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Abstract 
 

Code clone genealogies show how clone groups 
evolve with the evolution of the associated software 
system, and thus could provide important insights on 
the maintenance implications of clones. In this paper, 
we provide an in-depth empirical study for evaluating 
clone genealogies in evolving open source systems at 
the release level. We develop a clone genealogy 
extractor, examine 17 open source C, Java, C++ and 
C# systems of diverse varieties and study different 
dimensions of how clone groups evolve with the 
evolution of the software systems. Our study shows that 
majority of the clone groups of the clone genealogies 
either propagate without any syntactic changes or 
change consistently in the subsequent releases, and 
that many of the genealogies remain alive during the 
evolution. These findings seem to be consistent with the 
findings of a previous study that clones may not be as 
detrimental in software maintenance as believed to be 
(at least by many of us), and that instead of 
aggressively refactoring clones, we should possibly 
focus on tracking and managing clones during the 
evolution of software systems. 
 
 
1. Introduction 
 

Programmers often copy code fragments and then 
paste them with or without modifications during 
software development. Such duplicated code fragments 
are known as software clones or code clones. Previous 
studies have shown that systems contain duplicate code 
in amounts ranging from 5-15% of the code-base [23] 
to as high as 50% [22]. Despite their usefulness [12, 
15], the presence of identical or near identical code 
fragments may add to the difficulties of software 
maintenance. For example, if a bug is detected in a 
code fragment, all the fragments similar to it should be 
investigated to check for the same bug and when 
enhancing or adapting a piece of code, duplicated 
fragments can multiply the work to be done [19]. Code 
clones are also considered as one of the bad smells of a 
software system [3, 10]. Consequently, identification 
and management of software clones has now become 

an essential part of software maintenance. However, 
due to the intense use of template-based programming 
[12], a certain amount of clones are likely acceptable.  

Previous studies were highly influenced by the idea 
that clones are harmful and can be removed through 
refactoring [15]. This notion has been challenged by 
the work of Kim et al. [15]. They provided a clone 
genealogy model and analyzed the clone genealogies 
of two open source software systems. While a clone 
group consists of a set of code fragments in a particular 
version of a software that are clones to each other, a 
genealogy of a clone group describes how the code 
fragments of that clone group propagate during the 
evolution of the subject system. Each clone genealogy 
consists of a set of clone lineages that originate from 
the same clone group (source). A clone lineage is a 
directed acyclic graph that describes the evolution 
history of a clone group from the beginning to the final 
release of the software system. The empirical study 
described by Kim et al. on code clone genealogy 
reveals that clones are not always harmful. 
Programmers intentionally practice code cloning to 
achieve certain benefits [12, 13]. During the 
development of a software system, many clones are 
short lived. Refactoring them aggressively can 
overburden the developers. Their study also shows that 
many long-lived consistently changing clones are not 
locally refactorable. Such clones cannot be removed 
from the system through refactoring [15].  

We are motivated by the work of Kim et al. [15]. 
They were the first to analyze clone genealogies. 
However, they only analyzed two small Java systems. 
They also speculated that the selected systems might 
not have captured the characteristics of larger systems 
and thus, further empirical evaluations need to be 
carried out for larger systems of different languages. 
After Kim et al. several other researchers also 
investigated the maintenance implications of clones. 
Kapser and Godfrey [12] conducted several studies in 
the area and showed that clones might not always be 
harmful and even could be useful in a number of ways. 
Krinke [16, 17] studied change types and the stability 
of code clones based on the changes between the 
revisions of several open source systems. Although he 
analyzed several systems written in C, C++ and Java, 



he did not focus on evaluating clone genealogies. 
Bettenburg et al. [5] analyzed inconsistent changes of 
code clones to determine their contribution to software 
defects. They also noted the importance of a release 
level empirical study compared to that at the revision 
level. However, to the best of our knowledge, no 
further extensive empirical evaluations have been 
carried out to examine the code clone genealogies with 
different languages or variable program sizes.  

In this paper, we followed the footsteps of Kim et 
al. [15] by conducting an in-depth empirical study on 
the evaluation of clone genealogies in 17 open source 
systems covering four popular programming 
languages, C, Java, C++ and C#. However, unlike Kim 
et al. [15], we did not work at the revision level; rather, 
we analyzed the evolution of clones at the release level 
since they are less affected by short term 
experimentations of the developers in the software 
development process [5]. The systems are selected 
from different areas and have rich development 
histories. In particular, we focus on the following two 
research questions:      

(1) How do the clone genealogies look like in open 
source software written in different languages and of 
different sizes with variable release histories? 

(2) Do clone genealogies at the release level share 
any common quantitative characteristics, and do any 
particular type of genealogies exhibit higher longevity 
than the others? 

With an extensive study of 17 open source systems 
written in four different languages, we have reached 
the following conclusions: 

(1) Most of the clone groups are propagated through 
subsequent releases either without any changes or with 
changes only in identifier renaming. Many of them 
reach to the final releases of the subject systems and 
contribute to the number of alive genealogies. We have 
found that, on average about 67% of the genealogies 
among all systems do not have any addition or deletion 
of lines or any syntactic changes. Moreover, an 
average of roughly 69% of these syntactically similar 
genealogies reach to the final releases. 

(2) We have observed that from about 11% to 38% 
of the genealogies are changed consistently over the 
entire course of the evolution. 

(3) Among the dead genealogies, many of them are 
removed within a few releases.  

(4) Clone evolution is not highly affected by 
development languages or project sizes.  

The rest of the paper is organized as follows. 
Section 2 outlines the study approach. In Section 3, we 
describe the experimental setup and then present the 
results of the case study in Section 4. Section 5 
describes the threats to the validity of our study and in 
Section 6 we discuss some other studies related to ours. 

Finally, Section 7 concludes the paper with our future 
plans. 
 
2. Study Approach 
 

Our primary objective is to study how code clones 
evolve over different releases during system evolution 
in terms of the clone genealogy. In addition to this, we 
also want to investigate whether the findings by Kim et 
al. [14, 15] based on two small Java systems also hold 
for other systems of diverse varieties, varying system 
sizes and systems written in different programming 
languages. Our objective is not to validate the findings 
of Kim et al. by replicating the same experiment with 
exactly the same settings, rather we wanted to examine 
how code clones evolve in software systems of varying 
sizes written in different programming languages using 
their clone genealogy model. Thus, we develop a clone 
genealogy extractor similar to theirs except that the 
location overlapping function is replaced by a snippet 
matching algorithm. Kim et al. developed a diff based 
location tracker that maps the line numbers of a snippet 
to its old line numbers in the previous release. They 
also discussed that the location overlapping function 
did not work well when lines are modified or reordered 
in a file because diff cannot capture such changes. The 
purpose of the location overlapping function was to 
find out the exact mapping of a clone group from the 
previous release to the next. To fulfill the same 
objective we have developed a location independent 
approach, snippet matching function that maps a clone 
group from the previous release to its next based on 
identifier matching. The following paragraph discusses 
how our modified Clone Genealogy Extractor (CGE) 
works.  

 
2.1.  Clone Genealogy Extractor  

 
Our clone genealogy extractor automatically 

extracts clone genealogies across the releases of a 
program. The steps are summarized as follows: (1) 
first, we collect multiple releases of a program and 
then sort them in chronological order; (2) second, we 
run CCFinderX on all these releases with a batch 
processor; (3) third, we collect the clone group 
information on each release produced by CCFinderX; 
and (4) finally, the output and the intermediate files 
generated by CCFinderX are then used as input for the 
CGE. 

In order to map clone groups of successive releases, 
the CGE uses both TextSimilarity and SnippetMatching 
functions as described below. The CGE maps clone 
groups based on the highest text similarity and snippet 
matching scores. If the highest text similarity score is 



different from the highest snippet matching score, the 
heuristic selects both of them in order to avoid 
ambiguity. The following subsections describe the 
TextSimilarity and SnippetMatching techniques. 
 
2.2. Text Similarity 
 

The text similarity between two code snippets C1 
and C2 is determined by calculating the common 
tokens sequence with respect to their token sizes. By 
considering tokens generated by CCFinderX, we count 
the textual matches across releases. Equation (1) below 
describes the TextSimilarity function. Here |C1| and |C2| 
are the token sizes of code snippets of C1 and C2 
respectively. |C1∩C2| is the size of common ordered 
tokens between C1 and C2, calculated using the longest 
common subsequence (LCS) algorithm. In order to 
have consistency with Kim et al., we used a text 
similarity heuristic of 0.3. With this similarity 
threshold, the length and size of the genealogies are 
neither overestimated nor underestimated [15]. 
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2.3. Snippet Matching 
 
By applying the text similarity heuristic, we can 

eliminate many uninteresting mappings that are not 
syntactically similar. However, the text similarity score 
itself is not always enough to get better result. In 
snippet matching, on the other hand, we match the 
snippets based on the similarity of identifiers. The text 
similarity function produces a higher value than the 
given threshold for all of the mappings that are 
syntactically similar. However, in such cases, it is 
highly probable that they have different identifier 
names. The snippet matching algorithm is applied on 
all the mappings produced by the text similarity 
function above. The algorithm takes two code 
fragments and produces a value between 0 and 1 to 
reveal how much these snippets are identical by their 
identifier names.  We first extract the identifiers from 
each of the snippets and then apply LCS algorithm on 
them to find the matching score as follows: 
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{Longest common subsequence for the identifiers of 
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 It is possible that some of the identifiers might be 

common between two code snippets of two different 
clone groups of two successive releases, but it is 

unlikely that they maintain the same sequence and 
produce a higher similarity value. Again, it is possible 
that some identifiers might be renamed in the next 
release. In such cases, the same snippets in two 
releases might produce very low snippet matching 
similarity value. To overcome such situations, we 
calculate the snippet matching values for all possible 
pairs between two clone groups of two successive 
releases and take the one with the maximum similarity 
value. There is a threat to this approach in the cases 
where all the identifier names of all snippets in the 
same clone group are changed/renamed in the next 
release. However, in our experience, such a situation is 
very unlikely to occur. 

Fig. 1 represents a clone genealogy that consists of 
three clone lineages marked with different line styles. 
All the three lineages evolve from the same clone 
group that consists of three code snippets (A, B, C) and 
is called the source of the lineages.  Each clone lineage 
describes how a sink node evolves from the source 
node.  For example, the sink of one of the clone 
lineages that consists of two code snippets (E, G) 
evolves from the source node with addition and 
inconsistent changes, subtraction and inconsistent 
change, addition and consistent changes evolutions 
patterns through the release history. Thus, a clone 
genealogy captures the evolution of a clone group 
through the release history, and all the lineages that 
belong to a clone genealogy originated from that clone 
group. 

For each system, we have collected the total number 
of genealogies including the number of alive and dead 
genealogies. By alive genealogies we mean the 
genealogies of which at least one lineage reaches to the 
final release. On the other hand, if none of the lineages 
of a genealogy reaches to the final release, we call that 
genealogy as a dead genealogy. We then study what 
proportion of the genealogies are changed consistently 
and what proportion of them remain syntactically the 
same. 

 
Figure 1. Clone genealogy 



3. Experimental Setup 
 

In this section we provide a brief overview of the 
systems we have studied, and the clone detection tool 
we used for the experiment. 

 
3.1. Subject Systems 
 

We studied 17 open source software systems [6, 26] 
covering four different programming languages, C, 
C++, Java and C# as shown in Table 1. The sizes of 
these systems range from approximately 9K to 204K 
source lines of code (SLOC), excluding comments and 
blank lines. The systems are selected from different 
domains such as text editor, email client, graphics 
library, test framework and so on.  

 
3.2. Clone Detection 
 

We used the AIST CCFinderX [7] to detect code 
clones in each release. CCFinderX is a major revision 
of CCFinder [11]. CCFinderX is instructed to detect 
clones with TKS (minimum number of distinct types of  

Table 1. Subject systems 
Lang 

Subject 
System 

SLOC Duration 
No. of 
Releases 

JUnit 
2,179-
8,785 

2003-05-12 to 
2009-12-08 

20 

CAROL 
2,812-
11,694 

2002-11-12 to 
2005-04-13 

10 

dnsjava 
11,025-
23,334 

2001-03-29 to 
2009-11-21 

22 

JabRef 
11,352-
74,104 

2003-11-30 to 
2010-04-14 

33 

Java 

iText 
51,860-
82,164 

2002-03-07 to 
2008-01-25 

49 

KeePass 
14,789-
43,644 

2003-11-17 to 
2006-10-14 

35 

Notepad++ 
26,937-
81,980 

2003-11-25 to 
2007-02-04 

30 

7-Zip 
71,638-
100,823 

2003-12-11  to 
2009-02-03 

45 

C++ 

eMule 
6,803-
203,780 

2002-07-07 to 
2010-04-07 73 

Wget 
14,209-
40,021 

1998-09-23 to 
2009-09-22 

17 

Conky 
7,029-
42,060 

2005-07-20 to 
2010-03-30 

70 

ZABBIX 
12,468-
70,890 

2004-03-23 to 
2010-01-27 

28 

C 

Claws Mail 
126,247-
203,783 

2005-03-19 to 
2010-01-31 

47 

NAnt 
686-
52,533 

2001-07-19 to 
2007-12-08 

22 

iTextSharp 
33,545-
163,890 

2003-02-04 to 
2007-03-08 

26 

Process 
Hacker 

10,349-
123,878 

2008-10-17 to 
2010-01-23 

38 

C# 

ZedGraph 
2,439-
26,433 

2004-08-02 to 
2008-12-12 

28 

tokens) set to 12 (default setting).  In order to detect 
clones of large enough for practical significance, we 
set the minimum token length to 30. The same value 
for the minimum token length was also used in other 
research projects in the past [15]. 

 
4. Study Results 
 

This section presents the results of our study. Since 
the subject of this paper is code clone evolution in 
terms of the clone genealogy, at first we characterize 
different types of genealogies and then discuss our 
findings pertaining to them. 

 
4.1. Clone Genealogies  
 

This subsection characterizes the evolution of clone 
groups in terms of genealogies. We will focus on four 
types of genealogies, (1) alive genealogy, (2) dead 
genealogy, (3) syntactically similar genealogy, and (4) 
consistently changed genealogy in order to discuss the 
evolution characteristics. A genealogy is called alive 
genealogy (AG), if it contains at least one clone group 
up to the final release; otherwise, it is marked as a dead 
genealogy (DG). The term syntactically similar 
genealogy (SSG) refers to those genealogies in which 
the clone groups are propagated through subsequent 
releases either without any changes or with changes 
only in formatting and identifiers (e.g., renaming of 
identifiers) in their code snippets.  No lines are added 
or deleted in the snippets. However, cloned snippets 
could be moved from one location to another in the same 
file of the subsequent releases. Consistently changed 
genealogy (CCG) means genealogies in which all the 
clone groups have at least one consistently changed 
pattern of any sort (e.g., addition of a new line to all 
the snippets of the clone groups). Table 2 presents the 
total number of genealogies and the proportions of the 
four types of genealogies mentioned above.  

From Table 2 we see that the proportions of alive 
and dead genealogies are not largely affected by 
programming languages or program sizes. For Java, C 
and C++ systems, the values are very close. The 
proportions of alive genealogies of these systems vary 
from 69% to 72% whereas C# systems contain almost 
76% of alive genealogies, the highest among the four 
languages. On the other hand, when we examined the 
subject systems in terms of program size (Table 3) we 
can see that in general, the average proportions of alive 
genealogies increased with the increase of program 
size. It  means more  genealogies  disappeared  from  
the  smaller  systems  compared   to   that  of  the  
larger  ones,  which  suggests  that  perhaps  clones  are  
more   manageable   in   systems   with   a  smaller  size 



Table 2. Clone genealogies 
System Total # 

of Gen. 
AG 
(%) 

DG 
 (%) 

SSG 
(%) 

CCG 
(%) 

JUnit 127 78.74 21.26 81.89 15.75 
CAROL 141 44.68 55.32 56.73 38.30 
dnsjava 417 82.97 17.03 85.37 12.23 
JabRef 1132 73.41 26.59 66.25 26.06 
iText 1568 68.75 31.25 74.62 20.22 
Avg. of Java Systems 71.43 28.57 72.67 21.77 
KeePass 790 70.76 29.24 73.54 20.63 
Notepad++ 977 81.99 18.01 73.69 19.86 
7-Zip 1427 65.38 34.62 64.62 24.46 
eMule 3547 66.08 33.92 59.57 29.86 
Avg. of C++ Systems 68.79 31.21 64.32 26.18 
Wget 206 57.77 42.23 60.68 28.64 
Conky 1328 53.69 46.31 82.45 11.97 
ZABBIX 1026 65.79 34.21 49.31 28.65 
Claws Mail 2363 85.57 14.43 63.26 27.08 
Avg. of C Systems 71.68 28.32 65.43 23.40 
NAnt 625 76.96 23.04 55.20 34.08 
iTextSharp 2666 77.16 22.84 86.38 10.43 
Process 
Hacker 

950 71.79 28.21 73.26 20.32 

ZedGraph 374 76.74 23.26 62.83 24.87 
Avg. of C# Systems 76.00 24.00 77.55 16.84 
Avg. of all Systems 70.33 29.67 66.56 24.28 

Table 3. Distribution of genealogies by 
program size  

Program Size AG (%) DG( %) SSG(%) CCG (%) 
<50K 64.65 33.35 76.15 17.71 
50K-100K 71.04 28.96 65.32 24.60 
>100K 74.58 25.42 69.36 22.78 

 
compared  to a larger one. Thus, a clone tracking and 
maintenance tool might be more effective for larger 
systems. In the following subsections we will have a 
closer look at the four types of genealogies. 
 
4.2. Consistently Changed Genealogies  
 

From Table 2 we see that the number of 
consistently changed genealogy varies from 10.43% to 
38.30% for the subject systems. The average number 
of consistently changed genealogies varies in terms of 
program size (17.71% to 24.6%) or implementation 
language (16.84% to 26.18%). As we see the variations 
are not too drastic and do not reveal any systematic 
change pattern. However, from our study we see that 
the number of consistently changed genealogies is not 
very high (on average 24.28%).   

Among the subject systems, CAROL and dnsjava 
were analyzed by Kim et al. [15]. Even though they 
studied at the revision level and we studied at the 
release level, we observed a similar proportion of 
consistently changed genealogies in CAROL. However, 
there is a bit difference in the number of genealogies 
detected. They found 122 genealogies from which 13 
were eliminated due to template based programming, 
whereas, we found 141 genealogies. It should be noted 

that we did not consider template based programming 
because we believe that such clones are nevertheless 
clones. Moreover, we have considered release level 
candidates and applied a combination of snippet 
matching and text similarity algorithms (discussed 
earlier). For dnsjava, on the other hand, we 
experienced a significant difference from them. 
Possible reasons could be that Kim et al. [15] 
considered revisions until November 2004 whereas we 
studied releases until November 2009, and some major 
changes took place in the code-base of dnsjava in May 
2005. This might have caused many new clones, and 
most of the new clone groups were propagated to the 
final release contributing to the higher proportion of 
alive genealogies. 
 
4.3. Alive Genealogies 
  

In this study, we have found that a substantial 
proportion of genealogies of all systems are alive, 
which is 70.33% of total genealogies on average (Table 
2). For example, out of 3547 genealogies in eMule, 
2344 have at least one clone group in the final release, 
thus about 66% of total genealogies in eMule are 
counted as alive.  For dnsjava, Notepad++, and Claws 
Mail the proportions of alive genealogies are even 
more than 80%. The only exception is CAROL, in 
which nearly 45% of all genealogies are found alive. 
The CAROL project is now closed and a lot of 
refactoring was done in the final release [6], which is 
probably a reason for this relatively low number of 
alive genealogies compared to others.  

One possible reason behind this large number of 
alive genealogies is that a significant number of clone 
groups were created in just a couple of releases prior to 
the final release, and they are counted as alive since it 
is unknown when they will be removed in the future 
releases. Table 4 presents the total number of alive 
genealogies, genealogies that are created within final 
five releases and the alive genealogies that survive 
more than half of the release histories for each system. 
From the table we can get a fairly complete picture of 
alive genealogies including their lifetimes. 

The numbers vary across subject systems possibly 
due to variable lengths of release histories we have 
considered. However, for most systems, recently 
created alive genealogies are not negligible (on average 
23.11% for all subject systems within five releases) 
and a large proportion of alive genealogies survive for 
more than half of the release histories (47.57% on 
average). Many of the recently created alive 
genealogies  might  or  might  not  be  continued in 
later   releases.  However, this  dualism  indicates  the 
importance   of   incorporating   language  specific IDE 



Table 4.  Alive genealogies  
System AG AG created 

within recent 
five releases 

AG that survive 
more than half of 
release histories 

JUnit 100 31 (31%) 68 (68%) 
dnsjava 346 15 (4.34%) 82 (23%) 
CAROL 63 47 (74.60%) 17 (26.98%) 
JabRef 831 72 (8.66%) 400 (48.13%) 
iText 1078 490 (45.45%) 765 (70.96%) 
KeePass 559 163 (29.16%) 241(43.11%) 
Notepad 801 59 (7.36%) 587 (73.3%) 
7-Zip 933 34 (3.64%) 678 (72.66%) 
eMule 2344 385 (16.42%) 365 (15.57%) 
Wget 119 16 (13.44%) 74 (62.18%) 
Conky 713 490 (68.74%) 136(19.07%) 
ZABBIX 675 11 (1.62%) 467 (69.18%) 
Claws Mail 2022 46 (2.29%) 1335(66.02%) 
NAnt 481 275 (57.17%) 62 (12.89%) 
iTextSharp 2057 864 (42%) 1094 (53.18%) 
Process Hacker 682 236 (34.60%) 158 (33.17%) 
ZedGraph 287 23(8.01%) 174 (60.63%) 
   Avg. of all systems  23.11% 47.57% 

 
based clone evolution tracker that may assist managing 
clones instead of applying refactoring aggressively 
immediately when clones are encountered.  

 
4.4. Syntactically Similar Genealogies  
 

We further investigate what proportion of clone 
genealogies remains syntactically the same throughout 
the evolution. It is important to study such SSGs 
because clone groups of these genealogies seem stable 
during the evolution, and thus one may not need any 
extra care for them (because where there is probability 
of change, there is a fear of inconsistent changes). 
Thus, aggressively refactoring them might not be 
worthwhile. We have noticed that an enormous 
proportion of clone genealogies are syntactically 
similar, and on average 66.56% of all the subject 
systems (Table 2). The highest proportion of 
syntactically similar genealogies is found in 
iTextSharp, roughly 86%, whereas the lowest is nearly 
50% for ZABBIX. If we look at them by language 
(Table 2) we see that the numbers of such genealogies 
in C and C++ systems are lower than the systems of 
the other two languages. About 64.32% and 65.43% of 
genealogies are syntactically similar for C++ and C 
systems respectively whereas for the systems of the 
other two languages the value varies from 72.67% to 
77.55%. We also noticed variations in terms of 
program sizes (Table 3). In particular, systems with 
sizes ranging from 50K to 100K LOC show fewer 
syntactically similar genealogies compared to the 
systems of the other two size ranges. 

We further examine whether there are any 
relationships between these syntactically similar 
genealogies and alive genealogies. From Table 5, we 

notice that on average 69.04% of syntactically similar 
genealogies reached to the final releases of the subject 
systems. On the other hand, on average about 66.61% 
of alive genealogies did not change syntactically 
throughout their entire lifetimes. These indicate that 
most of the clone groups that do not change 
syntactically are unlikely to be removed during the 
evolution of the software systems. SSGs are cost-
effective in the sense that they require little or no 
maintenance effort. Instead of aggressively refactoring 
them, we may track the evolution of such clones so that 
we can differentiate them from other types of 
genealogies, those may require more care. In terms of 
program size, the proportion of syntactically similar 
alive genealogies over SSG increases with the increase 
of program size (Table 6). It means more SSGs were 
propagated to the final releases in larger systems than 
those of smaller ones. This implies that possibly for 
smaller systems developers can handle clones more 
effectively than that for larger ones. However, no 
strong change relationship was observed for the 
proportions of alive SSGs over the total number of 
alive genealogies. 

Table 5. Syntactically similar genealogies   
System Alive 

SSG 
% of alive SSG 
of total SSG 

% of alive SSG 
of total AG 

JUnit 85 81.73 85.00 
CAROL 34 42.50 53.97 
dnsjava 310 87.08 89.60 
JabRef 530 70.67 63.78 
iText 811 69.32 75.23 
Avg. of Java Systems 71.95 73.20 
KeePass 402 69.19 71.91 
Notepad++ 568 78.89 70.91 
7-Zip 586 63.56 62.8 
eMule 1262 59.73 53.83 
Avg. of C++ Systems  64.99 60.77 
Wget 60 48.00 50.42 
Conky 590 53.88 82.74 
ZABBIX 279 55.13 41.33 
Claws Mail 1220 81.60 60.33 
Avg. of C Systems  66.72 60.90 
NAnt 235 68.12 48.86 
iTextSharp 1734 75.29 84.30 
Process 
Hacker 

505 72.56 74.04 

ZedGraph 175 74.47 60.98 
Avg. of C# Systems  74.02 75.53 
Avg. of all Systems 69.04 66.61 

 
Table 6. Syntactically similar genealogies by 

program size  
Program Size % of alive SSG of 

total SSG 
% of alive SSG of 
total AG 

<50K 64.29 75.72 
50K-100K 68.18 62.70 
>100K 71.45 66.44 



4.5. Dead Genealogies and Volatile Clones 
 

We were also interested to see how long dead 
genealogies survive in the systems in terms of the 
number of releases. For this purpose, we used the term 
k-volatile genealogy, which refers to a dead genealogy 
that disappears within k versions.  

To visualize this scenario, we used the same 
approach defined by Kim et al. [15] as follows:  

Let, f(k) denotes the number of genealogies with 
age k, fdead(k) denotes the number of dead genealogies 
with age k, CDFdead(k) denotes the cumulative 
distribution function of fdead(k) and it is the ratio of k-
volatile genealogies among all dead genealogies. 
Rvolatile(k) denotes the ratio of k volatile genealogies 
among all genealogies in a system. 

Fig. 2(a-d) represents CDFdead(k) and Rvolatile(k) for 
the largest and smallest subject systems for each of the 
language categories. Here, the horizontal axes 
represent the ages of the genealogies in terms of 
releases and vertical axes represents the values of 

€ 

CDFdead (k) or (k)Rvolatile .  
Figs. 2(a) and 2(c) represent the CDFdead(k) and 

Rvolatile(k) for the largest systems of each of the 
language categories respectively. The largest Java 
system is iText. We can see from the graph that for this 
system, 16% of all dead genealogies (5% of all 
genealogies) disappeared within six releases. In Claws 
Mail (largest C system), 28% of all dead genealogies 
(5% of all genealogies) disappeared within five 
releases, and within 10 releases roughly 50% of all 
dead genealogies (7% of all genealogies) disappeared. 
For eMule (largest C++ system), 33% of all dead 
genealogies disappeared within only five releases. For 
the largest C# system, iTextSharp we found that the 
initial value for CDFdead(k) and thus also Rvolatile(k) to 
be smaller compared to the other systems. The possible 
reason behind this difference is that a higher number of 
dead genealogies (in total 382) span over 19 releases, 
which is more than 50% of all dead genealogies.  

The same attributes for the smallest systems of 
each language categories are provided in Figs. 2(b) and 
2(d). The smallest Java system in our study is JUnit. 
We found that all the dead genealogies (about 21% of 
all genealogies) of this system disappeared within six 
releases from when they were created. 

KeePass Password Safe is the smallest C++ system 
with 43K LOC in its final version. Among the dead 
genealogies for this system, 12% disappeared within 
five releases. The smallest C system, Wget also shows 
a similar trend but with a much higher ratio. In this 
particular scenario, 60% of all dead genealogies (25% 
of all genealogies) disappeared within only six releases 

and about 97% of all dead genealogies (40% of all 
genealogies) disappeared within 10 releases. When we 
plot the same attribute for ZedGraph (smallest C# 
system), we found that this system maintains a similar 
trend (12% of all genealogies and approximately 52% 
of all dead genealogies disappeared within five 
releases). 

The above data did not reveal any systematic 
relationship between CDFdead(k) and Rvolatile(k) for the 
language categories. However, we have found that 
even at the release level, the number of volatile clones 
was not negligible. Moreover, many of them propagate 
through subsequent releases without any changes. 
These findings indicate that aggressive refactoring is 
possibly not a cost-effective solution for such clones 
and may call for alternative measures such as tracking 
and managing them in their evolution. 

 
5. Threats to Validity 
 

One of the major threats to this study is that the 
clone detector we used might have missed certain 
clones in the systems (false negatives) or detected 
clones that are not clones in practice (false positives). 
We used CCFinderX with settings (minimum token 
length of 30 and minimum token set size of 12) that 
allow it to detect clones of reasonable size. Although 
with this setting, some clones might have been missed 
or some false positive clones might have been 
considered, we have chosen to use CCFinderX in our 
study to be consistent with the study of Kim et al. [15] 
since one of our research objectives was to investigate 
whether software systems of different languages and of 
different sizes and varieties show similar trends at the 
clone genealogy level to that observed by Kim et al. 
Moreover, CCFinder is recognized as a state of the art 
clone detector having high recall, although its precision 
is lower than some other tools [4]. 

A major part of this study is to map the clone 
groups from one release of a system to the next for 
extracting clone genealogies. While we have manually 
verified all the clone genealogies of some small 
systems, it was very difficult to manually verify the 
genealogies for all the systems. In our experience, 
although we did not find any false positive mappings 
(at least within our given settings and heuristics) 
except a few due to CCFinder finding false positive 
clones, we cannot guarantee that there are no false 
positive mappings in the results. 

Another threat to this study is the limited number of 
samples. However, to our knowledge this is the first 
study on  the  maintenance  implications  of clones, and 
in   particular  on  evaluating   clone   genealogies  that 
considers  17  open  source   systems  of  different
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languages of diverse varieties. Since all the systems in 
our study are open source, one may argue that a similar 
study on industrial systems may produce different 
results. 
 
6. Related Work 

 
Studying the evolution of clones is not a new topic 

and there have been several such studies. While they 
differ significantly in many aspects, they are also 
related to this study. Lagüe et al. [18] studied the 
evolution of clones with six versions of a large 
telecommunication software system and concluded that 
although a significant number of clones were removed 
during the evolution, the overall cloning density 
increased over time. Antoniol et al. [1] and Li et al. 
[19] studied the evolution of the Linux kernel and 
observed that although clone coverage increased early 
in the development, it stabilized over time. Our study 
differs from theirs by addressing how code fragments 
of  a  clone   group  change  with  respect  to  the  other 

fragments of that group during system evolution.  
In recent years, studying the maintenance 

implications of clones, which is also one of the 
objectives of our study, has become an active research 
topic. Kapser and Godfrey [12] conducted large-scale 
empirical studies and concluded that clones are not 
necessarily harmful and found several patterns of 
clones that could be useful in many cases. Juergens et 
al. [10], on the other hand, argued that unintentionally 
created inconsistent clones always leads to faults, and 
concluded that clones could be harmful in software 
maintenance. While we also studied the maintenance 
implications of clones, our study significantly differs 
from theirs in the sense that they did not study the 
evolution of clones. 

Krinke [16] analyzed many revisions of five open 
source software systems and found that half of the 
changes to code clone groups are inconsistent and that 
corrective changes following inconsistent changes are 
rare. In another study [17], he found that cloned codes 
are more stable than non-cloned codes and thus require 



less maintenance effort compared to non-cloned code. 
Our study differs from his in that we work on releases 
instead of revisions, and that we particularly focus on 
evaluating clone genealogies. 

Bettenburg et al. [5] studied the inconsistent 
changes of clones at the release level. They noted that 
the number of defects through inconsistent changes is 
possibly substantially lower at the release level than at 
the revision level. They reported that many clones are 
created during the software development process due 
to the experimentation of developers, which the 
developers can manage well. Thus they worked at the 
release level instead of the revision level. In order to 
avoid the affect of such short-term clones, we also 
choose to work at the release level. However, while 
they focus on finding the relation of inconsistent 
changes to software defects for two open source 
systems, we particularly focus on evaluating clone 
genealogies using 17 open source systems written in 
four different languages. 

Lozano et al. [20, 21] conducted several studies on 
the maintenance implications of clones. While they 
could not find any systematic relationships between 
cloning and maintenance efforts, they concluded that 
change efforts might increase for a method when it has 
clones. Although the underlying clone detection tool is 
the same as ours, their approach is different from ours 
in many aspects. In particular, they work on the 
revision level, whereas we work on the release level 
and that they focus on the changes at the function level, 
whereas we focus on the clone level itself. Moreover, 
they studied only Java systems, which might have also 
affected the findings. 

Göde [9] proposed a computationally efficient 
approach that models type-1 (identical code fragments 
except for variations in whitespace and comments) 
clone evolution based on the source code changes 
made between consecutive program versions of several 
open source systems. While he concluded that the ratio 
of clones decreased in the majority of the systems and 
cloned fragments survived more than a year on 
average, no general conclusion on the consistent or 
inconsistent changes to clone groups was proposed. 
Our work differs from his in several ways. In 
particular, he used an incremental clone evolution 
model and only considered type-1 clones whereas we 
considered both type-1 and type-2 (where syntactically 
similar fragments are also considered clones) clones, 
and that he worked at the revision level whereas we 
worked at the release level. Bakota et al. [3] proposed a 
machine learning approach for detecting inconsistent 
clone evolution situations and found different ‘bad 
smells’ using twelve versions of Mozilla Firefox.  
However, they studied the evolution patterns of cloned 
fragments whereas we studied clone groups, and they 

worked at the revision level (and only 12 monthly 
revisions of Mozilla Firefox) whereas we studied 
release versions of many systems written in different 
languages.  

Thummalapenta et al. [27] performed an empirical 
evaluation on four open source C and Java systems for 
investigating to what extent clones are consistently 
propagated or independently evolved. While they 
focused on identifying evolution of cloned codes over 
time and relating the evolution pattern with other 
parameters (clone granularity, clone radius and cloned 
code fault-proneness), we focus on evaluating clone 
genealogies with 17 open source software systems 
covering four popular programming languages. 
     The most closely related work to ours is the study 
of Kim et al. [15], which is also one of the motivations 
of our study. However, they studied only two small 
Java systems and at the revision level. On the other 
hand, we studied at the release level and with 17 
diverse varieties of open source systems written in four 
different programming languages. Furthermore, instead 
of location mapping, we have used snippet matching 
together with text similarity for mapping the clone 
groups from one version to the next. This allows us to 
map clone groups even when lines are modified or 
reordered in the next version. Aversano et al. [2] 
extended the clone evolution model of Kim et al. [15] 
by grouping inconsistent changes to independent and 
late evolution classes. Again, they studied only two 
open source Java systems namely ArgoUML and 
dnsjava and reported contradictory findings for the 
consistently changed clone groups.  
 
7. Conclusion 
 

In this paper, we have presented an empirical 
study for evaluating code clone genealogies using 17 
diverse categories of open source software systems 
written in four different programming languages. We 
have set up our experiment based on the genealogy 
model of Kim et al. [15] and extended their empirical 
study in different dimensions. While Kim et al. 
concentrated on the consistently changed genealogies, 
and the nature of volatile clones by analyzing two 
small Java systems, we attempted to draw a more 
detailed picture of clone genealogies by analyzing a 
larger number of systems, and systems written in 
different development languages, systems of varying 
size, and systems with varying development histories. 
Kim et al. found that (at the revision level) from 36% 
to 38% of genealogies were changed consistently, 
whereas we have found that (at the release level) from 
11% to 38% of genealogies were changed consistently, 
which does not seem contradictory. Again, they 



reported that volatile clones were disappearing within a 
short time from the systems and noted that from 48% 
to 72% of volatile clones were disappearing within 
eight check-ins. We also found that even at the release 
level many volatile clones disappear within a few 
releases. In addition, our study reveals some other 
interesting characteristics of code clone genealogies. 
We have found that for all subject systems, many 
genealogies are alive and long-lived, which implies 
that more clone groups are created than those that are 
removed.  In most of the genealogies for the subject 
systems, clone groups are propagated through releases 
either without any change or with changes just in 
identifier renaming. Hence, it is possible that these 
types of genealogies do not need any extra care during 
software maintenance. Also, they are less likely to be 
removed from the systems, and on average almost 69% 
of them reached to the final release. Moreover, on 
average nearly 67% of total alive genealogies did not 
contain any line additions or deletions or identifier 
renaming. Since we have studied a variety of systems, 
the results also indicate that it is possible that such a 
trend holds even when the systems are implemented in 
different languages, are from different areas and are of 
different sizes. We have noticed that clones are perhaps 
more manageable in smaller systems compared to 
larger ones. In addition to continuing our empirical 
study with very large (e.g., for Linux Kernel releases) 
systems and with systems of other interesting 
programming/scripting languages (e.g., Python), we 
plan to adapt our genealogy extractor to the NiCad [24] 
clone detection tool. NiCad can accurately detect near-
miss clones [24, 25], even when statements are added, 
deleted or modified in the copied fragments, and thus 
will enable us to conduct a similar study for such near-
miss clones as well. 
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