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Abstract—Understanding the evolution of clones is important
both for understanding the maintenance implications of clones
and building a robust clone management system. To this end,
researchers have already conducted a number of studies to
analyze the evolution of clones, mostly focusing on Type-1 and
Type-2 clones. However, although there are a significant number
of Type-3 clones in software systems, we know a little how they
actually evolve. In this paper, we perform an exploratory study
on the evolution of Type-1, Type-2, and Type-3 clones in six open
source software systems written in two different programming
languages and compare the result with a previous study to
better understand the evolution of Type-3 clones. Our results
show that although Type-3 clones are more likely to change
inconsistently, the absolute number of consistently changed Type-
3 clone classes is higher than that of Type-1 and Type-2. Type-
3 clone classes also have a lifespan similar to that of Type-1
and Type-2 clones. In addition, a considerable number of Type-1
and Type-2 clones convert into Type-3 clones during evolution.
Therefore, it is important to manage type-3 clones properly to
limit their negative impact. However, various automated clone
management techniques such as notifying developers about clone
changes or linked editing should be chosen carefully due to the
inconsistent nature of Type-3 clones.

Index Terms—Type-3 clones; clone genealogy; clone evolution

I. INTRODUCTION

The investigation and analysis of code clones has attracted
considerable attention from the software engineering research
community in recent years. Researchers have presented ev-
idence that code clones have both positive [14], [25] and
negative [18] consequences for maintenance activities and
thus, in general, code clones are neither good nor bad. It is
also not possible or practical to eliminate certain clone classes
from a software system to minimize their potential threats [14].
Consequently, the identification and management of software
clones, and the evaluation of their impact has become an
essential part of software maintenance. Knowing the evolution
of clones throughout a system’s history is important for
properly comprehending and managing its clones [13].

There are mainly three types of code clones defined by the
researchers based on textual similarity–Type-1, Type-2, and
Type-3. Type-1 clones are identical code fragments but may
have some variations in whitespace, layout and comments.
They are also known as identical clones. Type-2 clones are
syntactically equivalent fragments with some variations in
identifiers, literals, types, whitespace, layout and comments.
Type-3 clones could include all the changes of Type-1/Type-2
clones with further modifications such as changed, added or

removed statements. The similarity/dissimilarity threshold of
a clone detector determines how much dissimilar fragments
could be in the same clone class. Type-2 and Type-3 clones
are often referred together as near-miss clones.

There has been quite a bit of research on studying the
evolution of code clones. These studies retrospectively inves-
tigated how clone classes are modified through versions for
different levels of granularity, for different subject systems
written in different languages, using different clone detection
tools, and from different perspectives. However, most of the
studies [2], [14], [15], [23], [25] focused on only Type-1 and
Type-2 clones. Therefore, the existing knowledge regarding
the evolution of Type-1 and Type-2 clones is reasonably rich.
However, we know only a little about the evolution of Type-3
clones despite the fact that there are substantially more Type-3
clones than Type-1 or Type-2 in software [22].

Recently, Bazrafshan [5] studied seven subject systems at
revision level to analyze the evolution of near-miss clones
and compared with that of identical clones. He found that
near-miss clones seem to be more dominating and should
get more attention in maintenance. Although this is a good
study towards understanding the evolution of near-miss clones,
there are two important reasons that call for further analysis
to understand the evolution of Type-3 clones properly. First,
Bazrafshan analyzed the evolution of Type-2 and Type-3
clones together as near-miss clones. Therefore, it is hard to
understand the unique behavior of Type-3 clones. Second,
researchers found widely varying results in their studies of
the evolution of Type-1 and Type-2 clones depending on the
subject systems, the tools, and the granularity of analysis. We
expect the same to be true of studying the evolution of Type-3
clones.

In this paper, we conduct an exploratory study on the
evolution of Type-3 clones to understand their maintenance
implications in more detail. Unlike the previous study, we
separated all the three types of clones (instead of considering
Type-2 and Type-3 clones together as near-miss clones), and
analyzed their evolution independently for different subject
systems at a different level of granularity (release level rather
than revision level), using a different clone detection tool and
genealogy extractor. Then we compared the results of Type-3
clones with that of Type-1 and Type-2 clones to understand
the unique behavior of Type-3 clones. More specifically we
answer the following research questions.
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RQ1: What is the lifetime of Type-3 clone classes compared
to Type-1 and Type-2?

Lifetime is an important metric to understand the impor-
tance of managing a particular type of clones. If a clone
class disappears very quickly, it would not be cost effective
to manage/refactor it. In previous studies [6], [23], researchers
found many Type-1/Type-2 clones that are long lived, and thus
need to be managed. In this study, we want to see if the same
results hold for Type-3 clones as well.

RQ2: Do Type-3 clone classes change more frequently than
Type-1 and Type-2?

Change frequency is another important metric to assess the
benefits of a clone management system. The more a clone
class changes, the more additional cost it may incur, since
changing one clone fragment typically requires the changes
to be propagated to all of its siblings. Furthermore, the
likelihood of an unintentional inconsistent change increases
as the number of changes increases.

RQ3: Do Type-3 clone classes exhibit similar change pat-
terns to those of Type-1 and Type-2?

Understanding the change patterns of Type-3 clones is
very important to design appropriate techniques for managing
them. For example, if Type-3 clones mostly tend to change
consistently, tool support such as linked editing would be
useful to prevent unintentional inconsistent changes.

RQ4: Do Type-1 or Type-2 clone classes become Type-3
clone classes during evolution or vice versa?

In order to design a robust clone management system, the
type of a clone class could be an important parameter to select
appropriate techniques. During the course of evolution, it is
possible that one type of clone class converts to another type.
For example, a Type-1/Type-2 clone class could be converted
into Type-3 in the next version due to an inconsistent change or
vice versa. Knowing what percentage of clone classes convert
into different types is important in this regard.

RQ5: What are the frequent syntactic changes to Type-
3 clone classes during evolution? Do those changes also
happened in Type-1 and Type-2? Is there any syntactic change
that happens more consistently than others?

While numeric data regarding clone evolution are useful
for understanding the high level behavior of code clones,
understanding the characteristics of how clones actually evolve
may open new approaches to clone management [14]. As a first
step, we investigate the extent to which syntactic changes are
consistent or inconsistent w.r.t. the previous versions. Given a
history of consistent changes, a useful strategy is to notify the
developers that an inconsistent changes might be unintentional.

To summarize the result of this research, we have observed
that Type-3 clones changed 28% more frequently, on average,
than Type-1 and Type-2 clones, and 70% of the changed Type-
3 genealogies were inconsistent. Furthermore, in 16% of Type-
3 clone classes, changes took place in the dissimilar lines. In
the study period, we have found a considerable number of
Type-1 and Type-2 clones that converted into Type-3 due to
inconsistent changes. But interestingly, the absolute number
of consistently changed Type-3 clone classes was higher than
that of Type-1 and Type-2 clone classes. Type-3 clones also

maintained a lifetime similar to that of Type-1 and Type-2
clones. Therefore, managing Type-3 clones is important and
existing clone management support such as linked editing
would be helpful for Type-3 clones as well. But since most
of Type-3 clone classes tend to be changed inconsistently, this
kind of automatic support should be chosen carefully.

Our paper makes the following contributions:
1) We extend gCad [24], a near-miss clone genealogy

extractor, to get more detailed data on the evolution of
Type-3 clones.

2) Our study presents empirical data on the evolution of
Type-3 clones, which not only verify some previous
findings in different experimental settings, but also show
that the behavior of Type-3 clones is far different from
Type-2 clones during evolution, although both of them
are categorized as near-miss clones.

3) We investigate the relationships between change patterns
of different types of clones and their syntactical changes.
Our initial results suggest that the type of syntactic
changes may provide useful hints about the consistency
of changes.

4) Based on the study results, we suggest several ap-
proaches to deal with Type-3 clones that would be
helpful to design a robust clone manage system.

The rest of this paper is organized as follows. Section
II defines important terminology. Section III introduces the
new gCad features. Section IV describes the study procedure.
Section V presents empirical results. We discuss different
maintenance implications of Type-3 clones in Section VI and
threats to validity in Section VII. Section VIII discusses the
related work, and finally Section IX concludes the paper with
our directions for future research.

II. TERMINOLOGY

Clone Genealogy: A clone genealogy is a directed acyclic
graph that describes the evolution history of a clone class
during a given epoch.

Consistent Change (CC): All clone fragments in the same
clone class have been changed similarly, and thus all of them
are again part of the same clone class in the next version.

Inconsistent Change (IC): All clone fragments in the same
class have not been changed consistently. However, for Type-3
clones, all the clone fragments of a particular clone class could
still form the same clone class in the next version even if one or
more fragments of that class was changed inconsistently. The
dissimilarity between the fragments of a clone class usually
depends on the similarity or dissimilarity threshold of the
associated clone detection tools.

Static Genealogy (SG): Static genealogy refers to those
genealogies in which the clone fragments are propagated
through subsequent releases without any textual change. The
first genealogy in Figure 1 represents a static genealogy.

Consistently Changed Genealogy (CCG): If a genealogy
contains at least one consistent change pattern and does not
contain any inconsistent change patterns, it will be classified
as a consistently changed genealogy. The second genealogy in
Figure 1 is an example of a CCG.
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Fig. 1. Different Types of Clone Genealogies

Inconsistently Changed Genealogy (ICG): If a genealogy
contains any inconsistent change pattern, it will be classified
as an inconsistently changed genealogy. The third genealogy
in Figure 1 is an ICG.

Alive Genealogies (AG): A genealogy is called alive ge-
nealogy if the associated clone class is still evolving and thus
exist in the final version that we considered. Both the first and
the last genealogies in Figure 1 are AG.

Dead Genealogies (DG): A genealogy is called dead ge-
nealogy if its clone class disappear before reaching the final
version that we considered. The second genealogy in Figure
1 represents a DG.

Lifetime of a clone class: Lifetime of a clone class
represents how long the clone class exists in the associated
system. In our study, we quantify lifetime in terms of number
of releases. For example, if a clone class appears in the ith
release, stays in the system until the jth release, we say that
the lifetime of the clone class is (j-i+1) releases.

III. EXTENDING GCAD

Extracting the history of Type-3 clones and classifying
their change patterns automatically are challenging due to
the potential diverse variety of clone fragments even in the
same clone class. In our previous work [24], we introduced
gCad, an automatic framework for extracting and classifying
near-miss clone genealogies. gCad can identify six types of
clone genealogies: same, add, delete, static, consistently, and
inconsistently changed genealogies. In this paper, we further
extend gCad by introducing two modes of operations called
Liberal Mode and Strict Mode to understand the consistent
and inconsistent changes of Type-3 clones in more detail.

In the previous version of gCad, we have used a very con-
servative definition of inconsistent changes of Type-3 clones
that if any changes to the clone fragments in the same clone
class are different, no matter whether they are in the gaps or
in the common parts, it will be considered as an inconsistent
change. The rational behind this definition is that two textually
dissimilar lines can sometimes be semantically equivalent,
and thus changes in the gap also could be problematic.
Furthermore, if a line is inconsistently added in the middle
of a clone fragment, it can affect the semantics of the later
part. On the other hand, one may argue that if a change takes
place in the dissimilar part of a clone fragment, it may not

double divide(double a, double b){
       double c = 0;
       if(b==0)
              printf("Denominator cannot be a zero.");
       else{
              c = a/b;
              return c;
       }
}

double divide(double a, double b){
       double c =0.0;
       if(b==0.0)
              printf("Denominator cannot be a zero.");
       else{
              c = a/b;
              return c;
       }
}

double divide(double a, double b){
       double c =0.0;
       if(abs(b)<0.0001)
              printf("Denominator cannot be a zero.");
       else{
              c = a/b;
              return c;
       }
}

double divide(double a, double b){
       if(b==0.0)
              printf("Denominator cannot be a zero.");
       else
              return a/b;
}

double divide(double a, double b){
       if(b == 0.0)
              printf("Denominator cannot be a zero.");
       else
              return a/b;
}

double divide(double a, double b){
       double c = 0;
       if(b==0)
              printf("Denominator cannot be a zero.");
       else{
              c = a/b;
              return c;
       }
}

Ri Ri+1

cf1

cf2

cf3

Fig. 2. An example of Type-3 clone class
truly be an inconsistent change because they were already
dissimilar. However, each of these sides has its own advantages
and disadvantages. We explain the situation with the following
hypothetical example.

Let there be two clone fragments cf1 and cf2 in a Type-3
clone class in release Ri as shown in Figure 2 that perform a
simple division operation. Although these two fragments are
semantically the same, one line between these fragments is
not textually the same (marked with the first dashed arrow).
During the evolution of the program, a developer suddenly
notices that the if condition of cf2 is too precise which could
result in unexpected program behavior when the value of b
is very near to zero, and thus fixed the condition in release
Ri+1. The developer did not notice that the same change is
also required to be made to cf1. Now one may think that
this is a consistent change since the change took place in the
gap (where source lines are not common between fragments).
On the other hand, one may argue that this is an inconsistent
change since one clone fragment of that clone class changed
whereas another did not. We might need to see the other
fragment as well to verify whether the same change is needed
to that fragment or not. In the given example, the same change
is also needed for cf1.

Defining the change patterns is more complicated if there
are more than two fragments in a Type-3 clone class, and
the non-identical lines are not the same for all clone pairs.
In order to illustrate the situation, let us assume that there
is one more clone fragment (cf3) in the example clone class
shown in Figure 2. Now we see that the modified line (shown
using dashed right arrow) in cf2 is common with cf3 but not
common with cf1. Therefore, we cannot conclude this change
is a consistent change only considering that the change took
place in the gap of clone pair (cf1, cf2). One of the solutions
to overcome this problem is to determine the change patterns
for all possible pairs in a clone class without considering
the changes in the gap. If all pairs change consistently, then
the change pattern will be classified as a consistent change.
However, the aforementioned threat will still be present.

Therefore, we add both approaches in gCad as two different
modes of operation. The choice of mode is left to the mainte-
nance engineer or researcher according to their context of use.
The two modes are as follows:
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TABLE I
SUBJECT SYSTEMS

Prog. Lang. System # Releases Start Release End Release Start Date End Date Duration LOC
dnsjava 50 0.9.2 2.1.1 April 19, 1999 Feb 10, 2011 131 months 6,290-15,018

Java JabRef 27 1.5 2.4.2 Aug 15, 2004 Nov 1, 2008 50 months 22,041-69,170
ArgoUML 48 0.27.1 0.32.BETA2 Oct 4, 2008 Jan 24, 2011 26 months 176,618-202,555
ZABBIX 31 1.0 1.8.4 Mar 23, 2004 Jun 1, 2011 86 months 9,252-62,845

C Conky 28 1.1 1.8.1 July 20, 2005 Oct 5, 2010 62 months 6,555-39,810
Claws Mail 44 2.0.0 3.7.9 Jan 30, 2006 April 9, 2011 63 months 133,642-189,786

1) Liberal Mode: In this mode, we ignore changes that
occur in the gaps of each clone pair in the same clone class.
Therefore, a change will be identified as inconsistent change
only when similar lines of any clone pair in the same clone
class change differently with respect to one another.

2) Strict Mode: In this mode, we do not consider the gaps
as a special case. If the changes to the clone fragments in
the same class are not the same, it will be considered an
inconsistent change.

IV. STUDY SETUP

In this section, we outline our study setup for collecting
relevant data to answer our research questions. It includes the
choice of our subject systems, parameters for detecting clones
and extracting genealogies, the overall procedure for collecting
and investigating data, and a brief description of the statistical
method that we used in our analysis. Since one of our main
objectives is to characterize the diverse evolutionary behavior
of Type-3 clones for different subject systems, clone detectors,
genealogy extractors, and so on, we choose a very different
settings than that of Bazrafshan’s study [5].

A. Subject Systems
We studied six open source software systems for our case

study. In order to select subject systems, we gave preference to
those which have a long development history, and have been
used in previous studies for Type-1 and Type-2 clones but not
by Bazrafshan [5]. We also ensured that multiple developers
contributed to these systems so that we can assume that none
is an expert of the whole system. Based on this criteria, we
chose the following:
• dnsjava1 is an implementation of DNS in Java.
• JabRef2 is an open source bibliography reference man-

ager that works on Windows, Linux and Mac OS X.
• ArgoUML3 is an interactive, graphical software design

environment that supports the design, development and
documentation of object-oriented software applications.

• ZABBIX4 provides a monitoring and tracking facility for
network servers, devices and other resources.

• Conky5 is a free, light-weight system monitor.
• Claws Mail6 is an email client and news reader that

supports POP3, IMAP, SMTP and many other protocols.
The size of the systems (last release) varies from approxi-

mately 15K to 203K lines of code (LOC), excluding comments

1http://www.xbill.org/dnsjava
2http://jabref.sourceforge.net
3http://argouml.tigris.org
4http://www.zabbix.com
5http://conky.sourceforge.net
6http://www.claws-mail.org

TABLE II
NICAD SETTING FOR CLONE DETECTION

Setting Value
Granularity of Clones Block
Minimum Clone Length 5 LOC
Filtering of Statements None
Renaming of Identifiers Blind
UPI threshold 30%

and blank lines. Because we want to conduct manual analysis
both on the detected clones (e.g., removing false positives and
uninteresting clones) and for answering the research questions,
we intentionally did not choose very large systems. Of course
several of the systems are reasonably large and we chose
projects from different application domains to avoid biasing
towards any specific kind of software systems. A more detailed
overview of the subject systems is presented in Table I.
B. Level of Granularity

In any clone evolution study, the choice of interval length
between two consecutive versions to study plays a key role
in the result. It is often believed that a commit/revision is not
a logical unit of change. A previous study [14] also shows
that there are many clones that are created for experimental
purposes by the developers. However, when a version of
software is officially released, the source code is expected to be
in a stable form. Therefore, we should expect less inconsistent
changes at release level because some consistent changes may
happen in more than one commit. Therefore, we have chosen
the release level instead of the revision level for our study.
C. Clone Detection

Since the main objectives of our study are to evaluate Type-
3 clones, we selected NiCad-2.6.3 [8] for detecting clones. We
configured NiCad with the settings given in Table II. We set
the UPI threshold to 30%, which allows for 30% dissimilarity
among clone fragments in a Type-3 clone class in their pretty-
printed normalized format. We have chosen this threshold
because this setting has been found to be very effective in
detecting all the three types of clones while maintaining
high precision and recall [19], [20], [22]. Furthermore, in the
study of near-miss clone evolution [5], Bazrafshan concluded
that different thresholds of the subject clone detection tools
influence the result but conserve the relations.
D. Genealogy Extraction

We used our extended near-miss clone genealogy extractor,
gCad,7 to automatically extract and classify clone genealogies
for our study. In order to get more accurate results, the process
of extraction and classification of genealogies is performed by
gCad in two steps. In the first step, gCad classifies all the clone
classes into different types (Type-1, Type-2 or Type-3), maps

7gCad is available online at http://www.cs.usask.ca/∼croy/
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TABLE III
NUMBER OF CLONE GENEALOGIES

Systems Type-1 Type-2 Type-3
dnsjava 6 4 132
JabRef 28 34 441
ArgoUML 162 150 1741
ZABBIX 25 33 354
Conky 9 20 162
Claws Mail 58 121 842

the clone classes and classifies their change patterns (Static or
CC or IC) between each two consecutive versions. All of the
mapping information and change patterns of each clone class
along with their types for each consecutive versions is stored in
an XML file. In the second step, gCad constructs genealogies
by merging the results of each consecutive versions stored
in the previous step, computes other relevant data such as
frequency of changes, age of genealogies, and stores the results
in another XML file. Users can also manually verify each
mapping, to correct any wrong result, or to filter out any
uninteresting clone genealogies. For example, if a user finds
that gCad incorrectly classifies a change pattern, they can
easily correct the XML file and rerun the second step of gCad
to reconstruct the genealogies.
E. Procedure

We use the following procedure to obtain our results.
1) For each project, we capture all minor and major releases

during the time period provided in Table I.
2) We run NiCad to detect clones in each of the releases.
3) We run gCad to extract and classify clone genealogies.
4) We review the clone genealogies manually to determine

if they contain false positives. If so, we remove them
from the study and update and store the changes.

5) Finally, we rerun the second step of gCad to reconstruct
the genealogies with the manually corrected results.

F. Statistical Analysis
To determine if there is a significant difference in the

proportions of different clone evolution patterns for different
types of clones (RQ3), we use the Chi-Square test. We choose
Chi-Square test because it tests differences in proportions for
dichotomic data in contingency tables, with the number of
rows or columns greater than two. However, Chi-Square test
has two limitations. It cannot estimate the p-value well if 1)
any expected frequency is less than one, and 2) more than 20%
of the frequencies have values less than five. We performed
the Chi-Square test assuming a significance level of 95%.

V. RESULTS
In this section, we report our study findings with respect

to the five research questions defined in the Introduction.
In oder to gain a broader understanding, we answer each
research question based on our study results and comparing
the results with previous findings (where applicable). However,
before going into further detail, we first present the number
of genealogies in each subject system in Table III grouped by
their type. From the table we see that, for each system, the
number of Type-3 clone genealogies is substantially higher
than that of Type-1 or Type-2. In a previous study, Bazrafshan
[5] concluded that near-miss clones are more dominating

Fig. 3. Proportion of dead and alive genealogies

than identical clones. Here we can say more specifically that
Type-3 clones are more dominating than the other two types.
These results again justify the importance of understanding
the evolution of Type-3 clones to manage them properly.

RQ-1: What is the lifetime of Type-3 clone classes compared
to Type-1 and Type-2?

In order to investigate how long Type-3 clone classes exist
in a system compared to that of Type-1 and Type-2, first we
calculated mean lifetime of each type of genealogies. However,
since the alive genealogies are still evolving and we cannot
predict when they will disappear, it is not appropriate to
calculate the overall mean of alive (AG) and dead genealogies
(DG) together. Therefore, we calculated the mean lifetime
separately for alive and dead genealogies. Figure 3 presents
the proportion of DG and AG for each subject system grouped
by their types. We see from the figure that in most systems,
the proportion of AG is higher than that of DG regardless of
clone types. However, it is noticeable that percentages of alive
Type-2 and Type-3 clones are higher than that of Type-1.

Now we take a look at Table IV, which represents the mean
lifetime of DG and AG for each system grouped by clone type.
By comparing the results of different types of genealogies for
each system, we see that the mean lifetime of Type-2 clones
for both DG and AG is slightly higher than that of Type-1
and Type-3 clones in four systems. Nonetheless, all the three
types of clone classes maintain a very similar lifetime in most
systems but the magnitude vary from systems to systems. Here
we also make two interesting observations regardless of clone
types. First, almost for all systems, the mean lifetime of AG is
higher than that of DG. Second, the lifetime of all types of AG
for large systems (ArgoUML and Claws Mail) is substantially
higher than that of smaller systems.

Comparison and Conclusion: In his study of near-miss
clone evolution [5], Bazrafshan found that near-miss clones
live longer than identical clones. However, we did not find
any systematic relationships between lifetime and clone types.
Rather, lifetime seems to be dependent on system’s property
(e.g., size and development practice). However, since the
number of Type-3 clones is much greater than Type-1 and
Type-2, the number of long lived Type-3 clones is also greater.
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TABLE IV
MEAN LIFETIME OF DEAD GENEALOGIES AND ALIVE GENEALOGIES

Subject Average Lifetime of DG Average Lifetime of AG
Systems Type-1 Type-2 Type-3 Type-1 Type-2 Type-3
dnsjava 11 14 11 5 25 21
JabRef 8 5 8 15 17 15

ArgoUML 14 14 15 39 41 38
ZABBIX 9 11 10 17 15 13

Conky 8 10 9 12 6 7
Claws Mail 13 21 20 29 33 32

RQ-2: Do Type-3 clone classes change more often than
Type-1 and Type-2 clone classes?

In previous section, we found many long lived clones and
the absolute number of such Type-3 clones is much higher
than that of Type-1 and Type-2 clones. However, if they do not
change, they will not incur any additional cost in maintenance.
In this section, we investigate how often Type-3 clones change
compared to Type-1 and Type-2 during evolution.

Table V shows that Type-3 clones change more frequently
than Type-1 or Type-2 clones. We observe that most Type-1
clones either do not change or only change once. We found
that only two Type-1 clone classes changed in more than
three releases during the evolution period. However, for each
system, there is a considerable number of Type-3 clones that
change in five or more releases.

One reason for such a higher number of changes to Type-3
clones may be that Type-3 clones are more in each system than
the other two types. To investigate whether it is the fact, we
further analyzed the data. Since most of the entries in Table
V for Type-1 and Type-2 clones are less than five, we did
not perform the Chi-Square test to understand the differences
among types in terms of change frequency. However, we
calculated the average number of changes in terms of releases
for all three types of clones. The result shows that Type-3
clones change 28% more frequently than Type-1 and Type-2.

Comparison and Conclusion: Bazrafshan found that near-
miss clones change more frequently than identical clones.
However, from our study, we can see that although Type-
2 clones are part of near-miss clones, the mean number of
changes to Type-1 and Type-2 clones is almost the same.
Actually Type-3 clones change more frequently than Type-1
and Type-2 clones. One may argue that a source code fragment
changes because it has to change; not because it is a Type-
1, Type-2, or Type-3 clone. However, since empirically it is
found that Type-3 clones changes more frequently than others
(at either release or revision level), it is important to keep track
of them to avoid unintentional inconsistent changes.

RQ-3: Do Type-3 clone classes exhibit similar change
patterns to that of Type-1 and Type-2 clone classes?

To investigate whether the change patterns of Type-3 clones
are similar to those of Type-1 or Type-2 clones, we first
investigated if there exists any dependence between the change
patterns of clone fragments and their types. Since changes to
Type-3 clones can take place in either similar or dissimilar
parts of clone fragments, we run gCad both in strict and
liberal modes. In both modes, gCad automatically groups all
the genealogies for each system by their associated clone types
and change patterns as presented in Table VI. To illustrate,

TABLE V
CHANGE FREQUENCIES OF CLONE GENEALOGIES

Subject Clone Number of Releases where Clones Changed
System Types 0 1 2 3 4 5 5+

Type-1 4 1 1 0 0 0 0
dnsjava Type-2 1 3 0 0 0 0 0

Type-3 57 44 16 6 7 2 1
Type-1 17 7 3 1 0 0 0

JabRef Type-2 20 13 1 0 0 0 0
Type-3 206 148 42 27 11 7 7
Type-1 125 27 7 3 0 0 0

ArgoUML Type-2 132 13 3 2 0 0 0
Type-3 1239 335 101 42 20 4 3
Type-1 12 8 3 2 0 0 0

ZABBIX Type-2 16 10 5 1 1 0 0
Type-3 144 125 55 14 10 6 3
Type-1 4 3 0 0 2 0 0

Conky Type-2 10 8 1 1 0 0 0
Type-3 108 30 15 6 2 1 2
Type-1 37 17 1 3 0 0 0

Claws Mail Type-2 56 43 12 6 2 2 0
Type-3 369 278 109 47 28 11 8

TABLE VI
NUMBER OF GENEALOGIES BY CLONE TYPES AND CHANGE PATTERNS

System Mode Types Static CC IC χ2 p-value
- Type-1 4 1 1

dnsjava - Type-2 1 1 2
Strict Type-3 57 6 69 - -
Liberal Type-3 57 16 59 - -
- Type-1 17 2 9

JabRef - Type-2 20 10 4
Strict Type-3 206 43 192 21.81 0.0002
Liberal Type-3 206 73 162 12.38 0.01
- Type-1 125 4 33

ArgoUML - Type-2 132 6 12
Strict Type-3 1239 29 473 31.83 0.0001
Liberal Type-3 1239 87 415 23.78 0.0001
- Type-1 12 7 6

ZABBIX - Type-2 16 11 6
Strict Type-3 144 45 165 18.80 0.0005
Liberal Type-3 144 70 140 8.77 0.06
- Type-1 4 2 3

Conky - Type-2 10 6 4
Strict Type-3 108 11 43 12.90 0.01
Liberal Type-3 108 27 27 4.5 0.33
- Type-1 37 13 8

Claws Mail - Type-2 56 40 25
Strict Type-3 369 120 353 50.01 0.0001
Liberal Type-3 369 218 255 15.26 0.004

the first row of the table represents that in dnsjava we
found four genealogies where Type-1 clone classes did not
change, one genealogy where Type-1 clone class changed
consistently, and one genealogy where the Type-1 clone class
changed inconsistently. To investigate the relationships, we
performed the Chi-Square test on a contingency table, where
columns represent the genealogy change patterns (Static, CC,
and IC) and rows represent the clone types. In this test, our
null hypothesis is that different types of clones do not have an
impact on the different change patterns. It should be noted that
we could not perform the test for dnsjava since more than
20% of their entries have frequencies less than five. However,
the χ2 and p-values obtained from the rest of the systems
for strict mode strongly suggests that there is a significant
difference between the proportion of change patterns and clone
types. Even when we excluded the changes in the gaps using
gCad’s liberal mode, the χ2 and p-values suggest significant
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differences (except Conky). Therefore, we can reject the null
hypothesis for these subject systems.

From Table VI we see that, for most of the systems,
the proportion of inconsistent changes to Type-3 clones is
substantially higher than that of Type-1 and Type-2 clones
when we considered the changes in the gaps (strict mode).
On average, approximately 36% of Type-3 clones change
inconsistently, whereas, this proportion is roughly 21% for
Type-1 and 15% for Type-2 clones. When we investigate each
system separately, we observe that all of them follow a similar
trend with a small exception with Conky. However, it is hard
to derive any conclusion from Conky because there were
fewer Type-1 clones compared to the large number of Type-3
clones. In contrast to inconsistent changes, the proportion of
consistent changes of Type-3 clones is lower than that of the
other types. We found that only about 7% of genealogies are
classified as CCG for Type-3 clones, whereas, they are 11%
for Type-1 clones and 21% for Type-2 clones. From Table VI
we also see a similar trend for each of the systems separately.
When we change the gCad setting to liberal mode where we
exclude changes in the gaps, the rate of inconsistent change
is still higher. However, the proportion of consistent changes
increased significantly. We also calculate that in 16% clone
classes, changes happened in gaps.

Finally, we observe that Type-3 clones are significantly less
stable than Type-1 and Type-2 clones. On average, 58% of all
Type-3 genealogies are SG, whereas, it is 70% for Type-1 and
65% for Type-2 clone genealogies. There are two exceptions
in the systems Conky and ArgoUML. In Conky, again it
is because of few Type-1 clones compared to Type-3 clones,
whereas, in ArgoUML most of the clones (above 70%) were
SG regardless of their types.

Comparison and Conclusion: Interval between two versions
has a great influence on the result of change patterns of
clones. For example, every late propagation during the interval
between two releases will be considered as a consistent change
at release level, but will be considered as a combination of
inconsistent changes at revision level. Bazrafshan [5] analyzed
the change patterns at revision level whereas we analyze it at
release level. Bazrafshan found that near-miss clones change
more inconsistently than identical clones. If we merge our
result of Type-2 and Type-3 genealogies, we also get the
same finding. However, when we analyze Type-2 and Type-3
clones separately, we find that Type-2 clones are more likely
to change consistently, whereas, Type-3 clones more likely
to change inconsistently, although the absolute number of
consistently changed Type-3 clones are greater than that of
Type-1 and Type-2 clones.

RQ-4: Do Type-1 or Type-2 clone classes become Type-3
clone classes during evolution or vice versa?

From the previous sections we found that different types
of clones behave differently in terms of change patterns
and frequency. Therefore, clone type could be an important
parameter to design robust clone management approaches.
However, one type of clone classes may convert into another
type during evolution. For example, a Type-1 clone class
could be converted into Type-2 due to an identifier renaming

TABLE VII
CONVERSION OF CLONE TYPES

System Type-1↔Type-2 Type-1↔Type-3 Type-2↔Type-3
dnsjava 0 2 4
JabRef 1 9 6
ArgoUML 3 48 47
ZABBIX 0 12 12
Conky 0 2 4
Claws Mail 2 14 41

in the next version, or a Type-1/Type-2 clone class could
be converted into a Type- 3 in the next version due to an
inconsistent change or vice versa. Since a type-sensitive clone
management system has to cope with this situation, knowing
the actual number of such conversions in systems will be
helpful to make various maintenance decisions.

In our study, we have found 201 changes in total, where
clone classes changed their types (Table VII). Among them,
most conversions are between Type-1 and Type-3 clones, and
between Type-2 and Type-3 clones. However, we also observe
a few conversions between Type-1 and Type-2 clones. We
manually investigated many of these conversions to answer
RQ-5. We found many Type-1 and Type-2 clones became
Type-3 clones, which is expected. However, we also found a
considerable number of changes where Type-3 clones became
Type-1 or Type-2 clones. Interestingly, many of such changes
actually were late propagation, i.e., a Type-1 clone class
became a Type-3 clone class by a previous change, but it
again converted back to Type-1 by a late propagation. Some
conversions were semantic preserving. Figure 4(a) shows a
clone fragment of a Type-1 clone class in dnsjava that
became a Type-3 clone class in release 1.1.5 only due to
an omission of a this keyword (Figure 4(b)). Therefore, it is
important to maintain this clone class as it was before the
change. If a clone management tool does not support Type-3
clones, it will lose track of this type of clone classes after the
conversion. Such changes also demonstrate the usefulness of
the strict mode of gCad.

Comparison and Conclusion: Like us, Bazrafshan [5] also
found some conversions between clone types during clone evo-
lution. Since he did not provide the complete data, we cannot
compare the result. Nonetheless, considering his discussion
and our result, we conclude that the number of conversions is
neither too large nor too small. We also have an interesting
finding that whenever a Type-3 clone becomes Type-1 and
Type-2, most likely it is a late propagation.

RQ-5: What are the frequent syntactic changes to Type-3
clone classes during evolution? Do those changes also happen
in Type-1 and Type-2? Is there any syntactic change that
happens more consistently than others?

As we noted in the Introduction, the objective of this re-
search question is to investigate whether there are any syntactic
changes that are more likely to change consistently than others
and whether clone type is any factor there. Knowing such
changes could be helpful to find out unintentional inconsistent
changes. To this end, as a first step, we manually analyzed
150 clone genealogies in our study. We wanted to investigate
the same number of consistently and inconsistently changed
genealogies for each type of genealogies so that we can
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public Object sendAsync(final Message query, final ResolverListener listener) {
final Object id;
synchronized (this) {

id = new Integer(uniqueID++);
}
String name = this.getClass() + ": " + query.getQuestion().getName();
WorkerThread.assignThread(new ResolveThread(this, query, id, listener), name);
return id;

}
(a) dnsjava-1.1.4/org/xbill/DNS/ExtendedResolver.java

public Object sendAsync(final Message query, final ResolverListener listener) {
final Object id;
synchronized (this) {

id = new Integer(uniqueID++);
}
String name = getClass() + ": " + query.getQuestion().getName();
WorkerThread.assignThread(new ResolveThread(this, query, id, listener), name);
return id;

}

(b) dnsjava-1.1.5/org/xbill/DNS/ExtendedResolver.java
Fig. 4. Conversion of a clone class from Type-1 to Type-3

compare the results. Since there were only 29 consistently
changed Type-1 genealogies, we selected 25 genealogies from
each category. Furthermore, the sample size of 150 is sufficient
(i.e., this sample size has an appropriate level of power) to
detect all but the smallest effects [21].

Table VIII presents all the syntactic changes grouped by
their clone types (before their change) and change patterns.
We observe that although the majority of changes to Type-3
clones are either data type changes or line additions, for all
types of clones, changes related to if statements occur more
frequently. Interestingly, all changes to data types for Type-
3 clones were inconsistent, whereas most data type changes
were consistent for Type-1 clones. No relationships were found
between the changes related to if statements and the change
pattern. However, we noticed that most line additions in Type-
1 and Type-3 clones were function calls, whereas, they were
variable assignments in Type-2 clones.

The most important finding of our manual analysis is that we
found some hotspots, where most of the changes were consis-
tent regardless of clone types. They are loop condition, called
function name, variable renaming, and API. For example, from
Table VIII we see that there are three inconsistent changes
in the called function name for Type-2 clones. Among them,
we found two consecutive inconsistent changes in ArgoUML
where the first inconsistent change (release 29.1→29.2) was
fixed by the second inconsistent change (release 29.2→29.3).
Therefore, any inconsistent changes to these hotspots could be
reported as a suspicious change that may call for developers’
attention to do a quick manual verification. We also noticed
an interesting characteristic in the change of called function
arguments. Whenever a parameter was added or deleted, the
change was consistent. However, when there were changes in
passing values, the changes were inconsistent in most cases.

Comparison and Conclusion: To the best of our knowledge,
our work is the first to find any relationships between change
patterns and syntactic changes. Therefore, we cannot compare
our findings with any previous studies. However, based on
these findings, we conclude that some syntactic changes are
equally important regardless of clone type, whereas, some
changes (e.g., data type) differ depending on the clone type.
Certainly further analysis is necessary to make a comprehen-
sive list of these type of changes. However, as a preliminary

TABLE VIII
SYNTACTIC CHANGES TO CLONES DURING THE EVOLUTION PERIOD

Syntactic Change Type-1 Type-2 Type-3
CC IC CC IC CC IC

if statement insertion 5 3 3 7 4 3
if statement deletion 2 3 3 2 - -
if condition change 1 - - 5 - 1
loop condition change - - - - 2 -
called function name change 3 1 7 3 5 -
function arguments change 1 5 2 2 5 -
Line additions 3 7 6 4 3 10
Line deletions 2 2 - - - -
Variable renaming - - 2 - 2 -
Data type change 4 1 1 1 - 9
API change 1 - - - 1 -
Assignment operation 1 1 1 1 3 -
Logic change 2 1 - - - 2
Total 25 25 25 25 25 25

step, our findings again indicate that clone type and syntactic
changes would be an important consideration when building
an intelligent clone management system.

VI. MAINTENANCE IMPLICATIONS
Software clone management aims at identifying and avoid-

ing clones (preventive), organizing and managing existing
clones (compensative), and removing clones (corrective) al-
together to limit their negative impacts. From our study, we
showed that many Type-3 clones are long lived and change
more frequently than others. Although Type-3 clones tend to
change more inconsistently, the absolute number of consis-
tently changed Type-3 genealogies is higher than that of Type-
1 and Type-2. Therefore, compensative clone management
approaches are more important for managing Type-3 clones.
Two popular clone management approaches in this category
are notifying developers about each change of clones instantly
by tracking them [9] and linked editing. Note, however, that
techniques developed for Type-1 and Type-2 clones can be also
used for Type-3 clones because there are a significant number
of consistently changed genealogies. But the biggest challenge
of maintaining Type-3 clones is dealing with highly noisy data.
Since most Type-3 genealogies tend to evolve independently,
notifying developers about each change of a clone class will
be annoying. Therefore, based on our findings, we believe
that the following techniques would be useful to deal with the
noisy data of Type-3 clones during evolution. Certainly these
techniques are also applicable to Type-1 and Type-2 clones.
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Machine Learning Technique: In our study, we found
some general patterns such as Type-3 clones tend to change
more frequently and inconsistently, all types of clones have a
very similar lifespan, and so on. Although the magnitude of
these metrics depend on the subject system due to different
development practices and project histories, it can be learnt
automatically. Furthermore, previous change patterns of clone
classes and current syntactic changes could provide useful
hints to predict which clones tend to change consistently or
inconsistently. Machine learning techniques may prove useful
(as of Wang et al. [27]) but that is an approach that needs to
be carefully explored to determine its potential.

Incorporating Developers’ Feedback: Although it may
be possible to predict clone behavior using different machine
learning techniques, it is not easy to detect all different types
of unintentional inconsistencies among the clone fragments
because it depends very much on the semantics of the code.
In our study, we have found many textually dissimilar lines
between two clone fragments that are semantically equivalent.
In this situation, developer(s) who create or change the clone
decide if the change is needed or not. Therefore, a clone man-
agement system should be able to take developers’ feedback
when it makes something wrong and use them appropriately
to find relevant inconsistencies.

Type-sensitive management: Since different types of
clones have different changing behavior, the clone type could
be an important parameter to make better decisions. For
example, while answering RQ4, we found many inconsistent
changes, that converted a Type-1/Type-2 clone to Type-3, were
unintentional and thus again converted back to its previous
type in the next version by late propagation. Therefore, an
inconsistent change to Type-1/Type-2 clones may be more
interesting than Type-3 clones. Furthermore, since finding
interesting Type-3 clones relevant to maintenance is more
challenging than that of Type-1 and Type-2, type-specific
decision would be computationally effective.

VII. THREATS TO VALIDITY

A. Construct Validity
The results of a study on clones is contingent on the raw

clone data, which again depend on the selection of the clone
detection tool and the parameters used to detect clones. In
order to mitigate this threat we chose the clone detection tool
NiCad and configured the settings, which has been found to be
effective detecting both exact and near-miss clones [19], [20],
[22]. Furthermore, we used manual verification to ensure that
there were no false positives in the result. However, NiCad
may miss several clones, validation of which is out of scope
of our study.

B. Internal Validity
The evolutionary data of our study vastly depend on the

results of gCad. If gCad misses mapping a clone class between
two consecutive versions, a single genealogy could be divided
into two parts. Moreover, a clone class can wrongly map to
another clone class in the next version due to an ambiguous
situation. However, our experience from a previous study [24]

and extensive manual analysis in this study suggest that these
situations are rare.

There might have been some unintentional errors during the
manual verification due to the lack of domain knowledge or
human errors. However, we address this threat by discussing
various ambiguous situations with other researchers in our lab
who are either experts in the area or have prior experience
working with code clones.

C. External Validity
We picked six open source projects as subject systems

for the case study. Although we carefully chose the subject
systems from different application domains, our findings may
not be generalizable to other open source projects or industrial
projects. This threat can be mitigated by adding more subject
systems (both open source and industrial), which is part of our
future work.

VIII. RELATED WORK

Tracking clones across multiple versions of a software
system and studying the evolution of clones is not a new
topic. Kim et al. [14] was the first to track code clones across
multiple revisions and observed how clones evolve in software
systems. Based on a case study of two small Java systems,
they observed that 36% to 38% of clone genealogies consist
of clones that changed consistently. In another study, Cai and
Kim [6] investigated the characteristics of long lived clones
and predicted the survival time of clones. In our previous study
[23], we extended the study of Kim et al. [14] by studying 17
open source systems of diverse variety and found no surprising
results. However, in all these studies, CCFinder was used as
the clone detection tool which mainly considers Type-1 and
Type-2 clones. To complement these studies, in this paper, we
analyze all three types of clone genealogies to understand the
evolution of Type-3 clones properly.

Aversano et al. [2] performed an empirical study to inves-
tigate how clones are maintained when an evolution activity
or a bug fixing takes place. Based on a case study of two
Java systems, they reported that either for bug fixing or for
evolution purposes, most of the cloned code is consistently
maintained during the same co-change or during temporally
close co-changes. However, they considered only exact clones
and a small number of gapped clones.

Krinke [15] analyzed five open source software systems
and found that half of the changes to code clone classes are
inconsistent and that corrective changes following inconsistent
changes are rare. In another study [16], he found that cloned
code is more stable than non-cloned code and thus concluded
that cloned code requires less maintenance effort compared
to non-cloned code. However, conclusions drawn from these
studies were only analyzing exact clones. Later Lozano and
Wermelinger [17] conducted an experiment for measuring the
maintenance efforts on methods consisting of both cloned and
non-cloned code. Although they found that changing a method
that contains a clone may increase the maintenance effort,
the characteristics analyzed in these methods did not reveal
any systematic relationships between cloning and increase
in maintenance effort. Our study differs from all these in
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that instead of comparing cloned and non-cloned code, we
evaluated and compared different types of clone genealogies
to answer several research questions.

Bakota et al. [3] proposed a similarity based approach for
mapping clones and defined different conditions under which
clones become suspicious. Battenburg et al. [4] also investi-
gated the relationships between inconsistent changes in clones
and bugs, and found that 1% to 3% of inconsistent changes
introduce bugs. In this study, we focus on both consistent
and inconsistent changes of clones to understand their change
behavior. Furthermore, we analyzed Type-3 clones, whereas,
they only analyzed Type-1 and Type-2 clones.

Duala-Ekoko et al. [9] developed a clone tracker that works
in an IDE to assist developers manage clones efficiently.
They tracked clones using a clone region descriptor (CRD)
which is location independent. However, unlike our study, their
objective was to manage Type-1 and Type-2 clones, and not
to study the change patterns of Type-3 clones.

Göde [10] studied the evolution of Type-1 clones in nine
open source systems, and found that the ratio of clones
decreased in the majority of the systems. However, no general
conclusion on the consistent or inconsistent changes to clone
classes was reported. Later Göde and Koschke [11] extended
the previous study by including Type-2 clones, and found that
clones are changed rarely during their lifetime. If they are
changed, they tend to be changed inconsistently. In another
study [12], they conducted a study to assess the intentionality
of the inconsistent change and reported that the rate of unin-
tentional inconsistent changes is very small. Thummalapenta
et al. [25] investigated to what extent clones are consistently
propagated or independently evolved. They focused on iden-
tifying the evolution patterns of clones over time and relating
those patterns with other parameters (clone granularity, clone
radius and cloned code fault-proneness). On the other hand,
we focused on understanding the differences of the evolution
of various types of clones in terms of survival time, change
patterns, change frequencies, and syntactic changes.

Bazrafshan’s study [5] is the most related work to ours. We
compared our results with theirs in each step where applicable
(in Section V) to draw more general conclusions.

IX. CONCLUSION

Whether clones are deemed useful or harmful, they have an
impact on software maintainability. However, refactoring all
the clones in a software system may not be worthwhile due
to tradeoffs among the associated costs, risks, and benefits
of removing clones. Thus, the recent trend in clone research
focuses on the management of clones in a cost-effective
way, rather than simply removing them. However, managing
clones properly and in a cost-effective manner is unlikely
without first understanding the diverse behavior of clones
during evolution. This paper presents some concrete data on
the evolution of Type-3 clones in a very different settings
than previous studies and draws several broad conclusions
about their change patterns, frequencies, type conversions, and
lifetime. Based on our findings, we show that type-3 clones
should be managed more carefully than Type-1 and Type-2

clones due to their more inconsistent nature. We suggested
several approaches and discussed them briefly to find more
relevant clones for management than uninteresting ones. We
believe our insights into the evolution of Type-3 clones and
recommendations to manage them would be helpful to design
better clone management tools. As an immediate next step,
we would like to identify different patterns of unintentional
inconsistent changes by applying machine learning techniques.
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