
SimCad: An Extensible and Faster Clone Detection
Tool for Large Scale Software Systems

Md. Sharif Uddin Chanchal K. Roy Kevin A. Schneider
Deptartment of Computer Science, University of Saskatchewan, Saskatoon, Canada

{s.uddin, chanchal.roy, kevin.schneider}@usask.ca

Abstract—Code cloning is an inevitable phenomenon in evolu-
tion of software systems. To reduce the harmful effects of clones
in software evolution, they need to be identified correctly as well
in a time efficient way. There might be various types of clones in
a software system. Earlier research shows detection of near-miss
clones in large datasets appears to be costly in terms of time and
memory. Among the clone detection tools available in practice,
not very many of them are found effective in that regard. In this
paper we present a standalone clone detection tool SimCad. It is
based on a highly scalable and faster clone detection algorithm
designed to detect both exact and near-miss clones in large-
scale software systems. One of the potential aspects of SimCad
is that its clone detection function is made more portable by
packaging it into a library called SimLib. Thus, SimLib now
can be used as an off-the-shelf clone detection library that can
be easily integrated into other applications that are designed
to work based on detected clones. For example, a standalone
tool or an Integrated Development Environment (IDE) plugin
can use SimLib for realtime clone detection while providing its
own services like clone visualization and/or clone management
functionalities. We hope that both researchers and developers
would enjoy and utilize the benefit of using these tools in different
aspects of detection and management of clones in software.

I. INTRODUCTION

Are clones harmful in software development and evolution
or they are not? Despite a decade of active research in
software clone, arguably there is no such conclusive finding
that significantly favors one argument over the other. However,
researchers commonly agreed that in order to make best use
of the good sides of code cloning and to reduce the possible
harmful effects, we need an efficient and cost-effective way
to mange clones. Although, a number of clone detection tools
have been proposed in past studies [6], only a few of them can
perform well against current diverse requirements such as fast
detection of near-miss clones and adaptation/integration of a
third party clone detection tool to a clone management system.
Thus, the need for designing better clone detection techniques
is still considered an important problem. Considering that as
a motivation, we have designed SimCad as a fast and scalable
clone detection tool that works well in detecting near-miss
clones even for large-scale dataset, and SimLib to make the
clone detection service more accessible to the applications
designed for managing clones. The following two sections will
cover both of the tools in short.

II. THE SIMCAD CLONE DETECTOR

SimCad features a standalone clone detection tool evolved
from our earlier research [8] where effectiveness of simhash

(a similarity preserving data hashing technique) [1] has been
studied for fast detection of clones in source code. The proto-
type implementation was found effective especially for quick
detection of near-miss clones in large-scale software systems.
Based on that prototype, a full-fledged clone detection tool has
been engineered that we present here as SimCad. It employs
a data clustering algorithm with a multi-level index based
searching that enables fast detection of clones. Fig. 1 shows an
overview of end-to-end clone detection process in simCad. The
whole process includes three phases named as: Pre-processing,
Detection and Output generation. The pre-processing phase
again consists of the following four sub-process: Extraction,
Normalization, SimHash generation and Indexing; once done
altogether, the result (index) can be reused as many times
as needed to perform clone detection operation. Technical
details of all the steps can be found in an earlier study [8]. A
variant of the mutation/injection framework [5] for evaluating
clone detection tools was used to evaluate the correctness of
simCad’s detection result. Besides a comparative performance
analysis of SimCad’s clone detection algorithm with another
state of the art tool, NiCad [2] was conducted.

SimCad is a structured clone detection tool. That is, it
detects clones as code fragments (e.g., function or code block),
the boundary of which are predefined during the source code
pre-processing step. The tool provides both command-line
and graphical user interface for its user. Detection outcome
can be varied by providing input to a number of parameters
exposed through the user interface. There is also an external
configuration file named simcad.cfg.xml that provides more
configurable parameters with their default values. User can
modify these parameter values in order to fine tune the overall
clone detection process. The clone detection result is exported
as an XML file to a location specified by the user, otherwise to
a system defined location relative to the given source location.

Listing 1. Command-line user intefacs of SimCad

Usage: simcad2 [-version] [-help] [-gx] [-v] [-i
item_to_search] -s source_path -l language

[-g granularity] [-t clone_type] [-c
clone_grouping] [-x source_transform]
[-o output_path]

Usage: simcad2xml [-version] [-help] [-gx] [-v]
[-n] [-i item_to_search] -s o_source_xml
[-x t_source_xml] [-t clone_type] [-c

clone_grouping] [-o output_path]

978-1-4673-3092-3/13 c© 2013 IEEE ICPC 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

236



Fig. 1. Clone detection process in SimCad (taken from [8])

Fig. 2. SimCad graphical user interface

Pr
e-
pr
oc
es
sin

g

CloneDataProvider
FilesystemDataProvider

XMLDataProvider
DbDataProvider

CloneIndex

InDbCloneIndex
InMemoryCloneIndex

SimHashGenerator
TokenGenerator
TokenFilter

RegularHashGenerator

De
te
ct
io
n

Po
st
-

pr
oc
es
sin

g Processors
XmlOutputProcessor
HtmlOutputProcessor
DbOutputProcessor

CloneFilter

SubsumeFilter
TypeFilter

DetectionEngine

TypeMapper

Fig. 3. SimLib architecture

A. Command-line User Interface (CUI) of SimCad

SimCad provides the following two commands for detecting
clones in a target system: simcad2 and simcad2xml (List-
ing 1). The command simcad2 takes root folder of the subject
system and source code language name of that system as
two mandatory inputs. The language parameter is required
by SimCad to use appropriate TXL [3] scripts for extraction
and normalization of code fragments from original source
during pre-processing step. Currently it supports four popular
programming languages namely: C, Java, Python and CSharp.
An example of detecting clones using the command simcad2
is shown below for a project named ’dnsjava’:

$ ./simcad2 -s /TestSystems/dnsjava -l java

Command simcad2 has a special optional parameter
item to search. This parameter takes a file or a folder that
contains source code to be searched in a target project.
That is, the parameter points to some source code as search
candidate(s) and execution of the command goes for detecting
codes similar to the search candidates in the target project.

237



This opens up a number of interesting possibilities in code
and clone search. For example, user might want to see if
some arbitrary code (or anything similar) exists in a target
project. In such case, user needs to provide the arbitrary code
location as input to the parameter item to search (i.e., the
search candidates outside the target project location) and then
execute the detection command after setting the target project.
Thus, SimCad in such case essentially works as a source code
search engine. An example command is given below.

$ ./simcad2 -i /Documents/Snippet.java -s
/TestSystems/dnsjava -l java

Another use case scenario for this command would be lo-
calized clone search. That is, detection is performed into a
specific region of a codebase to see if that region contains
any clone code with respect to the whole project. Using this
command, user can get the service by proving the subset
codebase location as an input to the parameter item to search
and choosing the whole project as the target project as follows:

$ ./simcad2 -i /TestSystems/dnsjava/org/xbill/
DNS/utils -s /TestSystems/dnsjava -l java

In the same way, this command could also be used to detect
inter-project clones in two difference projects. In case the
user ignores the parameter, detection will go for searching
all possible clones inside the target project.

The next command simcad2xml takes source input through
the only required parameter o source xml as an XML file
of a pre-defined format [7]. Optionally, user can provide
a similar XML file (through parameter t source xml) that
contains normalized/transformed version of the original source
data if available, which would yield better detection result for
near-miss clones. This interface opens a great opportunity for
SimCad to perform clone detection on any kind of textual data
since unlike the previous command it is language independent.

B. Graphical User Interface (GUI) for SimCad

SimCad also provides GUI as a convenient way of using the
tool for clone detection. Fig. 2 shows the GUI corresponds to
the command simcad2 that can be made available using the
following command:

$ ./simcad2 -gx

User can provide the other arguments here in the command
line as well, but those will be propagated to the GUI as
appropriate. Additionally, the GUI provides a simple clone
explorer and clone code viewer (bottom part in Fig. 2) that user
can choose to display clones (optionally) while performing a
clone detection on a subject system.

Fig. 4. SimEclipse Clones View for display clone detection result

III. SIMLIB: THE LIBRARY FOR CLONE DETECTION

SimLib is developed as a portable clone detection library
based on SimCad to make it (SimCad) more usable in practical
context. It provides a broader configuration and adaptation fa-
cility for identifying clones in data with diverse characteristics
and providing off-the-shelf clone detection functionality for a
host application. The modular architecture makes SimLib a
highly configurable and extensible API that can be tailored
with minimal effort to build a fully customized clone detection
tool for target data, or can be integrated to IDE or third party
source code analysis systems. The architecture contains three
layers as shown in Fig. 3: Pre-processing, Detection and Post-
processing. Each layer contains a number of configurable com-
ponents where users can choose different options from within
the library or can create customized components and link them
with the core system using SimLib’s external configuration file
to address different detection requirements for the target data.

IV. SUMMARY AND CONCLUSION

Both SimCad and SimLib are potential tools to be used
in research and industry. SimCad provides an easy to use
command line interface as well as a convenient graphical user
interface (GUI) where user can explore the detected clones in
a subject system. Using it, clones can be searched locally or
in the whole project. Besides, it can work as a code search
engine as well. SimCad has been used in a recent study [4]
where detection of clones in Java bytecode was experimented.
It is also being used in our research lab for several other
ongoing studies. On the other hand, SimLib makes the clone
detection service portable to other applications that need one.
It can be configured for detecting clones both in source and
non-source code based documents, where most of the existing
tools might not be a good fit. SimLib has been successfully
integrated as an Eclipse plugin called SimEclipse that we are
currently developing for managing clones in IDE (Fig. 4). We
believe both these tools would add a great value not only to the
software clone research community but also to the industry.
Both the tools are available for download [7] including textual
instruction and demonstration for setup and use.

REFERENCES

[1] M. S. Charikar, “Similarity Estimation Techniques from Rounding Algo-
rithms”, Proc. STOC, 2002, pp. 380-388.

[2] J.R. Cordy and C.K. Roy, “The NiCad Clone Detector”, Proc. ICPC,
2011, pp. 219-220.

[3] J. R. Cordy, “The TXL Source Transformation Language,” Science of
Computer Programming, 2006, 61(3), pp. 190-210.

[4] I. Keivanloo, C. K. Roy, and J. Rilling, “Java Bytecode Clone Detection
via Relaxation on Code Fingerprint and Semantic Web Reasoning”, Proc.
IWSC, 2012, pp. 36-42.

[5] C. K. Roy and J. R. Cordy, “A Mutation / Injection-based Automatic
Framework for Evaluating Code Clone Detection Tools”, Proc. ICST
Mutation Workshop, 2009, pp. 157-166.

[6] C. K. Roy, J. R. Cordy and R. Koschke. “Comparison and Evaluation of
Code Clone Detection Techniques and Tools: A Qualitative Approach”,
Science of Computer Programming, 2009, 74(7), pp. 470-495.

[7] SimCad Clone Detector, URL: http://homepage.usask.ca/∼mdu535/tools.
html (Last accessed April 2013)

[8] S. Uddin, C. K. Roy, K. A. Schneider and A. Hindle, “On the Effective-
ness of Simhash for Detecting Near-Miss Clones in Large Scale Software
Systems”, Proc. WCRE, 2011, pp. 13-22.

238


