Task Model Simulation Using Interaction Templates

David Paquette and Kevin A. Schneider

Department of Computer Science, University of Saskatchewan, Saskatoon SK S7N 5C9, Canada

Abstract. Interaction Templates were previously introduced as a method to help
ease the construction of ConcurTaskTrees. In this paper, a language for defin-
ing Interaction Templates, the Interaction Template Definition Language, is in-
troduced. This paper also demonstrates how Interaction Templates can be used
to enhance task model simulation, allowing users to interact with concrete user
interface components while simulating task models. A prototype task model sim-
ulator illustrates how Interaction Templates can be used in task model simulation.

1 Introduction

Model based approaches to interactive system design are based on the specification
and evaluation of interactive systems using high-level models [9]. Using high-level
models to specify interactive systems can help designers to focus on specifying the
requirements and the behaviour of the system rather than immediately being hindered
by implementation details. High-level models can be evaluated, often with simulation
tool support, before implementation has begun, allowing for a refinement of the sys-
tem specification with fewer resources than if source code were involved in the change.
Task models focus on describing interactive systems in terms of user goals and the tasks
required to reach those goals. Many model based approaches, such as ADEPT[13],
SUIDTI[5], and U-TEL/MOBI[12], acknowledge the importance of task models.

Interaction Templates [7] are a template based approach to task modelling. We will
show how Interaction Templates can be used to promote re-use and consistency in task
models, aiding in the building and understanding of task models. We will also show how
concrete user interface components can be used with Interaction Templates to enhance
the task model simulation process.

2 Background and Related Work

2.1 ConcurTaskTrees

ConcurTaskTrees (CTT) is a graphical notation used to describe interactive systems
[10]. With CTT, tasks are arranged hierarchically, with more complex tasks broken
down into simpler sub-tasks. CTT includes a rich set of temporal operators that are
used to describe the relationship between tasks, as well as unary operators to identify
optional and iterative tasks. A summary of the CTT notation can be seen in Figure 1.

Types of Tasks
Icon | Description Unary Operat_or_s
@ Abstraction Task }:con 3;:13:1;11011 ,F;,;’:ltax
T!‘ Application Task L1 Optional [T1]
= : €=> | Connection T1
Interaction Task -
User Task
Temporal Relations
Icon Description Syntax
1 Choice T1[]T2
[=] Order Independency Tl |=| T2
1l Concurrent T1 ||| T2
([l Concurrent with information | T1 |[]| T2
exchange
[= Disabling Tl [> T2
[= Suzpend/Resume T2 = T2
== Enabling T1>>T2
[I7= Enabling with information Tl [[>= T2
exchange

Fig. 1. Summary of the ConcurTaskTrees notation

2.2 ConcurTaskTree Simulation

One of the powerful features of CTT is the ability to simulate task models at an early
stage in the development process, allowing for a simulation of the system before imple-
mentation has started. Simulation can help to ensure the system that is built will match
the user’s conceptual model as well as help to evaluate the usability of a system at a very
early stage. Several task model simulators have been built for ConcurTaskTrees. First,
we will discuss the process involved in simulating ConcurTaskTrees. Next, an overview
of two specific task model simulators will be given.

The Simulation Process ConcurTaskTree simulation involves, in some way, the sim-
ulated performance of specific tasks in order to reach a pre-defined goal. In a Con-
curTaskTree, tasks are related to each other according to their temporal relations and
hierarchical breakdown. Depending on what tasks have been performed, some tasks
are enabled and others are disabled. The first step in ConcurTaskTree simulation is to
identify the sets of tasks that are logically enabled at the same time. A set of tasks that
are logically enabled at the same point in time is called an enabled task set (ETS) [9].
Enabled tasks sets are identified according to the rules laid out in [9]. The set of all
enabled task sets for a specific task model is referred to as an enabled task collection
(ETC).

Having identified the enabled task collection for a task model, the next step is to iden-
tify the effects of performing each task in each ETS. The result of this analysis is a state
transition network (STN). In this state transition network, each ETS is a state, and tran-
sitions between enabled task sets occur when tasks are performed. The final preparation
step for simulation is to calculate the initial state. A simple example illustrating a Con-
curTaskTree and it’s STN is shown in Figure 2. A command-line tool called TaskLib
[3] can be used to extract the ETC, STN, and initial state from a CTT. The details of
TaskLib’s implementation can be found in [4].

AccessStudeatData
) = ‘!.‘ Entes Maﬁrre Submanqugs[
ProvideREgyEest ShowResults .,C—-}———-,N/ \
‘_-/{ SUDI’NTPBQUBSL\\\ AT o

A _ Enterhame, ({ShowResuts})

=2 [* % \. EnterDepartment } S~ o
N~ - "-f—/meResuns

EnterParameters SubmitRequest EnterDepartment ETS1 ETS2
b [LS
Enterblame* EnterDepartment*

Fig.2. A CTT (left) and it’s State Transition Network (right)

Once the ETC, STN, and initial state have all been identified, simulation can begin.
This initial process is common to all ConcurTaskTree simulators. The actual simulation
involves the user navigating through the STN by simulating the performance of tasks.
As will be discussed shortly, how tasks are performed differs between simulation tools.

Simulation Tools

Basic Simulators The most basic simulators, such as the one shown in Figure 3, simply
display the currently enabled tasks in a list. In these simple simulators, double-clicking
on a task simulates the performance of that task. When a task is performed, the enabled
tasks are updated accordingly. A basic task model simulator can be found in Concur-
TaskTreesEnvironment (CTTE) [8], a tool for both building and simulating task models.

Dialogue Graph Editor The Dialogue Graph Editor[2], a tool developed at the Uni-
versity of Rostock, provides a more complex simulation than the basic simulator found
in CTTE. The Dialogue Graph Editor makes use of an extension to CTT that allows
for the definition of finite sets of concurrent instances of actions. The Dialogue Graph
Editor allows designers to create views and assign tasks from a task model to those
views. The views can later be used to simulate the task model as shown in Figure 4.
When simulating the task model, views are represented as windows, elements (as well

~Enabled Tasks (Click to Peform)——
~§# Sort By CustometID =
-§# Sort By FirstName

¥ Sort By LasiName

¥ Sort By PhoneNumber
¥ Sort By E-Mail

-§8 Move FirstName Col
ES bArwvea | actMama Cnl =l

Fig. 3. A simple ConcurTaskTrees task model simulator

as tasks) inside the windows are represented by buttons, and transitions between states
are represented by navigation between windows. Views become visible when they are
enabled, and invisible when they are disabled. Likewise, buttons become enabled and
disabled when their associated tasks are enabled or disabled. Users can simulate the
task model by clicking buttons to perform tasks and navigate through windows to select
between available tasks.

The windows and buttons generated by Dialogue Graph Editor for simulation purposes
are considered to be abstract interface prototypes. However, clicking buttons to perform
tasks does not seem to provide much of an advantage over the basic simulators, and at
times might be more confusing. For example, clicking a button to simulate an interac-
tion task that does not normally involve a button widget may seem strange to end users
that may be involved in the simulation. The key advantage in Dialogue Graph Editor is
the ability to organize tasks into a dialog. This requires an additional dialog model as
well as a mapping between the dialog model and task model.

Bl® smoutieren..
J@|@| J@|@|

Iiaschine leer azchine leer

VWEEsetiank

Wassenankmfnen]

Filtterbehater dffnen

Waschine einschatten

Wassertank Offnen

| F\ﬂerbehaﬂermfnen

Wiasser gingisRen

Waschine einschatten

iWassertank schiiefen

Fig. 4. Simulator included in Dialogue Graph Editor

3 Interaction Templates

Task modelling has been shown to be useful when designing interactive systems [10].
Unfortunately, the task modelling process can become tedious and models can become
very large when modelling non-trivial systems. Previous research has shown that while
building task models to specify information systems, there are often subtrees that re-
peat throughout the model with only slight variations [7]. These subtrees are often as-
sociated with common interface interactions found in information systems. Interaction
Templates [7] model these common interface interactions. They include a detailed task
model, an execution path (i.e. dialog), and a presentation component. An Interaction
Template is a parameterized subtree that can be inserted into a ConcurTaskTree at any
point in the model. Inserting and customizing Interaction Templates reduces the need to
repeatedly model similar interactions in a system, and thus, can greatly reduce the time
spent modelling information systems. Interaction Templates are intended to help devel-
opers build task models quickly, and allow for detailed simulation while maintaining
a useful system overview. As well, Interaction Templates can be designed and tested
to ensure their usability in reaching user’s goals. Interaction Templates are intended to
provide abstract user interface plasticity as discussed in [11].

3.1 Defining Interaction Templates

Figures 5 and 6 outline how Interaction Templates are structured. An Interaction Tem-
plate includes a set of parameters, some data, and a definition of how the template
behaves depending on the data and parameters it is provided. Figure 5 shows a small
portion of an Interaction Template that models a data table interaction. The data pro-
vided to this template is a schema defining the data that will be shown in the table. No
parameters are needed for this portion of the data table Interaction Template. The Sort
By ‘Column’ task is repeated for each column in the supplied data. Given the Interac-
tion Template definition and the data, the template can be transformed into the expanded
template shown in the figure.

Figure 6 displays the behaviour of an Interaction Template that models a selection task.
This template includes some data in the form of a list specifying the options that are
available to the user. This template also includes a parameter specifying whether or not
the user is permitted to select multiple options. The template is expanded differently
depending on the value of the MultiSelect parameter.

The above two examples have shown the types of transformations that are needed to
define Interaction Templates. The remainder of this subsection will show an example of
how we can define Interaction Templates that are capable of adapting their behaviour
as shown in the above examples. Interaction Templates are described using a custom
markup language, called the Interaction Template Definition Language (ITDL). The
ITDL is embedded inside an XML description of a ConcurTaskTree. The if: namespace
is used to denote elements that describe the options and behaviour of Interaction Tem-
plates. The XML language used here to describe ConcurTaskTrees is a modification of
the language used by the ConcurTaskTreesEnvironment (CTTE) [8].

Template, Data, and Parameters

Template Data Parameters
Farmer
Farmer ID
s .
I ﬁ-f Name

Sort Data Table Address
City
Province

Expanded Template

F—1—F—1—F—1—F—-1—F—1—F—1—F —1—F-1—F

SortByFarmerID SortByName SortByAddress Sory By City SortBy Province SortBy Country SortBy PostalCode SortByPhone Sort By Email

Interface Components
farmerId FirstName © |LastName | address
7 Nicole Staveness Box 226
8 Maurice Durette Box 42

5 Mark Watson Box 492

Fig. 5. A portion of the Data Table Interaction Template. This template shows how subtasks can
be repeated for each field in a data element.

Figure 7 shows an Interaction Template defined using the ITDL. The root task of an In-
teraction Template is surrounded by an identifying it:template tag. The it:template tag
contains a single name attribute specifying the name of the template. The first element
found inside the it:femplate element is the empty it:options element. The it:options ele-
ment contains attributes specifying all the options for the current template. The name of
the attribute identifies the name of the option, while the value of the attribute identifies
the option’s type. Option types include boolean values, numbers, strings, or file paths
to XML documents such as schemas or different types of sample data.

The options specified in the it:options element are referenced inside the template using
Interaction Template commands. Interaction Template commands are used to specify
how an Interaction Template’s task tree changes according to the options specified for
the template. An Interaction Template’s adaptive behaviour is defined using two com-
mands: it:case and it:foreach.

The it:case command is used to select a specific task or subtask based on the option val-
ues for the template. An it:case command contains one or more it:condition statements.
When evaluated, the it:case command will select the first it:condition whose expression
attribute evaluates to true. The it:case command can appear anywhere inside a template
definition and can also be nested, allowing a template to be plastic at any level in the
task tree.

The it:foreach command is used to repeat a task or subtask for each element in a speci-
fied list of elements. An example of a list of elements is all of the elements contained in
a complexType of an XML schema. Inside the it:foreach statement, the current element

Template, Data, and Parameters

|Template Data Parameters
Options Multiple Select {True, False}
Option 1
|T§h"‘f Ogtion 2
Select Options Option 3
Option 4
Option 5

Expanded Template

Multiple Select = False Multiple Select = True

Eor—F -8 -F--8 E-r—F-n-F-a-F-a-

Option 1 Option 2 Option 3 Option 4 Option 5 [Option 1] [Option2] [Option 3] [Option4] [Option 5]

Interface Components
Multiple Select = False Multiple Select = True

Option 1 -

Fig. 6. An Interaction Template for selection from a list of options. This template gives the option
to select a single option, or to select multiple options.

is referenced by the name of the single attribute of the it:foreach statement. The current
element’s name attribute is referenced by adding ‘.name’ to the element reference.

When an Interaction Template is inserted into a ConcurTaskTree, and the required op-
tions have been set, the tree is expanded according to the if:case and it:foreach com-
mands. References to options and the it:foreach attribute, identified by $optionName or
$attributeName, are replaced by the option or attribute’s value respectively.

A prototype of an Interaction Template Definition Language interpreter that recognizes
and expands if:foreach commands has been implemented using TXL, a rule-based tree
transformation language [1]. The prototype is fairly simple, consisting of only 5 rules
implemented in just over 100 lines of TXL code.

3.2 Using Interaction Templates

After an Interaction Template has been defined using the ITDL as described above,
using an Interaction Template is simply a matter of inserting the template into a CTT
and setting values for the template’s options. Once the options have been set, the In-
teraction Template is expanded using an ITDL interpreter. It is always possible to edit
the expanded Interaction Template to customize the template to a specific use. It is
also possible to change the options for a template and have the Interaction Template
re-interpreted to reflect those changes. Edits to an expanded Interaction Template are
recorded and re-applied to the re-interpreted Interaction Template if possible. Currently,
no tool support exists for building task models using Interaction Templates.

<it:template name="Select Options">
</it:options MultipleSelect="Boolean” SelectableOptions="“ListData">
<Task Id="Select Options" Category="Interaction” lterative="False" Optional="False">
<5ubTasks=

<it:case>
<it:condition expression="MultipleSele ct=False”>

<it:foreach col=“$SelectableOptions.element”>
=Task Id="Select $eol" Category="Ahstraction’ [terative="False" Cptional="False"=
«<TemporalOperator=Choice</TemporalCQperator:
< Tasks
</it:foreach>

</it:condition>
<it:condition expression="MultipleSele ct=True">

<it:foreach col="“$SelectableOptions.element”>
<Task [d="5elect $col" Category="Ahstraction" lterative="False" Optional="True">
=TemporalOperator=Concurrent=/TemparalOperatar=
<fTasks
</it:foreach>

</it:condtion>
</it:case>

<f5uhTasks
<iTask=
</it:template>

Fig.7. An ITDL definition of an Interaction Template for selecting options from a list

4 Simulation with Interaction Templates

This section will show how partial user interface prototypes can be created from task
models that are built using Interaction Templates. These partial prototypes can be used
to enhance the task model simulation process, allowing users to interact with concrete
user interface components to simulate portions of task models. PetShop[6] provides a
different approach for simulating an interactive system. ConcurTaskTrees are mapped
to a Petrie net based notation. They argue that detailed design is more appropriately
specified with a model notation other than ConcurTaskTrees. We intend task notation
to provide a more seamless transition when simulating the software for the end-user.

4.1 Enhanced Task Model Simulator

While Interaction Templates model common interface interactions found in informa-
tion systems, there also exist concrete user interface components that implement many
of those interactions. In interface builders such as Borland’s Delphi, interfaces are com-
posed using sets of pre-built components. If an Interaction Template models a common
interface interaction and there exists an interface component that implements that com-
mon interface interaction, then that interface component can be used to simulate the
Interaction Template. For example, the Data Table Interaction Template can be simu-
lated using a data table interface component that is included with Delphi.

The Enhanced Task Model Simulator (ETMS), shown in Figure 8, was built to show
how concrete user interface components can be used to simulate the sections of a task
model where Interaction Templates are used. The ETMS was built using Borland Delphi
6, and contains a traditional task model simulator based on the Enabled Task Sets and
State Transition Networks derived using TaskLib [3]. The ETMS contains three views:
the model view, the simulator view, and the prototype view. The model view shows a
simple tree view of the entire task model. The simulator view, titled “Task Model Simu-
lator’, contains a basic task model simulator as well as a list displaying the activity state.
In the simulator view, tasks can be performed by double-clicking on them. When a task
is performed, it is added to the bottom of the current activity state. The activity state
shows a history of the interactions that have occurred in a simulation session. The proto-
type view shows the currently enabled Interaction Template prototypes. The Interaction
Template prototypes allow the user to interact with a concrete user interface component
to simulate a portion of the task model. When the tasks from an Interaction Template
become enabled in a simulation session, a prototype consisting of a concrete interface
component corresponding to that Interaction Template is shown in the prototype view.
When those tasks are disabled, the prototype is hidden. In the current implementation of
the ETMS, creation, enabling, and disabling of prototype instances are done manually.

AF Enhanced Task Model Simulator o[]S}
Fid

Import + pl p2 03

Model View——— Task Model Simulator n - i =
—] ; Lo
= Table Interaction | [Enabled Tasks (Click to Perform) Dol j'

farmerld |FirstName © |LastName |address |

=84 Move Column -§4 Sort By CustomerlD = bl otavencss Do 226
& ¥ Select Columi| | -# Sort By FirstName
¥% Move Firsth||| ¥ Sort By LastName
¥ Move Lasth|| ¥ Sort By PhoneNumber
¥ Move Phon| || -# Sort By E-Mail
¥ Move E-Ma||| ¥ Move FirstName Col
¥ Select New Li || Maua | actNama Cnl =l
=-# Sort By Column || Activity State
¥ Sort By Custol| |Sort By FirstName =
¥ Sort By FirstN ||| Sort By FirstName
¥ Sort By LastN;| [Move FirstName Col
¥ Sort By Phone Select New Location L
¥ Sort By E-Mai Move FirstNama Col
Select New Location

Reset

| I | =
Z

[Task Count: 14

Marice Durette Box 42

Mark Watson Box 492

Luc Demers Box 39
John Henry 0]
i Smith Bo 134

Jernifer Petrie Bo 302
David Paquette #305-405 Sth five N
Dale Hicks Box L -

=@ [N[&[@]on]@ [~

1<l

Fig. 8. A prototype of the Enhanced Task Model Simulator. Users can interact with the data table,
shown on the right of the screen, to control the task model simulator.

Interaction Template prototypes are manually built once, then instantiated and cus-
tomized dynamically during simulation sessions. A new Delphi form containing the
appropriate interface component is created for each type of Interaction Template. Each
new prototype inherits from the generic TfrmPrototype object, which contains the func-
tionality that is common with all Interaction Template prototypes. Common functional-

10

ity between prototypes includes the ability to communicate with the simulator, as well
as the ability to show and hide itself as controlled by the simulator.

Each specific prototype component implements its own adaptation logic. When a proto-
type object is created, it reads the iz:options tag that contains the options for the current
use of the Interaction Template. The prototype object adapts itself to the options speci-
fied in the it:options tag. With the Data Table Interaction Template for example, the data
table prototype reads in the schema file to set the column headers and reads in the sam-
ple data to fill in the rows. Most other Interaction Template options have a one-to-one
mapping to the attributes for the interface component that is used to simulate the Inter-
action Template. For example, the Data Table Interaction Template contains a boolean
option called ‘allowsort’, which has a direct mapping to the boolean ‘showsort” attribute
of the data table component used in its prototype. Adaptation logic for those options is
simply a matter setting the attribute values of the interface component. Finally, each
specific prototype implements a mapping between events and task occurrences in the
task model. Since communication between the prototype and the simulator is already
implemented, this is simply a matter of specifying the name of the task that is performed
when an event is triggered.

While other task model simulators use abstract interface objects to simulate tasks, con-
crete user interface components can be used to simulate tasks when Interaction Tem-
plates have been inserted into ConcurTaskTrees. Using the Enhanced Task Model Sim-
ulator, users can interact with concrete interfaces to simulate portions of a larger task
model. The Interaction Template prototypes can also be populated with sample data,
making the simulation less abstract and potentially easier for users to understand.

5 Conclusions and Future Work

This paper has further explored Interaction Templates as a tool to help in building and
simulating Task Models using ConcurTaskTrees. A language for defining Interaction
Templates has been introduced. The Enhanced Task Model Simulator has shown how
concrete user interface components can be used to simulate task models using Inter-
action Templates. This paper concludes with a discussion of the current state of our
research and plans for future work.

Tool Support: Tool support is needed both for defining Interaction Templates and for
building task models using Interaction Templates. A tool for building task models using
Interaction Templates must include an interpreter for the Interaction Template Defini-
tion Language described earlier in order to interpret an Interaction Template and expand
it based on the values of the options that are set for the current use of the template. An
Interaction Template based task modelling tool called Model-IT is currently being de-
veloped. A preliminary screenshot of Model-IT can be seen in Figure 9. There are plans
to integrate the Enhanced Task Model Simulator into Model-IT in the near future.

Creating User Interface Prototypes: Currently, prototypes are manually built to be
self adaptive to the options set for an Interaction Template. Linking events to specific

[38Model-IT - [Research Software] o [=]]
£ Fie Edit Insert TaskProperties Layout &3] x|
cawm=[Le2|nE»mr 0 |
i | X#&| (D[|
-
2 I 2l
[Select Grad Student]
E I
| o il 2
Selact Existing Grad Student ID //E'Ifﬂr Hew Grad Student
3 4
Add New Grad Student Enter Grad Studarit hm__‘_“_‘_i\
1=t L = b 1=t L o
| - / | \ | V il
I 1=I 13 k | |
st Hame Enter Mailing Address Enter City Enter ProviState Enter Country Enter Postal Code
7] I ,

Fig. 9. Model-IT: An Interaction Template based task modelling tool

tasks is also manually coded when the prototype is initially created. The manual coding
is only done once, and since the adaptation logic is built in, a prototype can be reused
a number of times to simulate a template. Ideally, prototypes would be automatically
generated from Interaction Templates. Unfortunately, there is no obvious solution to
how data can be automatically loaded into interface components, nor is there an obvious
way to automatically decide on a mapping between event occurrences and tasks in the
task model. It is likely that the mapping between events and tasks will always need to
be manually defined once. Also, unless all interface components begin to comply to a
common interface for loading data, some code will need to be written to load data into
components as well as to set component attributes based on options set for an Interaction
Template. In the current implementation, event-to-task mapping and adaptation logic
must be manually coded once for each interface component. The amount of code needed
to implement these two requirements is minimal, making the current solution a viable
option.

Linking Task Models to Final Implementations: Potentially, the technique used to
map interface component events to tasks in a task model could be used in the final
implementation of a system. The advantages of allowing this mapping to remain in a
system’s final implementation include the ability to: keep track of a user’s current state
in the system’s task model, verify the system’s implementation correctly matches the
task model, and to suggest help to users based on their current state.

12

6

Acknowledgements

The authors wish to thank the National Sciences and Engineering Research Council of
Canada (NSERC) and Western Ag Innovations for their support.

References

e}

10.

11.

12.

13.

. CORDY, J., HALPERN-HAMU, C., AND PROMISLOW, E. Txl: A rapid prototyping system

for programming language dialects. Computer Languages 16, 1 (1991), 97-107.

. DITTMAR, A., AND FORBRIG, P. The influence of improved task models on dialogues.

In Fourth International Conference on Computer-Aided Design of User Interfaces (2004),
pp. 1-14.

. LUYTEN, K., AND CLERCKX, T. Tasklib: a command line processor and library for con-

curtasktrees specifications. http://www.edm.luc.ac.be/software/TaskLib/.

. LUYTEN, K., CLERCKX, T., CHONINX, K., AND VANDERDOCKT, J. Derivation of a dialog

model from a task model by activity chain extraciton. In Design, Specification and Verifica-
tion of Interactive Systems 2003 (DSV-1S 2003) (2003), Springer-Verlag, pp. 191-205.

. MICKAEL, B., AND GIRARD, P. Suidt: A task model based gui-builder. In Proceedings

of the Ist International Workshop on Task Models and Diagrams for User Interface Design
TAMODIA 2002 (2002), C. Pribeanu and J. Vanderdonckt, Eds., INFOREC Printing House.

. NAVARRE, D., PALANQUE, P. A., PATERNO, F., SANTORO, C., AND BASTIDE, R. A tool

suite for integrating task and system models through scenarios. In DSV-IS ’01: Proceed-
ings of the 8th International Workshop on Interactive Systems: Design, Specification, and
Verification-Revised Papers (London, UK, 2001), Springer-Verlag, pp. 88—113.

. PAQUETTE, D., AND SCHNEIDER, K. A. Interaction templates for constructing user inter-

faces from task models. In Fourth International Conference on Computer-Aided Design of
User Interfaces (2004), pp. 223-235.

. PATERNO, F. Concurtasktreesenvironment (ctte). http://giove.cnuce.cnr.it/ctte.html.
. PATERNO, F. Model-Based Design and Evaluation of Interactive Applications. Springer,

2000.

PATERNO, F. Task models in interactive software systems. In Handbook of Software En-
gineering and Knowledge Engineering, S. K. Chang, Ed. World Scientific Publishing Co.,
2001.

SCHNEIDER, K. A., AND CORDY, J. R. Abstract user interfaces: A model and notation to
support plasticity in interactive systems. In DSV-IS (2001), C. Johnson, Ed., vol. 2220 of
Lecture Notes In Computer Science, Springer, pp. 28—48.

TAM, R., MAULSBY, D., AND PUERTA, A. U-tel: A tool for eliciting user task models from
domain experts. In Proceedings IUI 98 (1998), ACM Press.

WILSON, A., JOHNSON, P., KELLY, C., CUNNINGHAM, J., AND MARKOPOULOS, P. Be-
yond hacking: A model-based approach to user interface design. In Proceedings HCI’93
(1993), Cambridge University Press.

