
Supporting Group Awareness
in Distributed Software Development

Carl Gutwin, Kevin Schneider, David Paquette, and Reagan Penner

Department of Computer Science, University of Saskatchewan
Computer Science Department, University of Saskatchewan

57 Campus Drive, Saskatoon, SK
Canada, S7N 5A9

 gutwin,kas,dnp972,rpenner @usask.ca

Abstract. Collaborative software development presents a variety of coordina-
tion and communication problems, particularly when teams are geographically
distributed. One reason for these problems is the difficulty of staying aware of
others – keeping track of information about who is working on the project, who
is active, and what tasks people have been working on. Current software devel-
opment environments do not show much information about people, and devel-
opers often must use text-based tools to determine what is happening in the
group. We have built a system that assists distributed developers in maintaining
awareness of others. ProjectWatcher observes fine-grained user edits and pre-
sents that information visually on a representation of a project’s artifacts. The
system displays general awareness information and also provides a resource for
more detailed questions about others’ activities.

1. Introduction

Software projects are most often carried out in a collaborative fashion. The complexi-
ties of software and the interdependencies between modules mean that these projects
present collaborators with several coordination and communication problems. When
development teams are geographically distributed, these problems often become
much more serious [2,10,11,14]. Even though projects are often organized to try and
make modules independent of one another, dependencies cannot be totally removed
[14]. As a result, situations can arise where team members duplicate work, overwrite
changes, make incorrect assumptions about another person’s intentions, or write code
that adversely affects another part of the project [10].

These problems occur because of a lack of awareness about what is happening in
other parts of the project. Most development tools and environments do not make it
easy to maintain awareness of others’ activities [10]. Current tools are focused around
the artifacts of collaboration rather than people’s activities (e.g., the files in a reposi-
tory rather than the actions people have taken with them). An artifact-based approach
is clearly necessary for certain types of work, but without better information about
people, smooth collaboration becomes difficult. Awareness is a design concept that

holds promise for significantly improving the usability of collaborative software
development tools.

We have built a system called ProjectWatcher that provides people with awareness
information about others on the development team. The system is designed around
our observations of the awareness requirements in several distributed software pro-
jects. We found that developers first maintain a general awareness of who is who and
who is doing what on a project; and second, they actively look for information about
people when they are going to work more closely with them. However, developers
often have to use text-based sources to get that information.

ProjectWatcher observes and records fine-grained information about user edits and
provides visualizations of who is active on a project, what artifacts they have been
working on, and where in the project they have been working. This information about
others’ activities can help to improve coordination between developers and reduce
some of the problems seen in distributed development.

In this paper, we introduce ProjectWatcher and describe its design and implemen-
tation. We first give an overview of the issues affecting collaboration in software
development, and then discuss group awareness in more detail and the awareness
requirements of a distributed development project. We then describe the two main
parts of ProjectWatcher: a fact mining component that gathers developer activity
information, and a visualization component that overlays activity data onto a repre-
sentation of project artifacts.

2. Background

Although collaboration is an important research area of software engineering – where
teams are common and where good communication and coordination are essential for
success – little work has been done on group awareness in software development.
Similarly, although awareness has received attention in the Computer-Supported
Cooperative Work (CSCW) community, this knowledge has not been considered
extensively in development settings. We believe that awareness is a design concept
that holds promise for significantly improving the usability of collaborative software
development tools. In the next sections, we review issues of collaboration in distrib-
uted software development, the basics of group awareness, and the awareness re-
quirements that we have determined from observations of open source projects.

2.1 Collaboration Issues in Software Development

Collaboration support has always been a part of distributed development – teams
have long used version control, email, chat groups, code reviews, and internal docu-
mentation to coordinate activities and distribute information – but these solutions
generally either represent the project at a very coarse granularity (e.g., CVS), require
considerable time and effort (e.g., reading documentation), or depend on people’s
current availability (e.g., IRC).

Researchers in software engineering and CSCW have found a number of problems
that still occur in group projects and distributed software development. They found
that it is difficult to:
• determine when two people are making changes to the same artifacts [14];
• communicate with others across timezones and work schedules [11];
• find partners for closer collaboration or assistance on particular issues [20];
• determine who has expertise or knowledge about the different parts of the project

[24];
• benefit from the opportunistic and unplanned contact that occurs when develop-

ers are co-located, since there is little visibility of others’ activities [10].
As Herbsleb and Grinter [10] state, lack of awareness – “the inability to share the

same environment and to see what is happening at the other site” (p. 67) is one of the
major factors in these problems.

2.2 Group Awareness

In many group work situations, awareness of others provides information that is
critical for smooth and effective collaboration. Group awareness is the understanding
of who is working with you, what they are doing, and how your own actions interact
with theirs [5]. Group awareness is useful for coordinating actions, managing cou-
pling, discussing tasks, anticipating others’ actions, and finding help [8]. The com-
plexity and interdependency of software systems suggests that group awareness
should be necessary for collaborative software development. Knowledge of developer
activities, both past and present, has obvious value for project management, but de-
velopers also use this information for many other purposes – purposes that assist the
overall cohesion and effectiveness of the team. For example, knowing the specific
files and objects that another person has been working on can give a good indication
of their higher-level tasks and intentions; knowing who has worked most often or
most recently on a particular piece of code indicates who to talk to before starting
further changes; and knowing who is currently active can provide opportunities for
real-time assistance and collaboration.

In co-located situations, three mechanisms help people to maintain awareness: ex-
plicit communication, where people tell each other about their activities; consequen-
tial communication [22], in which watching another person work provides informa-
tion as to their activities and plans; and feedthrough [4], where observation of
changes to project artifacts indicates who has been doing what. Of these mechanisms,
explicit communication is the most flexible, and previous research has looked at the
ways that groups communicate over distance, through email, text chat, and instant
messaging (e.g., [18,23]). However, since intentional communication of awareness
information also requires the most additional effort, many awareness systems attempt
to support implicit mechanisms as well as communication. General approaches in-
clude providing visible embodiments of participants and visual representations of
actions that allow people to watch each other work, and overview visualizations of
artifacts that show feedthrough information.

Although group awareness is often taken for granted in face-to-face work, it is dif-
ficult to maintain in distributed settings. This is particularly true in software devel-
opment: other than access to the shared code repository, development environments
and tools provide almost no information about people on the project. Although com-
munication tools such as email lists and chat systems help to keep people informed on
some projects, these text-based awareness mechanisms require considerable effort,
and are not well integrated with information about the artifacts of the project. As a
result, coordination problems are common in distributed settings, and collaboration
suffers. A few research systems do show awareness information (e.g., TUKAN [21]
or Augur [7]), but it is not clear that these tools really provide the awareness informa-
tion that is needed by developers. As discussed in the next section, we based our tools
and techniques on findings from a study of three distributed open-source projects.

3. Awareness Requirements in Distributed Development

Open-source software development projects are a good source of information about
distributed development, since they are almost always collaborative and widely dis-
persed (in many cases, developers never meet face-to-face). To find out what the
awareness requirements are for these long-running real-world projects, we inter-
viewed several developers, read project communication, and looked at project arti-
facts from three open source projects [9]. We found that distributed developers do
need to maintain awareness of one another, and that they maintain both a general
awareness of the entire team and more detailed knowledge of people that they plan to
work with. However, developers maintain their awareness primarily through text-
based communication – particularly mailing lists and chat systems.

The three open source projects we looked at are NetBSD (www.netbsd.org),
Apache httpd (www.apache.org), and Subversion (www.tigris.org/subversion). We
chose these projects because they are distributed, they are at least medium-sized in
terms of both the code and the development team, and they all produce a product that
is widely used, indicating that they have successfully managed to coordinate devel-
opment.

An initial issue that we looked at was whether distributed projects can successfully
isolate different software modules from one another such that awareness and coordi-
nation requirements become insignificant. There are two ways that dependencies can
be reduced – by reducing the number of developers, or by partitioning the code.
However, in the three projects we looked at, neither of these factors removed aware-
ness requirements. There were at least fourteen core developers who contributed
regularly to each project, and although there was general understanding that people
work in ‘home’ areas, there were no official sanctions that prevented any developer
from contributing to any part of the code. On Apache and Subversion in particular,
development of a particular module was almost always spread across several devel-
opers.

The next issue studied was what types of awareness the developers maintained.
We found two types: general awareness and more specific knowledge. First, develop-
ers maintain a broad awareness of who are the main people working on their project,

and what their areas of expertise are. This information came from three sources: the
project mailing list, where people can see who posts and what the topics of discussion
are; the chat server, which provides similar information but in real time; and the CVS
commits (sent out by email), which allowed developers to stay up-to-date both on
changes to the project and the activities of different people. Second, when a devel-
oper wishes to do work in a particular area, they must gain more detailed knowledge
about who are the people with experience in that part of the code. We found that
people use a variety of sources to gather this information, including project documen-
tation, the records in the source code repository, bug tracking systems, and other
people. Further details on this study can be found in [9].

Even though these open-source projects do successfully manage their coordina-
tion, our interviews also identified some problems with the way awareness is main-
tained. Two problems that we consider further in this paper involve watching CVS
commits, and maintaining overall awareness about project members and their activi-
ties. Although the ‘CVS-commit’ mailing list provides the only information that is
actually based on the project artifacts, several developers said that they do not follow
them because they are too time-consuming to read. Developers also suggested that
some of the information sources they use often go out of date, and that understanding
the relationships between people and activities was often difficult. One developer
stated that new members of the project in particular could benefit from tools that
provided more information than what was currently available.

4. Project Watcher

We have developed an awareness system called ProjectWatcher to address some of
the awareness issues that we have seen in distributed development projects. Project-
Watcher gathers information about project artifacts and developer’s actions with
those artifacts, and visualizes this awareness information either as a stand-alone tool
or as a plugin inside the Eclipse IDE. ProjectWatcher consists of two main parts – the
mining component, and the awareness visualizations.

4.1 Mining Component

The mining component analyzes a project’s source code to produce facts for use by
the ProjectWatcher visualization displays. To gather developer activity information at
a finer grain size than repository commits, a shadow CVS repository is maintained
(see Figure 1). User edits are auto-committed to the shadow repository as developers
edit source code files (e.g., on every save of the file). With each auto-commit a new
version of the file is stored in the shadow repository. The mining component analyzes
the auto-committed versions against each other and the versions in the shared CVS
repository to obtain user edit information that can be understood in terms of the pro-
ject’s software architecture.

The mining component is composed of two fact extractors: the software architec-
ture fact extractor and the user edit fact extractor. The software architecture fact ex-
tractor is run against the software repository to obtain entity/relationship facts. Entity
facts extracted include: package, class and method facts. Relationship facts extracted
include: calls, contains, imports, implements and extends relationships. The software
architecture facts are used by the visualization system to present the software struc-
ture. The user edit fact extractor is run against the shadow repository to obtain infor-
mation about the methods a developer is changing. The user edit facts are used by the
visualization to present developer activity information.

Figure 1: User edit fact extraction

The software architecture fact extractor is implemented in two stages and may ei-
ther be run on the shadow repository or on the shared software repository (see Figure
2). The first stage, the base fact extractor uniquely names the entities in the source
code and extracts the facts of interest. This process is accomplished with a TXL [15]
program using syntactic pattern matching [3]. The second stage, the reference ana-
lyzer, resolves references between software architecture entities.

The reference analyzer extracts scope facts from the project source code and inte-
grates them with the facts extracted in stage one. Next, the method call facts are ana-
lyzed to determine which package and class the method that was called belongs to.
This process involves resolving the types of variables and return types of methods
that are passed as arguments to method calls. The types of all the arguments are iden-
tified. Then scope, package, class, and method facts are analyzed to determine which
package and class the method belongs to. To resolve calls to the Java library, the full
Java API is first processed by the ProjectWatcher mining component (this is only
done once for all projects).

Figure 2: Software architecture fact extraction from Java projects

The user edit fact extractor (Figure 3) is implemented in three stages and is run
against two versions of the project source code. The first stage splits the files into
separate class and method snippets. The second stage compares and matches revisions
of the code snippets. Initially, methods are matched based on their names. If a method
match is not found at the method name level, methods are compared based on the
percentage of lines of code that match between all methods. If a method’s name is
changed, a match based on percentage of similarity is still found between the two
versions. When no match is found for a method from an earlier revision, the method
is identified as having been added. When no match is found for a method from a later
revision, the method is identified as having been removed. Facts about method addi-
tions and method removals are stored in the user edit factbase. Once the methods
from each revision have been matched, a line diff is performed on each pair of meth-
ods. The diff algorithm gives us information about what lines have been added and
removed from a method, and this information is stored in the user edit factbase.

The complete factbase contains uniquely identified facts indicating all packages,
classes, methods, variables, and relationships for a Java project and all user edits.
These facts are used by the visualization component to show activity and proximity
information. The time and space needed for fact extraction and factbase storage de-
pends on the size of the code; for example, the Java Development Kit 1.4.1 contains
202 package facts, 5,530 class facts, 47,962 method facts, and 106,926 method call
facts.

Figure 3: User edit fact extraction

4.2 Visualization of activity and commits

ProjectWatcher’s activity awareness display visualizes team members’ past and cur-
rent activities on project artifacts (see Figures 4 and 5). The goals of this display are:
• to give collaborators an overview of who works on the project
• to provide a general sense of who works in what areas
• to allow changes (i.e., commits) to be tracked without much effort
• to provide more detail when the user wants to look more closely.

The display uses the ideas of edit wear, interaction histories, and overviews. Edit
wear is a concept introduced by Hill and colleagues [13]. Their overall motivation is
the question of how computation can be used to improve “the reflective conversation
with work materials” (p. 3), and the observation that most computational artifacts do
not show any traces of the ways that they have been used, unlike objects in the real
world. Starting with this idea of ‘object wear,’ their research proposes an ‘informa-
tional physics’ in which the visual appearance of an object arises not from everyday
physical laws, but from informational rules that are semantically useful. Their notion
of physics has objects explicitly show different aspects of their use over time – that is,
their interaction history:

The basic idea is to maintain and exploit object-centered interaction histories:
record on computational objects…the events that comprise their use…and dis-
play useful graphical abstractions of the accrued histories as part of the objects
themselves.” ([13], p. 3)

Hill and colleagues were primarily interested in an individual’s reflection on their
use of work artifacts, but there is obvious value for group awareness as well. In Pro-
jectWatcher, the artifacts are the files in a CVS repository (shadow or regular), and
the interaction history is a record of all of the actions that a person undertakes with
them (gathered unobtrusively by the fact extractor as people carry out their normal
tasks).

We take these interaction histories and visualize them on an overview representa-
tion of the entire project. Overviews provide a compact display of all the project
artifacts, and allow information to be gathered at a glance. In addition, the overview
representation can be overlaid with visual information about the interaction history or
about changes to the artifacts. Although some tools such as CVS front-ends do lim-
ited visualization of the source tree (e.g., by colour), our goal here is to collect much
more information about interaction, and provide richer visualizations that will allow
team members to quickly gather awareness information.

ProjectWatcher uses the extracted fact base to create a visual model of what each
developer is doing in the project space. Project artifacts are shown in a simple stacked
fashion that displays packages, files, classes, and methods. We chose this method of
organization because it is much more compact than other approaches, such as class
diagrams or dependency graphs. With the stacked representation, even a small over-
view can completely display projects with up to several hundred files (e.g., Figure 4
shows 322 files); in larger projects, developers can collapse particular packages to
save space. The drawback with the stack is that there is little contextual information
available to help users determine which artifact is which. To try and reduce this prob-
lem, artifacts are always stacked by creation date, so that their location in the over-
view is fixed, and can over time be learned by the user. We are also experimenting
with allowing users to reorganize the display, so that they can arrange and group the
artifacts in ways that are more meaningful to them.

On this basic overview representation, we overlay awareness and change informa-
tion. First, each developer is assigned a unique colour, and this colour can be added to
the blocks in the overview based on a set of filters. Common filters that involve de-
veloper information include who has modified artifacts most recently, and who has
modified them most often. Other filters exist as well, such as one that shows time
since last change (see Figure 5). Second, we show a summary of the activity history
for each artifact with a small bar graph drawn inside the object’s rectangle; bars rep-
resent amount of change to the class since its creation. More information about an
artifact can be obtained by holding the cursor over a rectangle: for example, the name
of the class and a more detailed bar graph.

Change information can be shown in addition to information about developers.
The system highlight artifacts (using coloured borders) if they have changed recently
– this provides users with dynamic information about commits to the project. When a
change occurs to the CVS repository, the changed files are highlighted in the over-
view representation. More details about the change can be seen using the popup detail

window, and further information (such as the difference between the two versions)
can be seen through a context menu.

Figure 4. Project overviews showing directories (grey bars) and files (coloured blocks) for a
medium-sized game project with 322 files. Three types of filters are shown: at left, block col-
our indicates who changed the file most recently; at middle, colour shows who has changed the
file most often; at right, grey level indicates the amount of time since last change. In each
block, the bar graph shows the edit history since the start of the project. Developer colours are
shown in a menu. Note that normally only one window would be used, with the filter changed
through a menu selection.

The overview displays help developers to answer a variety of questions about the
project and about the activities of their collaborators. For example, it can be seen that
the developers timriker (light blue) and davidt (red) are currently active (since they
have each been the last to touch several files), and are core developers on the project
(since they are both the most frequent committer for many files). We can also see that
developers riq (green) and nsayer (dark blue) are each likely responsible for one main
module in the project, since they are the most frequent for all the files in a particular

directory. Two other people, dbw192 (yellow) and dbrosius (brown) are neither re-
cent or frequent committers, since neither filter shows any files in their colour. Fi-
nally, we can see from the ‘age’ filter (Figure 4, right) that most of the project has
recently been changed, since most of the blocks are white or light grey.

Figure 5. ProjectWatcher as an Eclipse IDE plugin (www.eclipse.org), showing highlights
(yellow borders on blocks) to indicate others’ recent changes, and popup window to show more
detail about a particular file.

The highlights (see Figure 5) provide an analogue to the CVS-commits mailing
list, but with considerably less effort. As can be seen in the figure, there are six files
that have been changed since the local user last updated files from the repository. It is
easy to determine how much change is occurring, and in general where it is happen-
ing. By holding the mouse cursor over any of these blocks, the developer, can get
more information about what file has been changed, who committed the most recent
change, and the number of lines added and deleted in the change (the ‘14/4’ in the
popup indicates that 14 lines were added, and 4 deleted).

5. Comparison to Related Work

A number of software engineering tools provide some degree of information about
other members of the team (such as their identities or their assigned tasks), or provide
facilities for team communication (e.g., [2,6,19]). However, only a few systems com-
bine information about people’s activities with representations of the project artifacts.
Two that do this are Augur [7] and TUKAN [20,21].

TUKAN is one of the first systems to explicitly address the question of awareness
in software development. The basic representation used in TUKAN is a Smalltalk
class browser, onto which awareness information is overlaid. In particular, the system
shows the distance of other developers in ‘software space,’ using a software structure
graph as the basis for calculating proximity. The main difference in our approach
with ProjectWatcher is in the use of an overview; where TUKAN presents relevant
information about others who may be encroaching on a developer’s current location,
ProjectWatcher provides a general overview of the entire project.

Augur is a system similar to Ball and Eick’s SeeSoft [1], that presents line-based
visualizations of source code along with other visual representations of the project.
The goal of Augur is to unify information about project activities with information
about project artifacts; the system is designed to support both ongoing awareness and
investigation into the details of project activity. ProjectWatcher also uses the ideas of
edit/read wear and combining activity and artifact information; the main difference
between the two systems is that Augur is a large-scale system with many views and a
highly detailed representation of the project, whereas ProjectWatcher’s visualization
is designed only to support the two awareness questions seen in our work with exist-
ing projects (“who is who in general” and “who works in this area of the code”). In
addition, ProjectWatcher is based on a much finer temporal granularity of activity
than is Augur, which uses repository commits as its source of activity information.
We see ProjectWatcher as more suited to day-to-day activities on a collaborative
project, and Augur to specific investigations where developers wish to explore the
history of the project in more detail.

6. Future Research

Our future plans for ProjectWatcher involve improvements and new directions in
both the mining and the visualization components. The current version of the system
primarily addresses those awareness issues that we saw in distributed projects, but the
basic tools and approaches can be used for a variety of additional purposes.

First, we currently visualize source code that is in the process of being edited, and
therefore the source code may be inconsistent, incomplete and frequently updated.
We are investigating techniques for improving the robustness and performance of the
fact extraction process, and techniques for visualizing partial information given these
circumstances. Our system also only records user edits to the method level. We plan

to move towards even finer grained awareness so that we can handle concurrent edits
in some situations.

Second, the capturing and recording of developers' activities supports new soft-
ware repository mining research in addition to supporting awareness. Developers
normally change a local copy of the software under development, and periodically
synchronize their changes with the shared software repository. Unfortunately, the
developer’s local interactions with the source code are not recorded in the shared
software repository. With our finer-grained approach, the local interaction history of
the developer is recorded and is available to be mined. Example software mining
research directions include:
• Discovery of refactoring patterns. Analysing local interaction histories may be

useful for identifying novel refactoring patterns and coordinating refactorings
that affect other team members.

• Discovery of browsing patterns. Local interaction history includes the devel-
oper's searching, browsing and file access activities. Analysing this browsing in-
teraction may be useful in supporting a developer in locating people or code ex-
emplars.

• Discovery of expertise. Since the factbase contains facts from the Java API, we
can determine what parts of that API each developer has used, and how often. It
can now be possible to determine who has used a particular Java widget or struc-
ture frequently, and to build that knowledge into the development environment.

We also plan to refine and expand the visualization component. Short-term work
will involve testing the representations and filters to determine how the information
can be best presented to real developers. Longer range plans involve extensions to the
basic idea of integrating information about activities with information about project
artifacts. For example, we plan to extend our artifact collection to include entities
other than those in source code. Many other project artifacts exist, including commu-
nication logs, bug reports and task lists. We hope to establish additional facts to
model these artifacts and to use the new artifacts and their relationships in the aware-
ness visualizations. We can also extend our use of the interaction histories to other
areas. As discussed above, recording developers' interaction history and extracting
method call facts from the source code provides us with basic API usage information.
We can present this information in the IDE to provide awareness of technology ex-
pertise.

Finally, we plan to extend the range of awareness information that can be seen in
the visualizations. As mentioned above, displaying information about refactoring,
browsing, and expertise may be useful to developers in a distributed project. Other
possibilities include questions of proximity – “who is working near to me?” in terms
of the structures and dependencies of the software system under development, and
questions of scope and effect – “how many people will I affect if I change this mod-
ule?” Proximity is an important concept in software development because developers
who near to one another (in code terms) form an implicit sub-team whose concerns
are similar and whose interactions are more closely coupled [20]. Proximity groups
are not defined in advance and change membership as developers move from task to
task; therefore, it is often very difficult to determine who is currently in the group.

We will address this problem by extending the ProjectWatcher visualizations to make
it easier to see proximity-based groups.

6. Conclusions

We have presented a system to address some of the awareness problems experienced
in distributed software development projects. ProjectWatcher contains two main
parts: a mining component and a visualization system. The system keeps track of
fine-grained user activities through the use of a shadow repository, and records those
actions in relation to the artifact-based dependencies extracted from source code.
Second, visualizations represent this information for developers to see and interact
with. The visualizations present a project overview, overlaid with visual information
about people’s activities. Although our prototypes have limitations in terms of project
size, they can provide developers with much-needed information about who is work-
ing on the project, what they are doing and how the project is changing over time.

Acknowledgements

The authors would like to thank IBM Corporation for supporting this research.

References

1. Ball, T., and Eick, S. Software visualization in the large. IEEE Computer, Vol 29, No 4,
1996.

2. Chu-Caroll, M., and Sprenkle, S. Coven: Brewing better collaboration through software
configuration management. Proc FSE-8, 2000.

3. Cordy, J., Dean, T., Malton, A., and Schneider, K., Software Engineering by Source Trans-
formation - Experience with TXL, Proc. SCAM'01 - IEEE 1st International Workshop on
Source Code Analysis and Manipulation, 168-178, 2001.

4. Dix, A., Finlay, J., Abowd, G., and Beale, R., Human-Computer Interaction, Prentice Hall,
1993.

5. Dourish, P., and Bellotti, V., Awareness and Coordination in Shared Workspaces, Proc.
ACM CSCW 1992, 107-114.

6. Elliott, M., and Scacchi, W., Free software developers as an occupational community:
resolving conflicts and fostering collaboration, Proc. ACM GROUP 2003, 21-30.

7. Froehlich, J. and Dourish, P., Unifying Artifacts and Activities in a Visual Tool for Dis-
tributed Software Development Teams. To appear, Proc. ICSE 2004.

8. Gutwin, C. and Greenberg, S. A Descriptive Framework of Workspace Awareness for
Real-Time Groupware. Journal of Computer-Supported Cooperative Work, Issue 3-4,
2002, 411-446.

9. Gutwin, C., Penner, R., and Schneider, K., Group Awareness in Distributed Software De-
velopment, to appear, Proceedings of ACM CSCW 2004, Chicago, 2004.

10. Herbsleb, J., and Grinter, R., Architectures, coordination, and distance: Conway’s law and
beyond. IEEE Software, 1999.

11. Herbsleb, J., Grinter, R., and Perry, D., The geography of coordination: dealing with dis-
tance in R&D work. Proc. ACM SIGGROUP conference on supporting group work, 1999.

12. Herbsleb, J., Mockus, A., Finholt, T., and Grinter, R., Distance, Dependencies, and Delay
in a Global Collaboration, Proc. ACM CSCW 2000, 319-328.

13. Hill, W.C., Hollan, J.D., McCandless, J., and Wroblewski, D. Edit wear and read wear.
Proc. ACM CHI 1992, 3-9.

14. Kraut, R., and Streeter, L., Coordination in software development. CACM, 1995.
15. Malton, A., Schneider, K., Cordy, J., Dean, T., Cousineau, D., and Reynolds, J., Processing

Software Source Text in Automated Design Recovery and Transformation. Proc. 9th Inter-
national Workshop on Program Comprehension, 127-134, 2001.

16. McDonald, D., and Ackerman, M., Just Talk to Me: A Field Study of Expertise Location
Finding and Sustaining Relationships, Proc. ACM CSCW 1998, 315-324.

17. Mockus, A., Fielding, R., and Herbsleb, J. Two Case Studies of Open Source Software
Development: Apache and Mozilla, ACM ToSEM, 11, 3, 2002, 309-346.

18. Monk, A., and Watts, L., Peripheral Participants in Mediated Communication, Proc. ACM
CHI 1998, v.2, 285-286.

19. Raymond, E., The Cathedral and the Bazaar, O’Reilly, 2001.
20. Schummer, T., Lost and found in software space. Proc 34th HICSS, 2001.
21. Schummer, T., and Schummer, J., TUKAN: A team environment for software implementa-

tion. Proc. OOPSLA 1999.
22. Segal, L., Designing Team Workstations: The Choreography of Teamwork, in Local Appli-

cations of the Ecological Approach to Human-Machine Systems, P. Hancock, J. Flach, J.
Caird and K. Vicente ed., Erlbaum, 1995, 392-415.

23. Whittaker, S., Frohlich, D., and Daly-Jones, O., Informal Workplace Communication:
What is It Like and How Might We Support It?, Proc. ACM CHI 1994, 131-137.

24. B. Zimmermann and A. M. Selvin. A framework for assessing group memory approaches
for software design projects. Proc. Conference on Designing interactive systems. 1997.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

