
Abstract

HSML, the Hot Spot Markup Language, is an ultra-high
level executable specification language designed for concisely
specifying source code hot spots of all kinds. Each HSML rule
specifies the abstract syntactic class of the items to be marked as
hot using a nonterminal of the target language grammar, and
the semantic conditions under which such items are to be
marked using an algebraic expression on the design properties
of the item. Conditions can include restrictions on abstract
syntactic structure (patterns), design recovered semantic
properties (queries on the design database), and semantic
properties induced by other markup rules. HSML has been used
in industrial practice to specify source code hot spots for the
Year 2000 and a wide range of other application maintenance
tasks on systems implemented in Cobol, PL/I and RPG. In this
paper we introduce the basic concepts of HSML and
demonstrate its use in real software maintenance tasks.

1. Background

Design recovery [1], the reverse engineering of a design
database or graph from source code artifacts, is now a common
and accepted technique in program comprehension. Systems
such as Rigi [2], the Software Bookshelf [3], Kontogiannis [4],
Cremer [5] and many others now routinely extract a design
graph from source code files. Design analysis [6] explores the
recovered design database to discover properties such as
architectural well-formedness [7]. Such analyses are often
reported as new relationships or modified design graphs using
tools such as PROGRES [8] and GROK [9].

While analyses reported as high-level graphs, tables or
diagrams are often well understood by application architects and
project leaders, the activities required in response to such
discoveries are invariably involved with changes to the actual
source code, to be carried out by line programmers. Thus it
would seem desirable to use a representation of the results of an
analysis that has a direct attachment to actual lines of source.

This important fact has previously been recognized in the
area of performance tuning. Performance hot spots [10] are

small sections of source code that are labeled as "hot" because of
a high level of execution time or memory activity that is
observed for them in an execution profile. Represented as a
markup or elision [11] of the source code of the application, hot
spots focus the tuning programmer’s effort on exactly those
sections of code that actually affect performance.

2. Maintenance Hot Spots

Maintenance hot spots are a generalization of performance
hot spots to any kind of design or source code analysis activity.
Sections of source code are labeled as hot because a design or
source code analysis looking for sensitivity to a particular
maintenance issue, such as the Year 2000 problem, the
expansion of credit card account numbers, or a change to interest
computation laws, has identified them as potentially relevant.

By representing the results of such analyses as source code
elisions [11], we make the results of the analysis accessible to all
members of the programming team. This has many advantages:
it focuses the effort of the line programmers' maintenance
activity on exactly those sections of code which may be affected;
it assists managers by providing a checklist of code sections to
be examined and modified; and it provides a test strategy by
explicitly enumerating the code sections that need to be covered.

LS/2000 [12] used the concept of maintenance hot spots to
assist in the Year 2000 conversion of over three billion lines of
Cobol, PL/I and RPG source code. Using a general design
recovery process followed by custom design analysis and hot
spotting processes for the Year 2000 problem, LS/2000
produced hot spot reports for every module of an application that
had any potential Year 2000 risks embedded in it. Figure 1
shows an example LS/2000 hot spot report for one module of a
1,000 module Cobol application.

Clients of LS/2000 reported a 30-40 fold increase in Year
2000 conversion productivity with use of hot spot reports. Time
to examine and convert a source code module of a few thousand
lines of source was reduced from a few hours to less than five
minutes, and accuracy of conversion before testing was
increased from about 75% to over 99%.

3. HSML

HSML, the Hot Spot Markup Language, is an ultra-high
level executable specification language designed for concisely
specifying source code hot spots of all kinds. An HSML run
takes as input an HSML rule set, a normalized source code
module to be hot spotted and the design database for the

HSML: Design Directed Source Code Hot Spots

James R. Cordy* Kevin A. Schneider† Thomas R. Dean* Andrew J. Malton*

Legasys Corporation, Kingston, Ontario, Canada
{cordy,kas,dean,malton}@cs.queensu.ca

This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC).
 * Author’s current address: Department of Computing & Information
Science, Queen’s University, Kingston, Ontario, Canada K7L 3N6.
 † Author’s current address: Department of Computer Science,
University of Saskatchewan, 57 Campus Drive, Saskatoon,
Saskatchewan, Canada S7N 5A9.

application. The output of the run is the normalized source code
module with hot spots marked up using XML-like markup
brackets, and (optionally) a set of new relationships for the
marked up entities to be added to the design database.

The input source code has been normalized by stripping
comments and other lexical noise, inlining include files,
expanding macros, and disambiguating all names by global
unique naming of all program and data entities. The input design
database is the result of a design recovery and analysis process
on the normalized source code of the entire application of which
the module is a part. Unique naming forms the link between the
items declared and referred to in the source and the design
relationships involving them in the recovered design database.
Because the entire design database is available when marking up
each individual source module, relationships that transcend
module boundaries can be used in specifying markup criteria.

HSML is normally run in the context of the LS/AMT
architecture (Figure 2), which provides source normalization,
unique naming, design recovery, version integration and
reporting.

3.1. HSML Rules

Each HSML rule specifies the class of items to be marked as
hot, specified as a nonterminal of the source language’s abstract

syntax, and the conditions under which such items are to be
marked, specified using an algebraic expression on the design
properties of the item and the entities contained within it.
Conditions can include restrictions on abstract syntactic structure
(patterns), design recovered semantic properties (queries on the
design database or design graph), and semantic properties
induced by other markup rules.

HSML rules take the form:

HOTSPOT_NAME = [nonterminal_name] constraints ;

where HOTSPOT_NAME is an identifier that names the
particular kind of hot spot, nonterminal_name is a nonterminal
of the target language’s abstract syntax that identifies the kind of
thing to be marked as hot, and the optional constraints specify
the conditions under which those nonterminals should be marked
as hot.

The simplest HSML rules simply mark items of a particular
abstract syntactic class. Example:

% Mark up all CICS statements in Cobol programs
CICS_STMT = [cics_statement];

The identifier to the left of the equals sign is the name of the
markup, in this case CICS_STMT, which will be used in the
markup brackets and as the name of the associated markup
relationship. Nonterminals of the abstract syntax, in this case

Program: XYEGPROG

Line Program Source Line HS Src File
---- ------------------- -- --------
12 001200 16 JULIAN-DATE. XXCOPYJL
13 001300 20 JULIAN-YR PIC 9(2). XXCOPYJL
14 001400 20 JULIAN-DAY PIC 9(3). XXCOPYJL

15 001500 24 FISCAL-MMDDYY. XXCOPYFS
16 001510* MONTH/DAY MAY BE USED AS GROUP OR SEPARATELY XXCOPYFS
17 001600 28 FISCAL-DATE. XXCOPYFS
18 001700 32 FISCAL-MO PIC 9(2). XXCOPYFS
19 001800 32 FISCAL-DAY PIC 9(2). XXCOPYFS
20 001900 28 FISCAL-YR PIC 9(2). XXCOPYFS

26 002600 16 FISCAL-DATE-JULIAN PIC S9(5) COMP-3. XXCOPYDJ

52 005300 24 WS-FISCAL-DATE-JULIAN PIC S9(5) COMP-3. XYEGPROG

236 IF FISCAL-DATE-JULIAN IS NOT GREATER THAN <- XYEGPROG
237 WS-FISCAL-DATE-JULIAN <- XYEGPROG
240 PERFORM FISCAL-DATE-LESS. XYEGPROG

28 003000* WHEN WE HIT THE SENTINEL, IT’S TIME TO LEAVE XXCOPYPG
29 003100 IF FISCAL-PROC-FLD IS EQUAL TO ZEROS XXCOPYPG
30 003110 AND FISCAL-MMDDYY IS EQUAL TO ZEROS <- XXCOPYPG
31 003500 PERFORM FISCAL-ZEXIT XXCOPYPG
32 003600* OTHERWISE IT’S NEXT YEAR NOW XXCOPYPG
33 003700 ELSE XXCOPYPG
34 003800 ADD 1 TO JULIAN-YR <- XXCOPYPG
35 003820 PERFORM FISCAL-PROCESS. XXCOPYPG

Figure 1. Example LS/2000 Year 2000 Hot Spot Report.

Numbers on the left are actual source code line numbers within the source files involved. The source file
each line is from appears on the right. Year 2000 risks (hot spots) are marked with an arrow <- on the
right. Other lines are context, such as the declarations of variables mentioned in hot spots, that allow the
report to be understood independently of the rest of the source.

[cics_statement], are always referred to using square brackets,
as in TXL [13].

When run on a normalized source module, this rule will
mark as hot all uses of Cobol CICS statements, yielding a new
normalized source with embedded markup brackets:

. . .

MOVE X TO Y.
{CICS_STMT

EXEC CICS.
 READ . . .
 . . .
END-EXEC.

}CICS_STMT
. . .

The output of the markup will then be fed to the LS/AMT
version integrator to reflect the markup into the original raw
source. The LS/AMT reporter then elides unmarked source to
produce the hot spot reports.

3.2. HSML Constraints

Constraints specify the conditions under which items are to
be marked as hot. A constraint consists of a property operator
and a property. Property operators are < ("which contains"), *
("which has a first") and > ("which is contained in"). Properties
can be structural properties, pattern properties, design properties
or markup properties.

Examples.

< [array_reference] constrains to only those items that
contain an array reference

* Date constrains to only those items whose
first contained entity (i.e.,unique name)
has a Date fact in the design database

Constraints can be combined using negation (not),
conjunction (and) and disjunction (or).

! constraint constrains to items that do not meet the
given constraint

(constraint , constraint , ...)
constrains to items that meet every one
of the given constraints

(constraint | constraint | ...)
constrains to items that meet one or
more of the given constraints

3.3. Structural Properties

Structural properties describe constraints on the syntactic
structure of or contained in the items to be marked as hot.
Syntactic properties are expressed using the nonterminals of the
abstract syntax.

Example 1. Identify as hot all IF statements containing a nested
if statement. The rule can be read as "mark as NESTED_IF all

Design
Recovery

Unique
Naming

HSML
Markup

Version
Integration

Normalized
Source

Design
Analysis

Original
Source

Marked-up
Normalized Source

Report
Generation

Marked-up
Original Source

Hot Spot
Reports

Design
Database

Figure 2. The LS/AMT Process Architecture.

HSML normally runs in the LS/AMT process environment. LS/AMT provides Unique Naming, which disambiguates
references to similarly named items; Design Recovery and Analysis, which builds and augments the design
database with recovered, inferred or externally documented design information; Version Integration, which
reintegrates original lexical information such as comments and formatting and into the marked-up source; and
Reporting, which creates and displays hot spot reports in web and printed form.

[if_statement]’s that are properly contained in (>) another
[if_statement]."

% Mark all nested if statements as hot
NESTED_IF = [if_statement] > [if_statement];

Example 2. Identify as hot all comparisons to a literal value.
The rule can be read as "mark as LIT_COMPARE all
[comparison]’s that properly contain (<) a [comparand] which
is entirely (*) a [literal]."

% Mark all comparisons to literal values as hot
LIT_COMPARE = [comparison] < [comparand] * [literal];

3.4. Pattern Properties

Pattern properties describe constraints on the textual
representation of items to be marked as hot. Patterns are text
strings or regular expressions that the text of the item must
match or contain.

grep ("regexp") constrains to items whose text
matches (*) or contains (<) a match
for the given regular expression

grepid ("regexp") constrains to items whose first
identifier (*) or which contain any
identifier () whose original text
matches the given regular expression

pattern ("text") constrains to items whose text has the
exact same parsed structure (*)
as the given text

Example 1. Identify as hot all Cobol declarations of data fields
at level 05. The rule can be read as "mark as LEVEL_5 all
[declaration]’s containing a [level_number] that exactly matches
(*) the pattern ‘5’ or ‘05’."

% Mark all declarations at level 5
LEVEL_5 =
 [declaration] < [level_number] * pattern ("5" |"05");

Example 2. Identify as hot all declarations of items whose name
begins or ends with the letters "YY". The rule can be read as
"mark as YY_DECL all [declaration]’s whose first (i.e.,
declared) [name] has an identifier that begins or ends with
‘YY’."

% Mark all YY declarations
YY_DECL =
 [declaration] * [name] * grepid ("^YY" |"YY$");

3.5. Design Properties

Design properties constrain the markup by a query on the
design database using the first (*) or any contained (<) unique
[name] of an item as the key. Design properties are denoted by
the name of a design relationship (i.e., fact or edge). By
convention design fact names begin with a capital letter.

Factname constrains to items for which there is
a Factname fact in the design
database

Factname (attr) constrains to items for which there is
a Factname fact with attribute attr in
the design database

Design relationships include facts design recovered from
source, such as Calls, Uses, Contains and FieldSize facts, as well
as relationships derived from business type analysis or other
information, such as Money, Date and AccountNumber facts.
Relationships may be unary, binary or n-ary. For binary and n-
ary relationships, the first entity [name] is normally the primary
query key.

Example 1. Categorize statements as potentially dangerous or
harmless based on whether they reference any [name] that has a
Date fact in the design database.

% Mark statements that reference any name with a
% Date fact as DANGEROUS_STMT
DANGEROUS_STMT = [statement] < Date;

% Mark statements that don’t reference any name with
% a Date fact as HARMLESS_STMT
HARMLESS_STMT = [statement] !< Date;

Example 2. Find declarations of money variables, and all
expressions involving money.

% Mark money declarations
MONEY_DECLARATION = [declaration] * Money;

% Mark all expressions involving any money variables
MONEY_EXPRESSION = [expression] < Money;

Example 3. Mark up all birth date variable declarations. The
rule can be read as "mark as BIRTHDATE the [declaration]s of
all [name]s with a Date fact whose identifier contains the
substring ‘BRTH’ or ‘BIRTH’."

% Mark birth dates
BIRTHDATE = [declaration]
 * [name] * Date * grepid ("BRTH" | "BIRTH") ;

3.6. Markup Properties

Markup properties constrain new items to be marked up to
be those already marked up (*) or nested within the scope of
items marked up (>) with a given markup tag. Markup
properties are denoted by hasmarkup.

hasmarkup (MARKUPNAME)
constrains to items already marked up
(*) or contained within something
marked up (<) as MARKUPNAME

Example 1. Mark all arithmetic operators in money expressions.
This rule assumes that the MONEY_EXPRESSION rule has

preceded it. The rule can be read as "mark up as MONEY_OP
all [arithmetic_operator]s appearing in MONEY_EXPRESSION
markups."

% Mark up all arithmetic operators in
% money computations
MONEY_OP = [arithmetic_operator]
 > hasmarkup (MONEY_EXPRESSION);

Example 2. Identify the entire record declaration that embeds
variables previously identified as money declarations. The rule
can be read as "mark up as RECORD_CONTEXT every
[declaration] that contains a [declaration] already marked as
MONEY_DECLARATION."

% Mark all declarations that contain a sub-declaration
% with a MONEY_DECLARATION markup
RECORD_CONTEXT = [declaration] < [declaration]
 * hasmarkup (MONEY_DECLARATION) ;

3.7. Induced Relationships

Each markup induces new facts about all of the entities
([name]s) contained in the markup which can be queried in later
markups using the markup property. The markup property
constrains the rule to items whose first (*) or which contains
any (<) [name] that already appears in the given markup
somewhere.

markup constrains to items whose name appears
in a markup somewhere in the result

markup (MARKUPNAME)
constrains to items whose name appears
inside a MARKUPNAME markup
somewhere in the result

Example. Find the declarations of all items appearing inside any
markup we have made. We can read the rule as "mark as
INTERESTING_DECLARATION any declaration whose first
(i.e. declared) [name] appears in a markup somewhere." Of
course, this rule assumes that one or more other markup rules
precede it!

% Mark up the declarations of all entities mentioned in
% any other markup
INTERESTING_DECLARATION =
 [declaration] * markup;

Induced relationships can be exported from an HSML run as
new design relationships added to the design database. In this
way the results of HSML runs can be stored in the design
database for use in subsequent markups or other design analysis.

3.8. Clustering

Cluster properties allow closure of items to be marked
across binary or n-ary design relationships such as Move (X,Y)
(i.e., X is assigned to Y) or Compare (X,Y) (i.e., X is compared
to Y).

cluster (Factname, MARKUPNAME)
constrains to items related by a (chain of)
Factname relationships to an item that
appears in a MARKUPNAME markup

cluster (Factname)
constrains to items that are related by
a (chain of) Factname relationships to
an item that appears inside any markup

Example. Mark all variables with FlightNumber facts and all of
the variables that they transitively interact with. The second rule
can be read as "mark as FLIGHT_NUMBER_CLUSTER all
[name]s which are related to any [name] appearing inside a
FLIGHT_NUMBER by a Move or Compare relationship."

% Mark all flight numbers
FLIGHT_NUMBER = [name] * FlightNumber;

% And all related variables
FLIGHT_NUMBER_CLUSTER = [name]
 * cluster (Move | Compare, FLIGHT_NUMBER);

3.9. Transitive Closure

Markup rules can be automatically recursively reapplied to
transitively close a cluster. Transitive closure is denoted by *=
in place of = in the rule specification.

Example. Transitively close the flight number cluster shown
above. The following rule is run after the rules in the previous
example. The form *= means that the rule will be automatically
re-run on its own result after each application of the rule, until
no new candidates for markup are found.

% Transitively close the flight number cluster
FLIGHT_NUMBER_CLUSTER *= [name]
 * cluster (Move | Compare,
 FLIGHT_NUMBER_CLUSTER);

4. Examples

4.1. LS/2000

Because HSML grew out of our experience with the Year
2000 problem, an obvious first test was its ability to compactly
express the Year 2000 hot spot markup rules of the LS/2000
system. In LS/2000, markup is implemented by a custom
markup program consisting of about five thousand lines of TXL
code. Figure 3 shows the HSML specification of LS/2000, which
uses only 16 rules.

In order to validate that the HSML version was indeed
expressing the same markups, a regression test suite consisting
of a Cobol application of about 3 million source lines, a PL/I
application of about 300,000 lines and an RPG application of
about 100,000 lines was assembled. For each application, a set
of hot spot reports was generated using the original LS/2000
system and then a new set was generated by running the HSML
specification on the same inputs. The total time for each run was

measured and the two sets of hot spot reports were compared for
differences.

Although we expected that it might be somewhat less
efficient than the custom programmed markup engine used in
LS/2000, the HSML version was actually measured to be about
10% faster on average. The generated hot spot reports were
virtually identical, with two exceptions. The HSML
specification of Figure 3 turned out to be slightly more
aggressive in its hot spotting of interactions of literal values with
dates, leading to a one or two extra hot spots not previously
identified by LS/2000. The HSML specification also uncovered
a small bug in the Cobol version of LS/2000 which had missed
three uses of dates as sort keys in the regression set due to an

apparent typographical error in its search patterns. Given the
relative sizes of the two hot spotting specifications (16 lines of
HSML vs. a 5,000 line TXL program), it is not surprising that
such an error might more easily slip by in the latter. Of course,
the HSML specification was also written with a more mature
understanding of the problem, so one might expect it to be more
accurate in any case.

4.2. Error Handling Analysis

One of the first real tests of HSML was a problem posed by
a client with an application consisting of about a million lines of
PL/I code. In this case the application was known to be unstable

% HSML Spec for LS/2000 Year 2000 Hot Spots
% J.R. Cordy, Legasys Corporation, October 1998

% Keys containing a date are hot.
HOT_KEY = [key_identifier] < Date ;

% Date fields with literal values are hot. This captures 88 values as well as initial values.
HOT_FIELD = [declaration] * Date < [value_clause] < [literal] * interesting ;

% Files with a hot key are themselves hot.
HOT_FILE = [file_declaration] < hasmarkup (HOT_KEY) ;

% Certain kinds of date fields with Z pictures are hot.
HOT_PICTURE_FIELD = [declaration]

* Date ("YY","YYMM","YYMMDD","YYNNN", "FYY","FYYMM","FYYMMDD","FYYNNN")
* Pic ("ZZ", "ZZZ", "ZZZZ", "ZZZZZ", "ZZZZZZ", "ZZZZZZZ") ;

% Arithmetic statements with dates are hot. Subsumes COMPUTE, ADD, SUBTRACT, etc.
HOT_ARITHMETIC = [arithmetic_statement] * Date ;

% Date inequalities are hot. Exactly the same as LS/2000 - we could be more precise if we want.
DATE_INEQUALITY = [comparison] * Date < [inequality] ;

% Literal comparisons to dates are hot. The "interesting" property screens out boring literals.
COMPARE_HOT_LITERAL = [comparison] * Date < [literal] * interesting ;

% Literal moves to dates are hot.
MOVE_LITERAL_DATE = [move_statement] * Date < [literal] * interesting ;

% INSPECT, STRING and UNSTRING statements on dates are hot.
INSPECT_DATE = [stringop_statement] * Date ;

% File descriptions of hot files are hot.
HOT_FILE = [file_description_entry] < hasmarkup (HOT_FILE) ;

% Nontrivial arithmetic expressions involving dates are hot.
HOT_ARITHMETIC_EXPRESSION =

[arithmetic_expression] (< [arithmetic_operator], < [arithmetic_primary] * Date) ;

% Subscript expressions involving dates are hot.
HOT_SUBSCRIPT = [subscript_expression] < Date ;

% Declaration context - slightly more precise than LS/2000 - marks innermost group only.
HOT_USED_FIELD = [declaration] * Date * markup ;
HOT_DATA_CONTEXT = [declaration] * Date < [declaration] * hasmarkup ;

% Statement context - slightly more precise than LS/2000 - marks innermost context only.
HOT_STATEMENT_CONTEXT = [statement] < [comparison] * hasmarkup ;
HOT_STATEMENT_CONTEXT = [statement] < hasmarkup (HOT_KEY) ;

Figure 3. HSML Specification of LS/2000 Year 2000 Risk Analysis for Cobol.

in the presence of erroneous input, but the programmers were
finding it very difficult to determine the causes of the instability
because the code used a programming style that deferred all
error reporting to the end of a run and did not distinguish
between different classes of errors.

Figure 4 shows the HSML specification written to attack this
problem. It was known that most variables involved with error
handling used a predictable naming convention, involving

names containing the substrings ERR, ABND and ABEND.
This was used as the "seed" of the specification. The
specification then hot spots all statements and declarations that
use these seed names.

Part 2 of the specification highlights all IF statements that
guard any of the interesting statements, and identifies the
condition expressions of these IFs. It then goes on to mark all
assignments to variables that are used in these conditions,

% HSML Spec for Error Condition Backtracing in PL/I
% J.R. Cordy, Legasys Corporation, July 1999

% This general hot spot markup specification hot spots all references to a set of interesting things.
% The conditions that guard interesting things, the statements that cause these conditions, the
% procedures containing those statements, and the calls to them are also hot spotted. The effect is to
% highlight all interesting things and the conditions that directly or indirectly affect them.

% PART I - What's interesting?

% Interesting things - this time, they are things whose names contain ABEND, ABND, ERR
INTERESTING = [name] * grep ("ERR" | "ABND" | "ABEND") ;

% Statements and declarations containing interesting things
INTERESTING_STATEMENT = [statement] < hasmarkup (INTERESTING) ;

% PART II - Conditions that guard interesting things

% Conditions under which interesting things are executed
IF_CONTEXT = [if_statement] * hasmarkup (INTERESTING_STATEMENT) ;
IF_CONTEXT_CONDITION = [if_condition] > hasmarkup (IF_CONTEXT) ;

% Assignments to variables of those conditions
IF_CONTEXT_CONDITION_ASSIGNMENT = [assignment_statement] * markup (IF_CONTEXT_CONDITION);
IF_CONTEXT_CONDITION_ASSIGNMENT = [call_statement] * markup (IF_CONTEXT_CONDITION) ;

% Conditions under which those assignments are made
IF_CONTEXT_CONDITION_ASSIGNMENT_IF_CONTEXT =

[if_statement] * hasmarkup (IF_CONTEXT_CONDITION_ASSIGNMENT) ;

% PART III - Calls to routines with interesting things, and conditions under which those calls are made

% Routines that are interesting or that contain interesting things
PROC_CONTEXT = [procedure_declaration]
 (!* grep ("(MAIN)"), (* hasmarkup (INTERESTING) | < hasmarkup (INTERESTING_STATEMENT))) ;
PROC_CONTEXT_NAME = [label] > hasmarkup (PROC_CONTEXT) ;

% Calls to those routines
PROC_CONTEXT_CALL = [call_statement] < [name] * markup (PROC_CONTEXT_NAME) ;

% Conditions under which those routines are called
PROC_CONTEXT_CALL_IF_CONTEXT = [if_statement] * hasmarkup (PROC_CONTEXT_CALL) ;
PROC_CONTEXT_CALL_IF_CONTEXT_CONDITION =

[if_condition] > hasmarkup (PROC_CONTEXT_CALL_IF_CONTEXT) ;

% Assignments to variables of those conditions
PROC_CONTEXT_CALL_IF_CONTEXT_CONDITION_ASSIGNMENT =
 [assignment_statement] * markup (PROC_CONTEXT_CALL_IF_CONTEXT_CONDITION) ;

% Conditions under which those assignments are made
PROC_CONTEXT_CALL_IF_CONTEXT_CONDITION_ASSIGNMENT_IF_CONTEXT =
 [if_statement] * hasmarkup (PROC_CONTEXT_CALL_IF_CONTEXT_CONDITION_ASSIGNMENT) ;

Figure 4. HSML Specification of Error Backtrace Analysis for PL/I.

effectively identifying the ways in which these conditions can be
caused.

Finally, part 3 of the specification identifies any internal
routines that enclose these IF statements, and goes on to
highlight all calls to these routines, the IFs and conditions that
guard these calls, and finally any assignments that change the
variables used in these second order conditions. The result is a
hot spot report that effectively traces the conditions under which
any error condition or abend (i.e., exception) can be raised.

This specification was authored and run in about two days,
demonstrating how rapidly new problems can be attacked using
HSML. It’s interesting to note that this HSML specification
does not use any design facts at all - in a sense, it does its own
design recovery from scratch, using the design information
uncovered by previous rules to drive the hot spots of later rules.

4.3. Other Applications

HSML has also been used in projects to find and normalize
rollover code generated by different Y2K tools in the same
source code, to find and trace the flow of flight numbers through
the source code of an airline management system, to trace back

through complex computations the data entries stored in an
archival data warehouse in order to validate the archived data, to
identify the external interfaces and types of transactions in
complex interactive systems, and for several other design-
directed source code analysis tasks.

5. Implementation Issues

Implementation of HSML poses many challenges. Because
it requires access to abstract syntactic structure, it seems
appropriate to implement HSML in a language like TXL [13]
that already works with parse trees. However, HSML also
requires access to the design database, and TXL’s symbolic
nature tends to make database access awkward and inefficient.
Moreover, the obvious strategy of translating HSML rules to
TXL programs would require the TXL compiler to be distributed
with HSML.

In the end HSML was implemented as a generic interpreter
for the HSML notation written in TXL. In order to allow
database access, a new TXL database module was designed that
encodes Entity-Relationship databases as AVL trees to allow
reasonably efficient queries in a natural way. Because TXL is

HSML_Interpreter_Cobol.Txl

 LSCobol7.Grammar
 GlobalOverrides.Grammar
 AS400Overrides.Grammar
 RenamingOverrides.Grammar

 FastFactbase.Mod

 HSML.Grammar

 HSML_Overrides_Cobol.Grammar

 HSML_Includes/HSML_CallHotNonterminals.Grm
 HSML_Includes/HSML_HotNonterminals.Grm

 HSML_Includes/HSML_NonterminalRules.Rul

 HSML_Includes/arithmetic_expression.Rul
 HSML_Includes/arithmetic_operator.Rul
 HSML_Includes/arithmetic_primary.Rul
 HSML_Includes/arithmetic_statement.Rul

 ... several hundred more rulesets ...

 HSML_Includes/HSML_CallNonterminalProperties.Rul

 HSML_Includes/HSML_CallNonterminalMarkups.Rul

Generic

Generated

Figure 5. Implementation of an HSML interpreter using TXL.

A generic HSML interpreter consisting of the target language grammar (LSCobol7.Grammar etc.), the
database interface (FastFactbase.Mod), the HSML grammar (HSML.Grammar) and a skeletal rule
decoder (HSML_Cobol_Interpreter.Txl) is augmented with a template-generated set of TXL rules for
each nonterminal of the target language abstract syntax. The TXL compiler is then used to make a
standalone HSML interpreter for the target language that is ready to mark up any nonterminal.

statically typed, it was necessary to generate a separate set of
TXL functions and rules to implement markup for each
nonterminal in the grammar of each target language (Figure 5).
Since the Cobol reference grammar involves more than 800
nonterminals and the grammars of other languages are similarly
large, this implementation strategy resulted in truly enormous
TXL programs with thousands of TXL functions and rules, each
of which is "speculative" in that it may or may not ever be used
in the HSML specifications we actually run.

To our surprise this implementation method has proven not
only practical but reasonably efficient as well. Since TXL rules
and functions are guarded by pattern matches, and since the set
of nonterminals actually mentioned in each HSML specification
can be enumerated as it is run, we can arrange that the
speculative TXL rules and functions fail quickly if they are
unused in a particular run. With care, we can arrange that this
failure be limited to a single integer comparison in a guarding
TXL pattern.

HSML could be similarly implemented using other
grammar-based source code analysis and manipulation tools
such as Gentle [14] and NewYacc [15]. However, there are
advantages to using TXL in place of Yacc-based tools that affect
the usability and generality of HSML. Since TXL supports
general context free grammars and does not impose LL, LR or
LALR restrictions, the grammar used for each target language
can be the user-level reference syntax for the language rather
than a compiler-oriented “implementation” grammar. This
allows HSML specifications to be coded using the abstract set of
language concepts originally designed for users of the language,
and avoids differences in interpretation due to parser
restrictions. Of course, the down side if this argument is that
TXL has its own grammar notation and does not easily import
Yacc-style grammars, making it a more onerous task to add a
new target language. TXL also has a standard technique for
extending grammars to be “robust”, which allows HSML to
successfully process a wide range of variants and dialects of
each target language without failing on syntax errors, even for
inputs that are badly malformed or are missing macros and
include files.

6. Summary

HSML, the Hot Spot Markup Language, is a concise
executable specification language for specifying source code
maintenance hot spots of all kinds. Using the abstract syntax
tree to specify structural properties and queries on the design
database to uncover semantic properties, HSML has been shown
to be a practical tool for source code mining searches of many
kinds.

At present HSML must be run in the LS/AMT environment
shown in Figure 2. It is clear that it would be desirable to make
HSML more widely accessible to other researchers by freeing it
of this requirement. In light of the recent interest in using XML
[16] in the reverse engineering community, it would seem a
good idea to develop an HSML implementation to process
XML-based program and design representations such as GXL
[17].

HSML is not an easy notation to learn. It seems clear that it
is not one that could be effectively used in the field by the
average industrial programmer. For this reason, we believe that
ideally HSML’s capabilities should be embedded in a by-
example authoring environment in which HSML specifications
are inferred from actual source code samples rather than
authored directly by hand.

While HSML has been used in practical industrial work, it is
still very much a research prototype. As the range of
applications expands, we continue to learn more about the
HSML paradigm and to redesign HSML and its implementation
in response.

It is important to note that this paper is not the first to
introduce the idea of source code maintenance hot spots, or to
point out that attachment to source code is an important aspect of
software analysis and reengineering. Lethbridge and Singer [18]
have empirically observed the need for tools to explore source
code, a philosophy that inherently underlies HSML. Program
slicing [19] is a well established analysis technique for “hot
spotting” sections of source code that may influence a variable
or other program entity during execution. CQML [20] is a quite
general and flexible language for posing source code queries.
And TuringTool [11] uses algebraic combinations of source code
elisions to achieve results somewhat similar to HSML hot spots.

HSML adds to these ideas a concise, language independent
executable formal specification language, the ability to take
external design information into account in source code queries,
and the representation of results as hot spot reports in original
source text.

References.

[1] T.J. Biggerstaff, "Design recovery for maintenance and reuse", IEEE
Computer 22,7 (July 1989), pp. 36-49.

[2] S. R. Tilley, K. Wong, M.-A. D. Storey, and H. A. Müller.
"Programmable reverse engineering", International Journal of Software
Engineering and Knowledge Engineering 4,4 (December 1994), pp. 501-
520.

[3] P. J. Finnigan, R. C. Holt, I. Kalas, S. Kerr, K.Kontogiannis, H. A.
Müller, J. Mylopoulos, and S. G. Perelgut, "The Software Bookshelf",
IBM Systems Journal 36,4 (1997), pp. 564-593.

[4] K. Sartipi, K. Kontogiannis and F. Mavaddat, "A Pattern Matching
Framework for Software Architecture Recovery and Restructuring",
Proc. IWPC 2000, 8th International Workshop on Program
Comprehension, Limerick, Ireland (June 2000), pp. 37-47.

[5] K. Cremer, "A Tool Supporting the Re-Design of Legacy
Applications", Proc. 2nd Euromicro Conference on Software
Maintenance & Reengineering (1998), pp. 142-148.

[6] L. Feijs, R. Krikhaar and R. van Ommering, "A Relational Approach
to Software Architecture Analysis", Software Practice and Experience
28,4 (April 1998), pp. 371-400.

[7] H. Fahmy and R.C. Holt, "Software Architecture Transformations",
Proc. ICSM 2000, International Conference on Software Maintenance,
San Jose (October 2000).

[8] A. Schürr, A. Winter and A. Zündorf, "Visual Programming with
Graph Rewriting Systems", Proc. 11th IEEE Symposium on Visual
Languages, Darmstadt, Germany (Sept. 1995), pp. 326-333.

[9] R.C. Holt, "Binary Relational Algebra Applied to Software
Architecture", Technical Report CSRI-345, Computer Systems Research
Institute, University of Toronto (March 1996).

[10] "VTune(TM) Performance Analyzer V4.5", Intel Corporation
(2000).

[11] J.R. Cordy, N.L. Eliot and M.G. Robertson, "TuringTool: A user
interface to aid in the software maintenance task", IEEE Transactions on
Software Engineering 16,3 (March 1990), pp. 294-301.

[12] J.R. Cordy, "The DRI Legasys Group LS/2000 Technical Guide to
the Year 2000", Technical Report ED5-97, Legasys Corp., Kingston,
and IBM Corp., Toronto (April 1997).

[13] J.R. Cordy, C.D. Halpern and E. Promislow, "TXL: A Rapid
Prototyping System for Programming Language Dialects", Computer
Languages 16,1 (January 1991), pp. 97-107.

[14] Friedrich W. Schroer, The GENTLE Compiler Construction System,
R. Oldenbourg, Munich and Vienna, 1997.

[15] James J. Purtilo and John R. Callahan, "Parse-Tree Annotations",
Communications of the ACM 32,12 (December 1989), pp. 1467-1477.

[16] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen, "Extensible
markup language (XML) 1.0", W3C Recommendation REC-
xml19980210 (February 1998).

[17] R.C. Holt, A. Winter and A. Schürr, "GXL: Toward A Standard
Exchange Format", Proc. WCRE 2000 Working Conference on Reverse
Engineering, Brisbane, Australia (November 2000).

[18] T. Lethbridge and J. Singer, "Understanding Software Maintenance
Tools: Some Empirical Research", Proc. Workshop on Empirical Studies
of Software Maintenance (WESS 97), Bari, Italy (October 1997), pp.
157-162.

[19] M. Weiser, "Program Slicing", IEEE Transactions on Software
Engineering 10,4 (July 1984), pp. 352-357.

[20] Code Query and Manipulation Language, Reasoning Inc.,
Mountain View, California.

	Header: Proc. IWPC 2001 - IEEE 9th International Workshop on Program Comprehension, Toronto, May 2001, pp. 145-154

