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Abstract

In this paper, we address the problem of choosing a disk ad-
mission algorithm for continuous media streams where each
stream may have a different bit rate, and more importantly,
where the bit rate within a single stream may vary consider-
ably. We evaluate several different Variable Bit Rate (VBR)
disk admission control algorithms for continuous media. An
algorithm which accepts too few streams under-utilizes the
server resources, while an algorithm which accepts too many
streams over-utilizes the resources resulting in inadequate
service (i.e. missing or delayed data) to the clients. The
evaluation process is based on a representative set of video
streams encoded in MJPEG. We conclude that one particu-
lar algorithm, the VBR simulation algorithm, performs the
best among realizable algorithms in terms of system utiliza-
tion and delivery guarantees and performs close to an opti-
mal algorithm.

Keywords: multimedia, file servers, variable bit rate, ad-
mission control

1 INTRODUCTION

The motivation for the design of a specialized file server for
continuous media such as video and audio is well established
([1, 5, 15]). Data Access patterns, as well as the services pro-
vided to clients by a continuous media file server (CMFS),
differ considerably from a conventional distributed file ser-
vice such as NFS. A continuous media client typically trans-
fers large volumes of sequential data at specific moments in

time. As well, the resource requirements of the network and
server itself differ considerably. In order to guarantee conti-
nuity, the allocation of network bandwidth must be guaran-
teed, as well as processor cycles, RAM and disk bandwidth.
The guarantees provided by servers and networks can be ei-
ther deterministic or statistical in nature.

Characterizations of the bandwidth of the disk and the
resource requirements of the client are necessary in order to
provide such guarantees at the server. Most of the prior re-
search in this area has made simplifying assumptions about
these requirements [1, 7, 15]. Even in systems that support
different media encodings with differing transfer rates, much
analysis still assumes that each individual stream has a con-
stant bit rate (CBR) [12, 18]. Compression methods such as
MJPEG or MPEG-2 can produce Variable Bit Rate (VBR)
streams. Since computers and networks are well-suited to
handle bursty traffic, it seems reasonable to design a file
service which can explicitly accommodate such variation in
resource requirements and thereby increase the number of
simultaneous streams supportable [2, 6, 7].

In any continuous media file server, there exists a disk
admission control algorithm which determines whether a
client’s request for a new stream can be supported by the
disk. The requirements of the new stream are calculated and
then added to the allocated resources for the existing clients.
If the required resources are not available, the new client’s
request is rejected. If the new stream is accepted, then the
server provides some guarantee that the available disk re-
sources are sufficient for all the allocated streams. Algo-
rithms for allocating other scarce resources, such as network
bandwidth are beyond the scope of this paper and therefore,
we will refer to disk admission control algorithms simply as
admission control algorithms.

An admission control algorithm can be too conserva-
tive and admit too few streams, thereby under-utilizing the
server resources, or it can admit too many streams resulting
in over-utilization, which manifests itself as delay or loss of
data at the client. Although probabilistic methods exist to
amortize the cost of this failure [2, 17], this is undesirable in
general. This paper evaluates five different VBR disk admis-
sion algorithms to determine how well they behave for a typ-
ical set of streams. We will show that the vbrSim algorithm
can efficiently make correct admission decisions and that its
performance approaches that of an optimal algorithm.



The remainder of this paper is organized as follows. The
next section contains a description of the five different al-
gorithms as well as the model for representing the disk 1/O
resources. This is followed by the presentation of a “typical”
stream set and a description of how the performance tests
are run. The results of these tests are presented in Section
4. Related work is then described, followed by conclusions
and future work.

2 DISK ADMISSION
ALGORITHMS

To define bandwidth measurements, most servers divide time
into intervals called slots or rounds, during which sufficient
blocks of data are read off the disk and/or transmitted across
the network for each active stream to allow continuous play-
back at the client application. A reasonable length for such a
slot is 500 milliseconds, providing for fine level of granularity
while attempting to limit the amount of overhead required
for the operation of the server. A slot time of several sec-
onds tremendously increases the amount of buffering needed
at the server for high bandwidth streams. Smaller slot times
increase the relative amount of time the disk spends seeking,
since each read operation corresponds to a shorter playback
duration.

To understand the relevant differences between the disk
admissions algorithms, we need to define what resources are
measured. In this study, we measure two resources: the disk
read bandwidth, and the number of buffers available. The
bandwidth is defined as the number of fixed size (64KByte)
blocks the server can read from the disk system into user
space in a fixed amount of time (one slot). The guaranteed
number of blocks that can be read in a slot is called minRead.
This number is calculated by running a calibration program
that determines the maximum number of blocks that can
be read when the blocks are located on the disk under the
worst conditions. This value most accurately reflects the
actual capacity of the server since it includes all transfer
delays (through SCSI bus and I/O bus to memory) as well
as server software overhead. Of course, minRead will likely
be less than what is actually experienced by the server when
reading some set of streams. As well, disk layout techniques
[3, 4, 6, 15, 16] can be used to help improve the server’s
performance. Nonetheless, minRead is useful in calibrating
the lower bound of disk bandwidth performance that the
server will ever experience. This lower bound is used to
provide hard guarantees of data delivery to the clients. The
number of buffers available to the algorithms is determined
by the amount of main memory at the server.

Whenever a client makes a request for a portion of a media
stream at a particular display rate, a block schedule for the
stream is created that contains one entry per slot for the
duration of the stream playout. Each entry in the schedule
is the number of blocks that must be read for the stream in
that slot for continuous client playout. The rate at which
this data is needed is called the playout rate. For a constant
bit rate stream, all the values in the block schedule would
be the same (modulo disk block granularity), reflecting the
constant rate. The values would vary for VBR streams in
a manner dependent on the encoding. For instance, Figure
1 presents an extract of the block schedule from one of our
sample streams.

Slot 1 2 3 4 5 6 7 8 9 10 1 12

Blocks 2 3 6 6 6 7 6 6 7 7 6 8

Figure 1: Typical Stream Block Schedule

The block schedule can be characterized by its average,
standard deviation and coefficient of variance. The last of
these measures can be used for comparing the variation be-
tween streams with significantly different average playout
rates.

A user can request to have only a portion of a continu-
ous media stream delivered. In fact, we give details in [13]
regarding the scope of the flexible user interface. Parame-
ters are provided which enable fast (slow) motion delivery
(in forward or reverse) which increases (decreases) the disk
bandwidth required. As well, the skipping of user-defined
“sequences” may be requested, which will appear to provide
fast motion at the same average disk utilization and dis-
play rate. All this implies that the bit-rate profile can vary
depending on the mode in which the stream is retrieved.
The block schedule is created at the time playback is re-
quested and is efficient to calculate. Preliminary results on
the performance of the admission algorithm itself are given
in Section 4.1.

As blocks are read from the disk, they are stored into
available buffers which are then passed to the network for
transmission to the clients. The speed at which buffers are
filled is dependent on how fast the server reads blocks from
the disk (we know it will be at least as fast as minRead). The
speed at which the buffers are freed depends on how quickly
the network can transmit the data to the client. This latter
speed is itself dependent on the speed of the network and
the number of buffers that the client has allocated to receive
the data. In the following algorithms, we assume that the
network management system transmits data only as fast as
the client can consume the data; that is, at the playout rate.

We now describe the five admission algorithms. In all of
these algorithms we use minRead as the basis for accepting
or rejecting streams. For 4 of the 5 algorithms, this results in
a deterministic guarantee that the server will not fall behind
in reading.

2.1 Simple Maximum

In this algorithm, we reduce the characterization of each
stream to a single number - the maximum number of reads
required in any slot. If the sum of this maximum value for
the new stream plus the value for the current set of streams
is greater than minRead, we reject the new stream. Using
the block schedule in Figure 1, for example, we would choose
8 as the value for the stream. If the current sum was 20 and
minRead equaled 26, the new sum of 28 would result in a
rejection.

A clear advantage of this algorithm is its simplicity. If the
variation in the stream’s block schedule is small, then this
is a reasonable algorithm. In fact, it has been used in sev-
eral CBR file systems [7, 15, 16]. Another advantage of this



algorithm is that it produces deterministic guarantees for
reading from the disk. Unfortunately, it significantly under-
utilizes the resources as block schedule variation increases,
rejecting streams which could be delivered, as we will see in
the next section.

2.2 Instantaneous Maximum

The next admission control algorithm keeps the sum of all of
the currently admitted block schedules in a vector called the
server block schedule. When a new stream is to be admitted,
we add its block schedule to the current server block schedule.
If any slot in the resulting schedule is greater than minRead,
the new stream is rejected, otherwise it is accepted. A varia-
tion of this algorithm is described in Chang and Zakhor [4].
Consider the server block schedule as shown in Figure 2.

Slot 1 2 3 4 5 6 7 8 9 10 n-1 |n

Blocks 15 10 24 23 12 16 18 24 22 25 20 23

Figure 2: Multiple Stream Block Schedule

We again assume that minRead = 26 and that we are
attempting to admit the stream in Figure 1. The stream
would be rejected since the number of blocks that need to
be read in slot 3 of the server block scheduleis 244+6=30.

This algorithm is also deterministic, and is provably better
than Simple Maximum since it performs a more fine-grain
evaluation of the schedules. It is still rather conservative
and also may reject streams it could deliver. This can be
corrected by the next algorithm.

2.3 Average

One problem with both algorithms 1 and 2 is that they do
not take into account the amount of read ahead possible
when we are reading slots that require fewer than minRead
blocks. If we permit the server to read into buffers as fast as
it can, then we can smooth out the peaks in a VBR schedule.
In order to make use of this read ahead we can calculate the
average blocks per slot for each stream. We can then sum
this average (rather than the individual slots) and compare
the summed averages to minRead. This algorithm will admit
more VBR streams than the previous algorithms, because
the average bit rate is less than the maximum of each stream
and also less than the possible bandwidth peaks in combi-
nations of streams. Unfortunately, it would appear that,
intuitively at least, this algorithm does not provide deter-
ministic guarantees that it will not over-allocate the server
resources. Interestingly, as will be shown later, there are
circumstances in which it may also under-utilize the server
resources.

2.4 VBR Simulation (vbrSim)

Our next algorithm solves the problem of being too conser-
vative in admissions, but still gives deterministic guarantees
to the clients. This algorithm builds on the Instantaneous

Maximum algorithm by making better use of the server block
schedule. The algorithm utilizes the fact that many blocks
needed in the future for existing streams will have already
been read into buffers at the server whenever disk band-
width is greater than the playout rate. It also assumes the
server will read meinRead blocks in each future slot, thereby
smoothing bandwidth peaks in the future by simulating the
disk reading ahead of the schedule requirements whenever
possible. This rate of reading is only possible when there
are buffers in which to store the data which is read early.

As we mentioned before, the server is capable of read-
ing more than minRead blocks per slot. While we cannot
guarantee this for the future, we can take advantage of read
ahead that has already been accomplished in the past. If
the server can read blocks faster than it can transmit them
to the clients, we can read ahead an arbitrary number of
slots.” Blocks that cannot be sent to the clients immediately
are buffered. Unfortunately, there is not an infinite supply
of buffers in the server, and we have to stop reading ahead
once there are no buffers. For purposes of buffer consump-
tion we again make the conservative assumption that the
server reads minRead blocks per slot. As buffers are trans-
mitted on the network, they are freed and this information
is factored into the admission algorithm.

Data is transferred to the client and the corresponding
buffers are freed at a rate which depends on the amount
of buffer space available at the client and the negotiated
bit rate of the network connection. We therefore maintain
another schedule called the buffer allocation schedule. This
schedule is initially the same as the server schedule. As data
is transferred to the client and buffers are freed, however,
the values in the buffer allocation schedule are decremented.
Note that there is at least a one slot delay in recovering
buffers. In other words, buffers containing data to be sent
to a client in slot ¢ are not reclaimed until the start of slot
t+ 1. For streams which use buffers at a very slow rate, the
buffers cannot be reclaimed until the last portion of data is
sent across the network, which may be several slots later.

For the server block schedule there is a current slot in-
dex, identifying the next slot to read. As well, there is a
should be index, referring to the current time. This index is
incremented by one on each clock interval. The difference
between current slot and should be is the number of slots

read ahead.

Another aspect of the algorithm is that if the server reads
ahead arbitrarily far it may use up all the available buffers,
resulting in rejection due to insufficient buffers. In order
to avoid a rejection in this situation, buffers are freed by
reclaiming them from previous reads. We free those buffers
needed furthest in the future, and then add them back into
the schedule in their original position, allowing them to be
absorbed properly via the vbrSim smoothing. A detailed
description of this algorithm including pseudo-code is given
in [13].

2.5 Optimal Algorithm

In order to calibrate our algorithms, we compare them to an
optimal algorithm that is allowed complete knowledge of the
future in making its admission decisions. The algorithm can
predict the bandwidth that will be achieved for every slot

*Assuming the server is not 100% utilized.



time in the future and thus can be thought of performing
the same readahead simulation as the vbrSim algorithm, but
using a different value for minRead in each slot, namely the
number of blocks actually read. This will always be greater
than minRead whenever there is sufficient buffer capacity for
the set of reads. The set of streams accepted by the optimal
algorithm is called the valid set.

Of course, it is not possible to realize this optimal algo-
rithm; it is included for comparison purposes only.

3 EXPERIMENTAL DESIGN
AND TEST DATA

To evaluate the performance of these five algorithms, we
choose a representative set of streams, and then compare the
admission decisions made by each algorithm. The following
describes the experimental design and the test data used.

3.1 Stream Selection

For experimental data, streams with a reasonable degree of
variability were chosen to show the benefits achieved by ex-
plicitly considering the VBR nature of the data. The streams
were captured at 30 fps at a resolution of 640x480 and com-
pressed at a variable bit rate using MJPEG. We chose several
clips of sports highlights which had alternating scenes of in-
terviews and sports action as well as selected minor scenes
from motion pictures. Each stream was between 5 and 7
minutes in length, which is sufficient to exercise the limits
of all of the algorithms. For admission performance tests,
we generated 250 stream scenarios that utilized between 30
and 100 percent of potential disk bandwidth. Client requests
were staggered in time so as to not arrive at the server si-
multaneously in every case. The length of this stagger was
chosen to be either 0, 5, or 10 seconds.
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Figure 3: Variable Bit Rate Profiles

The VBR profiles of the beginning portions of three of the
streams are shown in Figure 3. The vertical axis measures
the number of 64 KByte disk blocks that are required to
be read per slot for each stream. It can be clearly shown
that most of the streams have significant bandwidth peaks
well beyond their average bit-rate. Characterizations which
summarize the variable bit rate data requirements of all the
streams used in this study are given in Table 1. The units
of measurement for Min, Max, Ave, and Std. Dev. are in
blocks per slot. With slots of 500 msec, and block sizes of
64 KBytes, 1 block/slot is equivalent to 1 Mbps.

Stream Frames Disk Min Max Ave Std Coef
Blks Dev of Var

bloop 93 10810 3256 2 9 4.52 1.29 287
bengals 10498 3234 2 7 4.62 0.98 212
chases 9924 2746 1 9 4.14 1.03 .249
rescue 9299 2100 2 6 3.38 0.71 .209
intro 10560 3342 2 9 4.75 1.35 .285
maproom 10843 3065 1 9 4.24 1.46 .340
coaches 11023 3640 2 8 4.95 1.29 287
boxing 10775 3721 2 11 5.17 1.30 250
aretha 12535 3102 2 7 3.71 .68 184

Table 1: Stream Summary Statistics

3.2 Server Configuration

To run the experiments on the CMFS developed at the Uni-
versity of British Columbia [11], specific hardware config-
urations were chosen. The server was an IBM RS/6000
Model 250 (66 MHz Power PC 601 at 62.6 Speclnt), run-
ning AIX 3.2.5, and had a 2 GByte disk attached via a
SCSI-I1 Fast/Wide adapter. The server and client machines
were connected to a local ATM network, using a NewBridge
Mainstreet 31650 ATM Switch, with 100 Mbps Taxi net-
work interface cards. Results for stream scenario acceptance
decisions are given based on this hardware configuration,
due to the availability of network bandwidth to transmit the
streams and Asynchronous /0O facilities in the AIX operat-
ing system to read blocks off the disk device.

The server has been implemented on several hardware
platforms, including Pentium processor based PCs running
FreeBSD, connected via a 10 Mbps ethernet network. To
examine the execution performance of the admission control
algorithm itself, we chose to use this configuration because
of its superior CPU speed. This environment did not have
the bandwidth to send the continuous media data when the
experiments were initially performed.

3.3 Disk Calibration

Three separate methods of calibrating the disk were used.
Inmitially, a program was written that performed disk reads
on an otherwise empty system, completely independent of
the CMFS. This program simply requested disk blocks in
various granularities from evenly spaced locations on the disk
and measured the bandwidth achieved, using the raw disk
/0O facilities on the AIX operating system, and performing
separate seek and read system calls for each read request. In
every case, at least 40 blocks per second could be successfully



read off the disk. For 500 msec slots, 20 is a possible value
for minRead.

The CMFS, however, is designed to utilize the asyn-
chronous 1/0 facilities of the host operating system if avail-
able. When the same test was performed on the same disk
device, but making requests for groups of blocks, the disk
could retrieve 23 blocks in a slot time in nearly every case.
The worst read time was 502 msec. Given that this is a
contrived worst case example, we believe that 23 is a more
realistic value of minRead.

The third method utilized the CMFS to calibrate the disk
performance, Simultaneous requests for several CBR streams
were submitted to the server to determine the worst case
disk performance. The server was capable of supporting 26
streams which were spread out across the entire surface of
a single disk and required an average of 1 block per slot, so
the level of seek activity was high. Therefore, 26 could also
be chosen as the value for minRead.

For the purposes of this study, the actual value of minRead
is not of ultimate importance, because it will vary among dif-
ferent disk configurations. These values provide interesting
bounds on disk performance, however, and allow us to inves-
tigate the significance of the value of minRead. In particu-
lar, we wish to examine whether a conservative estimate of
minRead significantly affects the maximum cumulative band-
width of stream scenarios accepted by the algorithms.

3.4 Initial Algorithm Evaluation

There are two other performance factors utilized in evalu-
ating the algorithms. The average number of blocks read
during a slot is defined to be averageRead and varies de-
pending on the location of the data on the disk. On our
experimental data, averageRead varied between 27 and 33
blocks per slot. The maximum number of blocks which can
be read in a slot is defined to be maxRead. This value is de-
termined by reading as many contiguous blocks as possible
during a slot time where all the blocks are on the outside
edge of the disk and was observed to be 40 blocks.

Figure 3 and Table 1 show that the streams are highly
variable; the Simple Maximum Algorithm would reject many
stream configurations. In particular, the Boxing clip has a
maximum bandwidth which is more than twice its average
bandwidth. For streams with these characteristics, Simple
Maximum is very conservative, accepting less than half of
what the Average algorithm accepts.

The Instantaneous Maximum Algorithm is also very con-
servative, but less so than the Simple Maximum algorithm.
Figure 4 depicts an example of a simultaneous arrival pat-
tern for 5 streams. The average bandwidth requirements for
this set of streams is 22 blocks per slot, but the peak is at 32.
Although the average rate is significantly below minRead (=
26), this set of streams will be rejected by both Simple Maxi-
mum and Instantaneous Maximum algorithms and accepted
by the Average and VBR Simulation algorithms.

Although both Simple Maximum and Instantaneous Max-
imum are overly conservative, one major advantage of both
of these algorithms is that neither of them require any addi-
tional buffer space for read-ahead at the server, since all the
disk requirements for every slot can be met by the disk reads
performed during that slot time. The amount of buffering
needed in these algorithms is 2 * min Read buffers, as we em-
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Figure 4: Instantaneous Maxima of 5 streams

ploy a double-buffering technique that reads data into one
set of minRead buffers while transferring data across the
network from the other.

It has already been shown [13] that the VBR Simulation
algorithm (hereafter referred to as vbrSim) provides deter-
ministic guarantees of data delivery to the clients. The set
of streams in Figure 4 is accepted by vbrSim due to the
smoothing effect.

In fact, all scenarios accepted by the Simple Maximum
and Instantaneous Maximum algorithms are also accepted
by vbrSim because no instantaneous peaks above minRead
are allowed in the former algorithms and therefore, vbrSim
has no peaks to smooth out.

The Average algorithm makes use of server buffer space to
read at the average rate of the accepted streams or faster if
possible. Buffered data which is read earlier than required is
transmitted to the clients during the times that the required
disk bandwidth rate is above the average. The Average al-
gorithm, however, is overly aggressive and can fail in two
ways: 1) there may be insufficient disk bandwidth at some
point to support the requirements of the set of streams; or
2) there is insufficient buffer space.

The first case happens when cumulative average disk
bandwidth required exceeds cumulative average disk band-
width achievable. This typically happens early in the stream.
As a result, it is possible for some set of streams, where the
variation 1s great but the average is low, to be accepted but
for which it is not possible to properly read the blocks during
peak times.

The second case occurs because buffer space is finite. The
Average algorithm will not be able to read at the average
disk transfer rate once all server buffers are full. The per-
formance will decrease to the rate at which buffers are freed
(i.e. playout rate of admitted streams). This translates into
a lack of read ahead for future transient peaks in the sched-
ule.

Another typical scenario is depicted in Figure 5. The value



of averageReadin this scenario is 27.6. With minRead = 26,
the Average algorithm accepts the set of streams as the sum
of the average of each stream is 25.55. It is obvious from
the graph that there is insufficient cumulative average disk
performance to support the transfer of the required amount
of data for many slots during the playout. The average re-
quirement is initially over 27.6 blocks and only much later
in the scenario does it drop below minRead.
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Figure 5: Average Bandwidth Algorithm

It 1s interesting to note that vbrSim is optimal when aver-
ageRead, mazRead, and minRead are all equal. We observe
that when there is no variability in disk performance, the
vbrSim algorithm knows the future performance of the disk.
Any set of streams with a cumulative average bandwidth
less than minRead will be accepted, provided there is enough
buffer space. So, under these conditions, when buffer space
limitations result in a rejection of a stream scenario by the
vbrSim algorithm, it would also be the case that the optimal
algorithm would reject that scenario.

The Simple Maximum and Instantaneous Maximum are
also optimal in this case, but the Average Algorithm is not.
It will still make incorrect admission decisions if peaks in
disk bandwidth or buffer usage are above the capacity of the
system.

If there is any variability in disk performance (the com-
mon case), vbrSim is less than optimal. In this case, min-
Read will be smaller than averageRead. Therefore, the cu-
mulative average rate that can be accepted by vbrSim is less
than average Read and thus depends on the value selected for
minRead. Figure 6 shows the required minRead values (x-
axis) for scenarios with a particular disk bandwidth (y-axis),
from the scenarios generated in Section 3. A particular sce-
nario was matched to the minimum value of minRead which
could admit that scenario, although it is obvious that any
larger value of minRead would also accept the scenario. This
plot shows that streams are accepted when the cumulative
average bandwidth of the scenario approaches minRead, and
occasionally a small amount more.
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Figure 6: Bandwidth Supportable as a Function of min-
Read using the vbrSim algorithm

3.5 Scenario Characterization

There is an infinite number of possible combinations of
stream requests that could be presented to a continuous me-
dia file server. They can be characterized in the following
way: all possible scenarios, all valid scenarios, and all sce-
narios accepted by a particular algorithm. This is depicted
in Figure 7 for the Average and vbrSim algorithms. The sce-
narios accepted by the Simple Maximum and Instantaneous
Maximum algorithms are contained inside those accepted by
vbrSim (as described earlier) and so are not shown. This di-
agram allows us to examine only the qualitative differences!
between the scenarios accepted by the algorithms. For this
discussion, we assume minRead = 26.

_vali

ALL

Figure 7: Streams Accepted by Admission Algorithms

There are several cases of inclusion to consider:

tDiagram is not “to scale”, i.e. does not represent quantitative
differences.



Case 1: vbrSim C Valid. All streams which are accepted
by the vbrSim algorithm are valid streams. The vbrSim
algorithm will not accept any invalid stream scenarios, since
we guarantee that the disk has sufficient bandwidth to read
all the required blocks and that there is always enough buffer
space in which to read the blocks. This is shown in more
detail in [13].

Case 2: Average — Valid # {}. The Average algorithm
accepts invalid scenarios. If requests for the 6 streams in Fig-
ure 5 arrive simultaneously, the average bandwidth needed
is 25.55, calculated by adding up the sums of the individual
average bandwidths. This scenario would be accepted by the
average algorithm, but the disk cannot support this scenario
as too many blocks must be read in the early part of the
scenario.

Case 3: Valid—(AverageUvbrSim) # {}. There are valid
scenarios that neither Average nor vbrSim accepts. This oc-
curs if 7 of the selected streams (aretha, bloop93, chases, si-
intro, maproom, coaches and boxing) are requested with a 5
second stagger between request times. The sum of the aver-
age bandwidths is 27.13 blocks per slot. This is higher than
minRead, so the Average algorithm would reject the sce-
nario. The vbrSim algorithm also rejects this set of streams,
but the scenario is valid.

Case 4: (Valid— Average)NvbrSim # {}. There are valid
scenarios which vbrSim accepts while Average rejects. Con-
sider a 2 stream scenario where Stream A has a constant bit
rate of 12 blocks per slot for 50 slots and Stream B arrives 2
seconds later and has a requirement of 20 blocks per slot for
6 slots. The average algorithm rejects this scenario because
the average is 32. The vbrSim algorithm accepts this set
of streams because it will have achieved readahead of 56 by
the time the request for the second stream arrives (assum-
ing sufficient buffer space). The new stream will then read
at minRead for 4 slots adding to the amount of read-ahead
blocks by 6 blocks per slot, because it was only necessary to
read 20 blocks in each slot. For the next 2 slots, 32 blocks
are needed, so this uses up 6 read-ahead blocks per slot,
but there is sufficient of read-ahead achieved in the previous
slots to accept these stream. In practice, such a scenario is
unlikely, but possible.

Case 5: (Valid—vbrSim)N Average # {}. There are valid
stream scenarios which Average accepts and which vbrSim
rejects. This is observed in a particular experimental sce-
nario where 6 streams (bengals, chases, rescue, intro, boxing,
and aretha) are requested simultaneously. The sum of the
average bandwidth of each these streams is 25.77 blocks per
slot. There is insufficient read-ahead guaranteed by vbrSim,
so this scenario is rejected, but the server was capable of
delivering all the data on time. Thus, the optimal algorithm
would have accepted the scenario, due to disk bandwidth
above minRead during some slot times.

4 RESULTS

This section describes the results of the experiments for the
Instantaneous Maximum and vbrSim algorithms. The Sim-
ple Maximum algorithm accepts so few streams that the re-
sults are not interesting at all. We also do not show the
results for the Average algorithm for two reasons: 1) its per-
formance is analytically predictable accepting all streams
with cumulative average rate less than minRead and 2) it

has been shown to provide incorrect admission decisions, ei-
ther by being both too conservative or too aggressive, with
respect to the set of valid streams.

4.1 Admaission
Time

Algorithm Execution

A major advantage of the Simple Maximum and Average
algorithms is their execution time. Since stream character-
ization and is done with a single number, the time to de-
termine admission is a single calculation, merely adding the
new requirements to the existing requirements. Both In-
stantaneous Maximum and vbrSim require a block schedule
to be computed and the bandwidth in each slot to be com-
pared with the guarantee. The amount of overhead in these
operations is a concern when utilizing them in a real system.

The block schedule for a 2-hour video clip can be com-
puted in approximately 125 msec on a Pentium 200 run-
ning FreeBSD. If segments are to be skipped, or fast motion
requested, less of the data stream or fewer slots (or both)
are required, so in these situations the calculation typically
takes less time. The block schedule for the same video clip
stored at 30 frames per sequence, and skipping one sequence
for every one displayed takes 64 msec to compute. When a
stream is stored in smaller sequences, there is more calcula-
tion to perform, leading to a longer time for schedule creation
and a smaller reduction in execution time when skipping se-
quences.

The time to examine the block schedule simulating read-
ahead is proportional to the length of the non-empty portion
of the server block schedule. For the same 2 hour video
clip, the admission control process takes roughly 34 msec
on a Pentium 200 running freeBSD. This value is higher
than previously reported [13] due to the measurement of the
algorithm within the entire CMFS. Earlier measurements
were performed on the admission algorithm in total isolation.

4.2 Admission Decisions

As argued in Section 3, the vbrSim algorithm is an optimal
algorithm if the disk performance is constant. Since that is
not true in practice, we investigate how the performance of
the algorithms degrades on a disk system with variable disk
transfer rates. In order to isolate disk bandwidth issues from
buffer space, we model a server with an unlimited amount
of buffer space.

The results for the vbrSim algorithm, the Instantaneous
Maximum algorithm and the optimal algorithm are com-
pared using the three specific values for minRead obtained
by calibration in Section 3.3: 20, 23, and 26. It is most inter-
esting to consider those scenarios having cumulative average
bandwidth near minRead blocks per slot and which would
be accepted by the optimal algorithm.

Figures 8 and 9 show the acceptance rate of stream sce-
narios for the admission algorithms. Since we only consider
scenarios that the disk was able to support, the values for the
optimal algorithm would be uniformly at 100%, so it is not
shown on the graph. Since each scenario uses different disk
resources, we chose to group the scenarios in bands of the
cumulative average bandwidth requirements as a percentage
of the average disk performance obtained in the execution
of that scenario. The observed values of disk performance



vary considerably, depending on the location of the streams
on the disk and the amount of contiguous disk reading that
was possible. This is most noticeable when a small amount
of stagger is introduced. In this case, the disk reads the
new stream, which is usually contiguous on disk, for a short
amount of time immediately after being admitted until it
catches up to the level of read-ahead of the existing streams,
increasing the overall performance of the disk. When min-
Read = 20, minRead/ averageReadranges between .60 to .74,
showing that disk performance is variable. Similar ranges
exist for the other values of minRead.

E W Inst Max 26
-
g— EInst Max 23
3 Olnst Max 20
<
»
o
= |
8
= .
@ 5
3]
n .
-
)
(0]
o
5]
8 |
c
@
S
2 |
9]
a
N
< (22} < (o2} < [+2] < (2} < [o2} < (o2} < o < (o2} < [=2]
- I ~N ~N o o™ < < n n © © ~ ~ 0 @ (2] o
2 2 2 2 2 2 2 2 2 2 2 L2 2 2 2 2 2:-¢
o n o n o o o o n o n o n o wn
— — N N o™ o™ < < mn Tel © © ~ ~ [+5) o] o o

Percentage of Disk Requested

Figure 8: Acceptance Rate - Instantaneous Maximum

100% -

|

EMinread 26
EMinRead 23
OMinRead 20

90% - |

80%

70% 4

60% -

50% -

40% -

30% -

20% -

Percent Scenarios Accepted

10%

<
<
8

80to 84

to 59

0 to 6.4 | —
to 69
to 74

i
<
T}
=
[=]
n

10to 14 E
15t0 19
20to 24
25to0 29
30to 34
85to 89
90 to 94
95 to 99

40
5
6
6
7

Percentage of Disk Requested

Figure 9: Acceptance Rate - vbrSim

Both figures show that for low levels of disk utilization,
all the stream scenarios are accepted. In Figure 8, with min-

Read = 20, no scenarios above 54% disk utilization are ac-
cepted by the Instantaneous Maximum algorithm, and some
scenarios that request less than 35% of the available disk
bandwidth are rejected. When minRead = 26, no scenarios
are accepted whose bandwidth request is greater than 69%
of available disk bandwidth.

The vbrSim algorithm performs much better. Below 60%,
the vbrSim algorithms accept all stream scenarios for all se-
lected values of minRead. When minRead = 20, the ac-
ceptance rate starts to decline in the 60 to 64 percent band,
which is very close to the percentage that minReadis of aver-
ageRead. The vbrSim algorithm with minRead = 20 accepts
some streams whose disk utilization request is over 70%, due
to the combination of readahead smoothing in the past (prior
to the arrival of some streams) and read-ahead in the future
(at minRead). Further investigation will attempt to iden-
tify which of these components is more significant. When
minRead = 23, almost all scenario requests below 75% are
accepted and a steady drop-off is observed as the requested
level of disk utilization is increased. The pattern is similar
for minRead = 26. The range of minRead/average Readis .79
to .96, and some stream scenarios are accepted in the 90 to
94% range. This shows that vbrSim does come quite close to
accepting streams with cumulative average bandwidth very
near the level of minRead/averageRead. For some of these
scenarios, the cumulative average bandwidth required did
indeed exceed the value of minRead.

More insight into the vbrSim algorithm can be gained by
measuring the bandwidth achieved by the server as it accepts
partial stream scenarios. This is shown in Figures 10 and 11.
It would be reasonable to assume that the server would be
capable of supporting near or slightly more than minRead
blocks per slot, regardless of the request size.
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(vbrSim only)

Fach graph contains two lines: one which indicates the
largest bandwidth accepted for scenarios within that per-
centage band of requested disk utilization, and one which
indicates the smallest bandwidth that was accepted. This
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is when the total request fit into the particular percentage
band and only part of the scenario was accepted. Thus, the
lines are parallel during the low level of disk utilization where
all scenarios are accepted.

When the level of disk performance requested increases,
the range between the 2 lines begins to increase. As streams
are rejected, the minimum value accepted flattens out. This
happens immediately after 59% for minRead = 20. For min-
Read = 26, this happens later.

There is also a flattening of the line for the maximum
bandwidth supportable. This comes at slightly over 75% for
minRead = 20. The graph indicates that no matter what
level of disk performance is requested, the most that vbrSim
with minRead = 20 will achieve is 79% of the disk band-
width. This is reasonable, considering minRead/average Read
ranges from 61-74% of disk utilization. For minRead = 26,
the maximum achievable bandwidth is approximately 94%,

again an indication that disk utilization approaches min-
Read/average Read.

4.3 Buffer Space Requirements

Since a real server will not have an unlimited amount of
buffer space, we now consider the impact of limited buffer
space. Some of the analysis in this section uses inflated val-
ues of minRead, so that we can isolate buffer space utiliza-
tion from the restrictions placed on stream acceptance by
the amount of guaranteed bandwidth.

If the rate at which buffers are freed is less than aver-
ageRead, the value of averageRead decreases towards the
playout rate of the accepted streams. The server was in-
strumented to capture the number of buffers utilized to keep
the server reads from slowing down as a result of insuffi-
cient buffers. In one particular scenario, the first 7 streams
of Table 1 were requested with a 3 second stagger in ar-
rival time. This scenario was supported by the server. The

cumulative average disk bandwidth achieved was approxi-
mately 30.5 blocks per slot. In order to support that rate,
this particular scenario utilized 832 buffers (approximately
52 MBytes).

Static analysis of the bandwidth requirements determined
that 30 was the smallest value of minRead which was able
to accept this scenario. Static analysis of the buffer require-
ments was also performed to determine the minimum num-
ber of buffers required for the vbrSim algorithm to accept a
scenario. This analysis assumed that the disk reads precisely
minRead blocks in every slot. For minRead = 30, only 605
buffers were required to smooth out all the peaks in the block
requirements of these 7 streams. This implies that with this
amount of buffer space, the disk must throttle itself at some
point during the reading process, while waiting for buffers
to be returned to the system, but will still never fall behind.
Further analysis shows that when minRead = 31, 321 buffers
are needed when minRead = 32, the number required drops
to 157 buffers. This is because there are fewer peaks above
minRead and they are of shorter duration.

Figure 12 shows the number of buffers required to ac-
cept several of the stream scenarios with minRead = 26. A
similar pattern is observed with the other selected values of
minRead. This seems to suggest a relationship between the
number of buffers and the cumulative average bandwidth
that can be supported. We can see from this scatter plot
that the amount of buffer space appears to grow exponen-
tially as the cumulative average bandwidth of the admitted
streams approaches minRead. When valid scenarios with
larger bandwidth requirements (w.r.t. minRead) are sub-
mitted to the CMFS, there is a significant increase in buffer
requirements. In these scenarios, staggering arrivals allows
the cumulative average bandwidth in the accepted streams to
be over minRead at many points in the schedule. In one par-
ticular case (not shown on this graph), when 5 streams are
submitted (bloop93, bengals, intro, maproom, and coaches),
with 5 seconds between arrivals and with minRead = 20, the
cumulative average bandwidth is 21.34 blocks per slot and
the number of buffers required is 1175, which is 75.2 MBytes,
but vbrSim does accept the scenario.

It is easy to construct other scenarios in which large
amounts of buffering will be beneficial and increase per-
formance significantly. If streams are relatively small com-
pared with buffer space, entire streams could be buffered
in the server. When the stream requests arrive simultane-
ously, admission would still be largely based on bandwidth.
If inter-arrival time was long, relative to stream length, then
the ability to read contiguously from the disk during stream
start up would result in disk performance much greater than
average for those points in time. These considerations intro-
duce extra levels of complexity into the analysis which are
beyond the scope of this paper.

For most of the stream scenarios depicted in Figure 12, a
reasonable amount of buffer space is required. This presents
a design alternative for the administrator of a continuous
media file server. Additional buffers may be used to extract
the most bandwidth out of a particular disk device, or the
number of disk devices may be increased, which also has the
effect of increasing bandwidth.

Adding more disks must also be accompanied by more
buffer space, or the number of buffers available for each disk
decreases. Increasing from n to n+1 disks incurs a 1/(n+1)
decrease in buffer allocation for each disk. As can be seen in
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this section, this will reduce the ability of the system to ac-
cept scenarios that require average bandwidth close to min-
Read, and may not provide an increase in system through-
put. A more detailed quantitative analysis of this tradeoff is
planned as part of future work.

5 RELATED WORK

There have been several admission control algorithms in-
troduced in the literature. Much of the work in continu-
ous media servers has focussed on either conservative ap-
proaches based on bandwidth peaks or statistical methods
which model arrival rates and stream bandwidths with prob-
ability distributions and determine a satisfactory level of per-
formance by the disk and network subsystems, either sepa-
rately or as a system.

The majority of early work in VBR systems simply ex-
tended the principles used in CBR streams and followed the
pattern of Simple Maximum ([7, 18]). In Vin and Rangan
[18], data layout patterns as well as admissions scheduling
was done with streams of varying data rates, but the rate
within a stream was considered a constant. lLau and Lui
[11] perform an admission test that considers the peak rate
needed to determine if a stream is admissible, by delaying
the starting time and readjusting the disk tasks to minimize
other measures of performance. They utilized streams that
had bandwidths which varied uniformly between 2.5 and 5
MBytes per second, and performed statistical analysis of ar-
rival rates with their deterministic algorithm. We can see
that for streams with a reasonable difference between their
average and their peak rates, this provides an unacceptably
low level of utilization.

The performance of a video server is measured in Liu et al.
[12], wherein differing types of video are compared. In their
study, each type of video has a constant bit rate, and the
focus is on data placement (i.e. striping) and buffer usage,
not on admission control details.
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In Kamath et al. [9], the admission control checks to see if
the cumulative necessary disk transfer rate required violates
the guarantee and that there would be sufficient buffer space
to read the additional disk blocks. Their algorithm is similar
to Instantaneous Maximum, but their focus is on sharing
data between multiple users, thereby achieving a reduction
in disk activity when the same stream is requested more than
once within short periods of time.

Statistical methods based on the recent past performance
are introduced in Jamin et al. [8] that combine client spec-
ified parameters of the new stream with the observed mea-
surements of the system to make an admission decision. The
new performance measurements are then utilized in future
admission control requests.

In Vin et al. [17], a statistical admission control algo-
rithm is presented, which considers not only average bit
rates, but the distributions of frame sizes, and probability
distributions of the number of disk blocks needed during any
particular service round. They acknowledge that the algo-
rithm breaks in certain circumstances referred to as overflow
rounds (i.e. over subscribes the disk). In overflow rounds,
the system has the complexity of dealing with the loss of
data. A greedy disk algorithm attempts to reduce the ac-
tual occurrence of overflow rounds, and the system attempts
to judiciously distribute the effective frame loss among the
subscribed clients. This requires some knowledge of the syn-
tax of the data stream, at least to the point of knowing where
display unit (i.e. video frame) boundaries exist and which
display units are more important than others (i.e. MPEG
I-frames vs. MPEG B-frames).

A more complex version of the Average Algorithm is given
for Constant Time Length (CTL) video data retrieval by
Chang and Zakhor [3]. Constant Data Length retrieval
methods introduce buffering for the purposes of prefetching
portions of the stream and incorporating a start-up latency
period. In further work [4], they show via simulation that
a variation of deterministic admission control admits 20%
more users than their statistical method for a small proba-
bility of overload.

Knightly et al. [10] perform a comparison of different ad-
mission control tests in order to determine trade-offs between
deterministic and statistical guarantees. The streams used
in their tests are parameterized by a traffic constraint func-
tion, known as the empirical envelope. It describes the band-
width needed at various points during stream transmission,
80 1t 1s somewhat similar in form and function to the block
schedule as presented in this paper, but much less detailed.
This characterization is used in admission control. This is
then combined with different packet transfer schemes and so
does not particularly isolate each subsystem. Zhang et al.[19]
have worked on network call admission control methods with
smoothed video data taking advantage of client buffering ca-
pabilities. This reduces the amount of buffering needed at
the server and increases potential network utilization.

Recent work by Dengler et al. [6] and Biersack and Thiesse
[2] builds on the work of Knightly et al.[10] and Chang and
Zakhor [4], describing admission control methods which pro-
vide statistical and deterministic guarantees of disk service
for VBR streams. The major focus is data placement strate-
gies and the use of traffic constraint functions is prominent.
Constant Time Length (CTL) placement with deterministic
guarantees is investigated in [6], while statistical admission
control and Constant Data Length is examined in [2].



6 CONCLUSIONS AND
FUTURE WORK

In this paper, we have presented five disk admissions control
algorithms for variable bit rate continuous media streams.
We introduced the VBR Simulation Algorithm (vbrSim)
that explicitly considers the detailed variable bit rate profile
and accommodates disk read ahead based on the achieved
read ahead in the past and the guaranteed worst-case read
ahead performance in the future.

The Simple Maximum, Instantaneous Maximum, and vbr-
Sim algorithms provide deterministic guarantees that the
continuous media will be read off the disk for proper deliv-
ery to the client, while the Average algorithm provides only
statistical guarantees. We showed that the Average algo-
rithm can make incorrect decisions on rejecting and accept-
ing stream scenarios. The performance of the Instantaneous
Maximum algorithm was significantly worse than vbrSim for
all cases of the representative selection of Variable Bit Rate
media stream scenarios.

Comparisons of admission performance showed that
the vbrSim algorithm admits a very large percentage of
stream scenarios that have disk utilization below min-
Read/averageRead. As the disk bandwidth requested ap-
proaches minRead/averageRead, fewer scenarios are ac-
cepted, but the level of bandwidth supported by the algo-
rithm remains relatively constant. Having an appropriate
value for minRead significantly affects the disk utilization,
and in situations where the worst case disk performance is
significantly less than averageRead, the vbrSim algorithm
degrades proportionally.

Designers of continuous media systems must take into ac-
count the negative effect of aggressively incorrect admission
decisions on the client population. As well, the amount of
buffer space that can be allocated for read-ahead to smooth
the peaks in disk data-rate requirements is a factor which
must be considered.

We have shown that reasonable amounts of buffer space
can enable the vbrSim algorithm to work close to its max-
imum acceptance rate, which is close to optimal. It is also
simple and efficient to execute [13]. Utilizing a simpler al-
gorithm will result in conservative resource utilization. The
use of statistical algorithms may result in failure to deliver
the data to the client. In statistical algorithms, if the disk
performance measure is the average disk bandwidth, then
the admission decision results in failure to deliver if either
the instantaneous maximum over-subscribes the disk or the
disk achieves less than this average bandwidth. Utilizing
minRead as the disk performance estimate provides little
performance benefits over vbrSim, while eliminating deliv-
ery guarantees. Thus, vbrSim seems a completely reasonable
choice of admission algorithm for continuous media servers.

Further performance analysis is underway to examine the
sensitivity of several other factors in the configurations of
the streams and the server resources. These factors include:
the amount of variability in the streams, the length of the
streams, the availability of additional client buffer space (ac-
companied by sufficient network bandwidth), and the inter-
arrival time of requests at the server. This performance anal-
ysis must be extended to consider the network transmission.
This has been examined in some detail in [14], and more
work is planned for the near future.
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