
A Discriminative Model Approach for Suggesting
Tags Automatically for Stack Overflow Questions

Avigit K. Saha∗ Ripon K. Saha† Kevin A. Schneider∗
∗University of Saskatchewan, Canada

avigit.saha@usask.ca, kevin.schneider@usask.ca
† The University of Texas at Austin, USA

ripon@utexas.edu

Abstract—Annotating documents with keywords or ‘tags’ is
useful for categorizing documents and helping users find a
document efficiently and quickly. Question and answer (Q&A)
sites also use tags to categorize questions to help ensure that
their users are aware of questions related to their areas of
expertise or interest. However, someone asking a question may
not necessarily know the best way to categorize or tag the
question, and automatically tagging or categorizing a question
is a challenging task. Since a Q&A site may host millions of
questions with tags and other data, this information can be used
as a training and test dataset for approaches that automatically
suggest tags for new questions. In this paper, we mine data from
millions of questions from the Q&A site Stack Overflow, and
using a discriminative model approach, we automatically suggest
question tags to help a questioner choose appropriate tags for
eliciting a response.

Index Terms—Machine learning, automatic tagging, discrimi-
native model

I. BACKGROUND AND MOTIVATION

In information systems, tagging is a popular way to cate-
gorize information and to search content. Therefore, almost
all online newspapers, blogs, question-answer communities,
and other similar sites make use of tags to categorize articles,
posts, questions, answers, and so on. Similarly, Stack Overflow
uses tags to categorize programming questions so that their
users can find similar questions on the same topic or find
questions that they may be able to answer. On Stack Overflow,
a questioner can add up to five tags to categorize a question
using existing tags or using new tags they create. However, a
user must have a certain level of reputation to create a new
tag, which is determined by the site using a reputation score.
Appropriate tagging of questions may be useful to get a quick
answer because potential responders are able to be notified
when a question is posted with a tag related to their interests.

In order to investigate the current state of tagging questions
on Stack Overflow, we first determined how fully questions
are tagged. Our results (in Table I) show that almost 87% of
the questions have less than five tags and 38.38% of questions
have only one or two tags. We further investigated whether
the number of tags and the number of times a question is
viewed are related, since the chance of getting an answer may
improve the more a question is viewed by the community.
To this end, we calculate the average number of views per
question for each group and plotted them on a graph, where the

TABLE I
PROPORTION OF QUESTIONS BY NUMBER OF TAGS

Number of Tags Number of Questions [%]
1 438,475 12.70%
2 887,037 25.68%
3 997,906 28.89%
4 693,234 20.07%
5 437,090 12.66%

x-axis represents the number of tags and the y-axis represents
the number of views per question (cf. Figure 1). Our results
show that the average number of views per question gradually
increases with the number of tags. We observe that the average
number of views per question is about 555 when there is only
one tag, but it is above 800 when there are four tags, and it is
very close to 800 when there are five tags. We also observed
that the more tags there are, the more often a question has an
‘accepted’ answer. A questioner can mark one of the answers
to their question as ‘accepted’ when they consider the answer
to be the most helpful for them personally. 62% of questions
with one tag had accepted answers whereas 68% of questions
with five tags had accepted answers. The increased viewing by
number of tags and the increased accepted answers by number
of tags motivated us to build an automatic system for tagging
Stack Overflow questions appropriately.

There are three main advantages to having an automatic
tagging system. First, it can be used to tag existing ques-
tions that have less than five tags. Second, it can help new
questioners by suggesting appropriate tags. Third, it can warn
questioners if they tend to select an inappropriate tag. In
this paper, we mine data from millions of questions [1] from

Fig. 1. Average views per quesion for the number of tags

978-1-4673-2936-1/13 c© 2013 IEEE MSR 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

73



the Q&A site Stack Overflow, and leverage recent advances
on using discriminative models for information retrieval to
suggest appropriate tags for eliciting a response. Based on an
evaluation of 834 tags, we show that our approach can suggest
tags with a mean accuracy of 68% ranging from 50% to 100%
for individual tags.

The rest of the paper is outlined as follows. Section II
describes our approach including how we process a dataset
and build discriminative training models to suggest tags. In
Section III we present our results showing the effectiveness of
our automatic tagging system. Finally, we conclude our paper
in Section IV with our directions for future research.

II. OUR APPROACH

In general, there are three main steps in our approach,
converting questions into vectors, training a discriminative
model and suggesting tags for a given question.

A. Converting Questions into Vectors

In this step, we convert each question into a high-dimension
vector space where each dimension corresponds to a unique
word from the documents and the dimension value represents
the weight of the associated word. To this end, we first perform
some lexical analysis to break down the question text into
tokens. After tokenizing we remove stopwords. Stopwords are
those words that are very common in most of the documents
such as a, an, the, is, at, which, and so on. Finally, we use
term frequency (TF), a common information retrieval term-
weighting scheme, to measure the importance of a term in
a question. TF corresponds to the number of times the term
appears within the documents. We use Mallet [2] to process
documents and to extract features and values.

B. Training Discriminative Model

1) Training Dataset: We take more than 1.3 million ques-
tions to prepare the training datasets for 834 popular tags
(a popular tag is a tag that is related to more than 2000
questions). A previous study [3] suggests that a discriminative
model learner produces the best result for a class that has 60
positive documents and 1500 negative documents. They also
ensured that each document had more than 800 characters to
provide enough information to the model. Therefore, to build
the dataset for each tag, we randomly choose 60 questions as-
sociated with that tag and 1500 questions from some different
tags. Then we convert each document into a feature vector as
described in Section II-A.

2) Test Dataset: In order to test our models, we create an
oracle of 16,680 questions by randomly choosing 20 questions
for each of the 834 tags. For each tag, we take 10 positive
documents and 10 negative documents. We ensured that the
test documents were not also part of the training dataset. We
also ensured that each question had more than 800 characters
to make the test dataset compatible with the training dataset.
Then we processed the test documents in the same way we
processed the training dataset.

Fig. 3. Maximum-margin hyperplane for an SVM

Fig. 4. Training Discriminative Model via SVM

3) Building a Discriminative Model via SVM: A Support
Vector Machine (SVM) is a popular approach for building
a discriminative model from a training dataset. A SVM
constructs a hyperplane or a set of hyperplanes to classify
patterns. Figure 3 shows a scenario using a maximum margin
hyperplane for samples and Figure 4 shows the step by step
flow chart to build a discriminative model from a given dataset.
We use SVMlight [4], a popular implementation of SVM to
build a discriminative model for each of the 834 tags that
we considered based on the training dataset for that tag. Now
these resulting discriminative models can be used to answer
if a new question can fit with any of these existing tags.

C. Tag Suggestions

Once the discriminative models are built, our system is
ready to suggest relevant tags for a new question. We use
Algorithms 1 and 2 to suggest tags. Algorithm 1 retrieves and
returns a list of probable tags for a question. It iterates over
all models to calculate the similarity between a question and
each model. On line 3 of Algorithm 1, Algorithm 2 is called
to calculate the similarity between question Q and a given
model m. Algorithm 2 extracts feature vectors for Q (line
2) and then, SVMPredict is invoked to obtain the predicted

74



Fig. 2. Accuracy of Discriminative Modes for each Tag

Algorithm 1 Propose probable tags
Procedure proposeTags
Input: Q : a new question; M : all models
Output: result : a list of suggested tags for Q
Body:

1: listOfTags = a <key,value> map where key is a model
tag m and value is its similarity

2: for each model mεM do
3: similarity = predict(Q,m)
4: add <m, similarity> to listOfTags
5: end for
6: sort listOfTags in descending order of similarity
7: return sorted listOfTags

Algorithm 2 Calculate similarity between Q and a model
Procedure predict
Input: Q : a new question; m : a model
Output: max : similarity between Q and model m
Body:

1: max = 0
2: vectors = featureVector(Q)
3: similarity = SVMPredict(vectors,m)
4: return MAX (max , similarity)

probability from the discriminative model (line 3). On return
to Algorithm 1 the similarity value for the question and model
is added to the listOfTags . Finally, the listOfTags is sorted
in descending order of similarity and the sorted listOfTags is
returned.

D. Model Evolution

As programming languages are rapidly evolving with new
features and technologies, questioners create new tags to ask
questions on those topics. Therefore, our models should be
updated periodically to incorporate those newly created tags
into the system. The update process can be done automatically.
A dedicated component of the system can monitor each of the
newly created tags, and can build a discriminative model by
creating a training dataset whenever a specific tag has 60 or
more questions.

III. RESULTS

In this section, we focus on following 3 research questions:

TABLE II
COMPARISON BETWEEN ORIGINAL TAGS AND SUGGESTED TAGS

Id Original Tags Suggested Tags
11744046 ios5, uiviewcontroller,

uiscrollview
scrolling, uiscrollview, uikit,
uiview, ipad, uiviewcontroller,
cocoa-touch,
uinavigationcontroller, ios5,
textview, uitabbarcontroller,
uitableviewcell, uiimageview,
uitextfield

11709481 iphone, xcode, delegates,
uitabbarcontroller,
storyboard

uitabbarcontroller,
uinavigationcontroller, tabs,
xcode4.2, uikit, cocoa-touch,
interface-builder, uiview,
uiviewcontroller

11726620 ios, uibutton,
uitabbarcontroller,
tabbar, segue

uitabbarcontroller, tabs,
uinavigationcontroller

11730588 iphone, storyboard,
uitabbarcontroller,
modalviewcontroller,
uistoryboardsegue

uiviewcontroller, uiview,
uitabbarcontroller,
uinavigationcontroller,
cocoa-touch, interface-builder

11738761 cocos2d-iphone,
box2d-iphone

cocos2d, cocos2d-iphone,
textview, xmpp

11749370 html, css css
11738714 android, android-listview android-listview,

android-intent, checkbox,
android-widget

11745574 cocoa-touch, uitableview,
core-data,
nsfetchedresultscontrolle

core-data, nsarray, ios4,
iphone-sdk-4.0, xsd,
uitableviewcell, iphone-sdk-3.0

11733482 datepicker,
sencha-touch-2

extjs, datepicker, extjs4,
sencha-touch

11737147 google-maps,
google-maps-api-3

gwt, google-maps-api-3,
google-analytics, shell,
google-app-engine,
nullpointerexception, jvm

A. How accurately do our models work for each tag?

To answer this question, first, we run our tagging system
to build a discriminative model for each tag from the training
dataset. Then we use that model on the corresponding test
dataset to test each question for that tag. As we described in
Section II-B2, the testing dataset contains 10 positive and 10
negative questions for each tag. We calculate the accuracy of
each model with the following equation:

accuracy =
number of correctly classified questions

total number of questions
(1)

For example, if a model can correctly recognize 16 ques-
tions from the test dataset for a given tag, the accuracy of
the model is 80%. Figure 2 displays the accuracy (y-axis) of
our model for each tag (x-axis). We see that the accuracy

75



TABLE III
MISSING TAGS

Id Original Tags Missing Tags
11748476 android json
11733330 telerik datetime, date
11732592 jquery jquery-selectors, webforms
11718763 android java
11699099 android tcp,crash
11737147 google-maps,

google-maps-api-3
gwt

11744046 ios5, uiviewcontroller,
uiscrollview

uiview

11745574 cocoa-touch, uitableview,
core-data,
nsfetchedresultscontrolle

uitableviewcell

ranges from 50% to as high as 100%. The straight bold line
represents the average accuracy, which shows that our system
has an accuracy of 68.47%, on average, for all tags.

B. How well can our system suggest tags for a given question?

In the previous experiment, we validated our model for
each tag. In this experiment, we investigate how well all
the models in our system work together to suggest a set of
tags for a given question. We chose questions randomly from
the Stack Overflow dataset which have all the tags from the
834 tags that we considered. Then we invoke our tagging
system to suggest tags for those questions. After obtaining the
results, we manually compare all the suggested tags for a given
question with the original tags. We intentionally did not make
string based automatic comparisons because there are many
different forms of the same tag due to the use of synonyms and
other word separating characters such hyphen, underscore, etc.
Furthermore, someone asking a question may not necessarily
know the best way to categorize or tag the question. Table II
shows some concrete examples from our experiment. From the
results, we observe that in most cases our system chose the ap-
propriate tags. For example, for the question id 11744046, the
questioner chose ios5, uiviewcontroller, uiscrollview, which
were also suggested by our system. Other samples in Table II
show that our tagging system suggests sensible tags for most
of the questions.

C. Can our model suggest missing tags?

Stack Overflow allows a questioner to add up to 5 tags
per question. However, more than 438K questions have only
one tag and more than 887K questions have just two tags.
In this experiment, we investigate whether there are some
more tags that would be appropriate to add. To this end, we
chose questions with less than 5 tags randomly and invoke
our tagging system to obtain tag suggestions. Finally, we
manually investigate the questions to see if the suggested tags
are appropriate. We found that there are many questions that
could have more tags than they already have. Table III shows
some of the examples that we investigated in our experiment.
We see that the question id 11733330 had only the tag telerik.
The title of the question is “Disabling Holidays in a Calendar”.
It is clear from the title that the question is about date and time.
By further studying the full question we found that datetime

and date are both important tags to add. Interestingly, they
are both suggested by our tool. We also see that datetime
and date are popular tags. There are 8794 questions that are
tagged as datetime and 8770 questions that are tagged as date
which are more than that of the telerik tag. Another example is
the question 11737147 which has two tags: google-maps and
google-maps-api-3. The title of the question is “GoogleMaps,
calling method throws ‘TypeError”’. While reading the ques-
tion we see that the error provided by the IDE is at
com.google.gwt.core.client.JavaScriptExc-
eption: (TypeError). So, it is clear that gwt (Google
Web Toolkit) is an important tag for this question. From the
suggested tags, we see that our system put this tag at the
top of the list. We found many other questions with missing
relevant tags. A questioner can miss relevant tags for a number
of reasons. For example, they may be busy, may forget, may
not find appropriate words for tagging, or may not be aware of
some popular tags. We believe that an automatic tag suggestion
systems like ours can be very helpful in these situations.

IV. CONCLUSION

Investigating millions of questions from a popular Q&A site,
Stack Overflow, we see that almost 87% of the questions have
less than the possible five tags. As well, over one-third of the
questions (38.38%) have only one or two tags. We also see that
the average number of views per question increases gradually
with the number of tags, which increases the chance of
getting accepted answers. We propose a discriminative model
approach that assists questioners using Stack Overflow by
automatically suggesting relevant question tags. Mining data
related to millions of questions from the database, we collected
training datasets and built a discriminative model for each
of 834 popular tags. Using these models our tagging system
suggests tags for new questions with an average accuracy of
68.47% on the test dataset. We show that our tagging system
suggests tags closely related to those added by users. We also
show that our tagging system is able to find missing tags (tags
that are neglected to be added by questioners or other users).
However, we found that although our tagging system shows
more than 85% accuracy for specific tags (e.g., uitableview),
it sometimes does not work well with general tags (e.g., java).
Using a large number of good quality positive documents
may help resolve this issue. Future work includes tuning
the models by manual investigation to improve accuracy and
further exploring the relationship between tags and responses.

REFERENCES

[1] A. Bacchelli, “Mining challenge 2013: Stack overflow,” in The 10th
Working Conference on Mining Software Repositories, 2013, p. to appear.

[2] A. K. McCallum, “Mallet: A machine learning for language toolkit,”
2002, http://mallet.cs.umass.edu.

[3] J. Wang and B. D. Davison, “Explorations in tag suggestion and query
expansion,” in Proceedings of the 2008 ACM workshop on Search in
social media, ser. SSM ’08. New York, NY, USA: ACM, 2008, pp.
43–50. [Online]. Available: http://doi.acm.org/10.1145/1458583.1458592

[4] T. Joachims, “Making large-scale svm learning practical.” in Advances in
Kernel Methods - Support Vector Learning. MIT Press, 1999, software
available at http://svmlight.joachims.org/.

76


