Research, Queen’s School of Computing
Tech. Report 2007-541, Kingston, 2007, 115 pp.

[24] C.K. Roy, and J.R. Cordy, “NICAD: Accurate Detection
of Near-Miss Intentional Clones Using Flexible Pretty-
Printing and Code Normalization”, in ICPC,
Amsterdam, 2008, pp. 172-181.

[25] C.K. Roy, and J.R. Cordy, “Near-miss Function Clones
in Open Source Software: An Empirical Study”, Journal
of Soft. Main. and Evolution, 22(3), 2010, pp. 165-189.

[26] The Source Forge: http://sourceforge.net (March, 2010)
[27] S. Thummalapenta, L. Cerulo, L. Aversano, and M.Di

Penta, “An Empirical Study on the Maintenance of
Source Code Clones”, Emp. Soft. Eng., 15(1), 2010, pp.
1-34.

