
An Evaluation of VBR Disk Admission Algorithms for ContinuousMedia File ServersDwight Makaro�, Gerald Neufeld, and Norman Hutchinsonfmakaro�,neufeld,hutchinsong@cs.ubc.caDepartment of Computer ScienceUniversity of British ColumbiaVancouver, B.C. V6T 1Z4CanadaAbstractIn this paper, we address the problem of choosing a disk ad-mission algorithm for continuous media streams where eachstream may have a di�erent bit rate, and more importantly,where the bit rate within a single stream may vary consider-ably. We evaluate several di�erent Variable Bit Rate (VBR)disk admission control algorithms for continuous media. Analgorithm which accepts too few streams under-utilizes theserver resources, while an algorithm which accepts too manystreams over-utilizes the resources resulting in inadequateservice (i.e. missing or delayed data) to the clients. Theevaluation process is based on a representative set of videostreams encoded in MJPEG. We conclude that one particu-lar algorithm, the VBR simulation algorithm, performs thebest among realizable algorithms in terms of system utiliza-tion and delivery guarantees and performs close to an opti-mal algorithm.Keywords: multimedia, �le servers, variable bit rate, ad-mission control1 INTRODUCTIONThe motivation for the design of a specialized �le server forcontinuous media such as video and audio is well established([1, 5, 15]). Data Access patterns, as well as the services pro-vided to clients by a continuous media �le server (CMFS),di�er considerably from a conventional distributed �le ser-vice such as NFS. A continuous media client typically trans-fers large volumes of sequential data at speci�c moments in

time. As well, the resource requirements of the network andserver itself di�er considerably. In order to guarantee conti-nuity, the allocation of network bandwidth must be guaran-teed, as well as processor cycles, RAM and disk bandwidth.The guarantees provided by servers and networks can be ei-ther deterministic or statistical in nature.Characterizations of the bandwidth of the disk and theresource requirements of the client are necessary in order toprovide such guarantees at the server. Most of the prior re-search in this area has made simplifying assumptions aboutthese requirements [1, 7, 15]. Even in systems that supportdi�erent media encodings with di�ering transfer rates, muchanalysis still assumes that each individual stream has a con-stant bit rate (CBR) [12, 18]. Compression methods such asMJPEG or MPEG-2 can produce Variable Bit Rate (VBR)streams. Since computers and networks are well-suited tohandle bursty tra�c, it seems reasonable to design a �leservice which can explicitly accommodate such variation inresource requirements and thereby increase the number ofsimultaneous streams supportable [2, 6, 7].In any continuous media �le server, there exists a diskadmission control algorithm which determines whether aclient's request for a new stream can be supported by thedisk. The requirements of the new stream are calculated andthen added to the allocated resources for the existing clients.If the required resources are not available, the new client'srequest is rejected. If the new stream is accepted, then theserver provides some guarantee that the available disk re-sources are su�cient for all the allocated streams. Algo-rithms for allocating other scarce resources, such as networkbandwidth are beyond the scope of this paper and therefore,we will refer to disk admission control algorithms simply asadmission control algorithms.An admission control algorithm can be too conserva-tive and admit too few streams, thereby under-utilizing theserver resources, or it can admit too many streams resultingin over-utilization, which manifests itself as delay or loss ofdata at the client. Although probabilistic methods exist toamortize the cost of this failure [2, 17], this is undesirable ingeneral. This paper evaluates �ve di�erent VBR disk admis-sion algorithms to determine how well they behave for a typ-ical set of streams. We will show that the vbrSim algorithmcan e�ciently make correct admission decisions and that itsperformance approaches that of an optimal algorithm.1



The remainder of this paper is organized as follows. Thenext section contains a description of the �ve di�erent al-gorithms as well as the model for representing the disk I/Oresources. This is followed by the presentation of a \typical"stream set and a description of how the performance testsare run. The results of these tests are presented in Section4. Related work is then described, followed by conclusionsand future work.2 DISK ADMISSIONALGORITHMSTo de�ne bandwidth measurements, most servers divide timeinto intervals called slots or rounds, during which su�cientblocks of data are read o� the disk and/or transmitted acrossthe network for each active stream to allow continuous play-back at the client application. A reasonable length for such aslot is 500 milliseconds, providing for �ne level of granularitywhile attempting to limit the amount of overhead requiredfor the operation of the server. A slot time of several sec-onds tremendously increases the amount of bu�ering neededat the server for high bandwidth streams. Smaller slot timesincrease the relative amount of time the disk spends seeking,since each read operation corresponds to a shorter playbackduration.To understand the relevant di�erences between the diskadmissions algorithms, we need to de�ne what resources aremeasured. In this study, we measure two resources: the diskread bandwidth, and the number of bu�ers available. Thebandwidth is de�ned as the number of �xed size (64KByte)blocks the server can read from the disk system into userspace in a �xed amount of time (one slot). The guaranteednumber of blocks that can be read in a slot is called minRead.This number is calculated by running a calibration programthat determines the maximum number of blocks that canbe read when the blocks are located on the disk under theworst conditions. This value most accurately re
ects theactual capacity of the server since it includes all transferdelays (through SCSI bus and I/O bus to memory) as wellas server software overhead. Of course, minRead will likelybe less than what is actually experienced by the server whenreading some set of streams. As well, disk layout techniques[3, 4, 6, 15, 16] can be used to help improve the server'sperformance. Nonetheless, minRead is useful in calibratingthe lower bound of disk bandwidth performance that theserver will ever experience. This lower bound is used toprovide hard guarantees of data delivery to the clients. Thenumber of bu�ers available to the algorithms is determinedby the amount of main memory at the server.Whenever a client makes a request for a portion of a mediastream at a particular display rate, a block schedule for thestream is created that contains one entry per slot for theduration of the stream playout. Each entry in the scheduleis the number of blocks that must be read for the stream inthat slot for continuous client playout. The rate at whichthis data is needed is called the playout rate. For a constantbit rate stream, all the values in the block schedule wouldbe the same (modulo disk block granularity), re
ecting theconstant rate. The values would vary for VBR streams ina manner dependent on the encoding. For instance, Figure1 presents an extract of the block schedule from one of oursample streams.
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Blocks 2 3 6 6 6 7 6 7 7 6 8Figure 1: Typical Stream Block ScheduleThe block schedule can be characterized by its average,standard deviation and coe�cient of variance. The last ofthese measures can be used for comparing the variation be-tween streams with signi�cantly di�erent average playoutrates.A user can request to have only a portion of a continu-ous media stream delivered. In fact, we give details in [13]regarding the scope of the 
exible user interface. Parame-ters are provided which enable fast (slow) motion delivery(in forward or reverse) which increases (decreases) the diskbandwidth required. As well, the skipping of user-de�ned\sequences" may be requested, which will appear to providefast motion at the same average disk utilization and dis-play rate. All this implies that the bit-rate pro�le can varydepending on the mode in which the stream is retrieved.The block schedule is created at the time playback is re-quested and is e�cient to calculate. Preliminary results onthe performance of the admission algorithm itself are givenin Section 4.1.As blocks are read from the disk, they are stored intoavailable bu�ers which are then passed to the network fortransmission to the clients. The speed at which bu�ers are�lled is dependent on how fast the server reads blocks fromthe disk (we know it will be at least as fast as minRead). Thespeed at which the bu�ers are freed depends on how quicklythe network can transmit the data to the client. This latterspeed is itself dependent on the speed of the network andthe number of bu�ers that the client has allocated to receivethe data. In the following algorithms, we assume that thenetwork management system transmits data only as fast asthe client can consume the data; that is, at the playout rate.We now describe the �ve admission algorithms. In all ofthese algorithms we use minRead as the basis for acceptingor rejecting streams. For 4 of the 5 algorithms, this results ina deterministic guarantee that the server will not fall behindin reading.2.1 Simple MaximumIn this algorithm, we reduce the characterization of eachstream to a single number - the maximum number of readsrequired in any slot. If the sum of this maximum value forthe new stream plus the value for the current set of streamsis greater than minRead, we reject the new stream. Usingthe block schedule in Figure 1, for example, we would choose8 as the value for the stream. If the current sum was 20 andminRead equaled 26, the new sum of 28 would result in arejection.A clear advantage of this algorithm is its simplicity. If thevariation in the stream's block schedule is small, then thisis a reasonable algorithm. In fact, it has been used in sev-eral CBR �le systems [7, 15, 16]. Another advantage of this2



algorithm is that it produces deterministic guarantees forreading from the disk. Unfortunately, it signi�cantly under-utilizes the resources as block schedule variation increases,rejecting streams which could be delivered, as we will see inthe next section.2.2 Instantaneous MaximumThe next admission control algorithm keeps the sum of all ofthe currently admitted block schedules in a vector called theserver block schedule. When a new stream is to be admitted,we add its block schedule to the current server block schedule.If any slot in the resulting schedule is greater than minRead,the new stream is rejected, otherwise it is accepted. A varia-tion of this algorithm is described in Chang and Zakhor [4].Consider the server block schedule as shown in Figure 2.
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20Figure 2: Multiple Stream Block ScheduleWe again assume that minRead = 26 and that we areattempting to admit the stream in Figure 1. The streamwould be rejected since the number of blocks that need tobe read in slot 3 of the server block schedule is 24+6=30.This algorithm is also deterministic, and is provably betterthan Simple Maximum since it performs a more �ne-grainevaluation of the schedules. It is still rather conservativeand also may reject streams it could deliver. This can becorrected by the next algorithm.2.3 AverageOne problem with both algorithms 1 and 2 is that they donot take into account the amount of read ahead possiblewhen we are reading slots that require fewer than minReadblocks. If we permit the server to read into bu�ers as fast asit can, then we can smooth out the peaks in a VBR schedule.In order to make use of this read ahead we can calculate theaverage blocks per slot for each stream. We can then sumthis average (rather than the individual slots) and comparethe summed averages to minRead. This algorithm will admitmore VBR streams than the previous algorithms, becausethe average bit rate is less than the maximum of each streamand also less than the possible bandwidth peaks in combi-nations of streams. Unfortunately, it would appear that,intuitively at least, this algorithm does not provide deter-ministic guarantees that it will not over-allocate the serverresources. Interestingly, as will be shown later, there arecircumstances in which it may also under-utilize the serverresources.2.4 VBR Simulation (vbrSim)Our next algorithm solves the problem of being too conser-vative in admissions, but still gives deterministic guaranteesto the clients. This algorithm builds on the Instantaneous

Maximum algorithm by making better use of the server blockschedule. The algorithm utilizes the fact that many blocksneeded in the future for existing streams will have alreadybeen read into bu�ers at the server whenever disk band-width is greater than the playout rate. It also assumes theserver will read minRead blocks in each future slot, therebysmoothing bandwidth peaks in the future by simulating thedisk reading ahead of the schedule requirements wheneverpossible. This rate of reading is only possible when thereare bu�ers in which to store the data which is read early.As we mentioned before, the server is capable of read-ing more than minRead blocks per slot. While we cannotguarantee this for the future, we can take advantage of readahead that has already been accomplished in the past. Ifthe server can read blocks faster than it can transmit themto the clients, we can read ahead an arbitrary number ofslots.� Blocks that cannot be sent to the clients immediatelyare bu�ered. Unfortunately, there is not an in�nite supplyof bu�ers in the server, and we have to stop reading aheadonce there are no bu�ers. For purposes of bu�er consump-tion we again make the conservative assumption that theserver reads minRead blocks per slot. As bu�ers are trans-mitted on the network, they are freed and this informationis factored into the admission algorithm.Data is transferred to the client and the correspondingbu�ers are freed at a rate which depends on the amountof bu�er space available at the client and the negotiatedbit rate of the network connection. We therefore maintainanother schedule called the bu�er allocation schedule. Thisschedule is initially the same as the server schedule. As datais transferred to the client and bu�ers are freed, however,the values in the bu�er allocation schedule are decremented.Note that there is at least a one slot delay in recoveringbu�ers. In other words, bu�ers containing data to be sentto a client in slot i are not reclaimed until the start of sloti+ 1. For streams which use bu�ers at a very slow rate, thebu�ers cannot be reclaimed until the last portion of data issent across the network, which may be several slots later.For the server block schedule there is a current slot in-dex, identifying the next slot to read. As well, there is ashould be index, referring to the current time. This index isincremented by one on each clock interval. The di�erencebetween current slot and should be is the number of slotsread ahead.Another aspect of the algorithm is that if the server readsahead arbitrarily far it may use up all the available bu�ers,resulting in rejection due to insu�cient bu�ers. In orderto avoid a rejection in this situation, bu�ers are freed byreclaiming them from previous reads. We free those bu�ersneeded furthest in the future, and then add them back intothe schedule in their original position, allowing them to beabsorbed properly via the vbrSim smoothing. A detaileddescription of this algorithm including pseudo-code is givenin [13].2.5 Optimal AlgorithmIn order to calibrate our algorithms, we compare them to anoptimal algorithm that is allowed complete knowledge of thefuture in making its admission decisions. The algorithm canpredict the bandwidth that will be achieved for every slot�Assuming the server is not 100% utilized.3



time in the future and thus can be thought of performingthe same readahead simulation as the vbrSim algorithm, butusing a di�erent value for minRead in each slot, namely thenumber of blocks actually read. This will always be greaterthan minRead whenever there is su�cient bu�er capacity forthe set of reads. The set of streams accepted by the optimalalgorithm is called the valid set.Of course, it is not possible to realize this optimal algo-rithm; it is included for comparison purposes only.3 EXPERIMENTAL DESIGNAND TEST DATATo evaluate the performance of these �ve algorithms, wechoose a representative set of streams, and then compare theadmission decisions made by each algorithm. The followingdescribes the experimental design and the test data used.3.1 Stream SelectionFor experimental data, streams with a reasonable degree ofvariability were chosen to show the bene�ts achieved by ex-plicitly considering the VBR nature of the data. The streamswere captured at 30 fps at a resolution of 640x480 and com-pressed at a variable bit rate using MJPEG. We chose severalclips of sports highlights which had alternating scenes of in-terviews and sports action as well as selected minor scenesfrom motion pictures. Each stream was between 5 and 7minutes in length, which is su�cient to exercise the limitsof all of the algorithms. For admission performance tests,we generated 250 stream scenarios that utilized between 30and 100 percent of potential disk bandwidth. Client requestswere staggered in time so as to not arrive at the server si-multaneously in every case. The length of this stagger waschosen to be either 0, 5, or 10 seconds.
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The VBR pro�les of the beginning portions of three of thestreams are shown in Figure 3. The vertical axis measuresthe number of 64 KByte disk blocks that are required tobe read per slot for each stream. It can be clearly shownthat most of the streams have signi�cant bandwidth peakswell beyond their average bit-rate. Characterizations whichsummarize the variable bit rate data requirements of all thestreams used in this study are given in Table 1. The unitsof measurement for Min, Max, Ave, and Std. Dev. are inblocks per slot. With slots of 500 msec, and block sizes of64 KBytes, 1 block/slot is equivalent to 1 Mbps.Stream Frames Disk Min Max Ave Std CoefBlks Dev of Varbloop 93 10810 3256 2 9 4.52 1.29 .287bengals 10498 3234 2 7 4.62 0.98 .212chases 9924 2746 1 9 4.14 1.03 .249rescue 9299 2100 2 6 3.38 0.71 .209intro 10560 3342 2 9 4.75 1.35 .285maproom 10843 3065 1 9 4.24 1.46 .340coaches 11023 3640 2 8 4.95 1.29 .287boxing 10775 3721 2 11 5.17 1.30 .250aretha 12535 3102 2 7 3.71 .68 .184Table 1: Stream Summary Statistics3.2 Server Con�gurationTo run the experiments on the CMFS developed at the Uni-versity of British Columbia [11], speci�c hardware con�g-urations were chosen. The server was an IBM RS/6000Model 250 (66 MHz Power PC 601 at 62.6 SpecInt), run-ning AIX 3.2.5, and had a 2 GByte disk attached via aSCSI-II Fast/Wide adapter. The server and client machineswere connected to a local ATM network, using a NewBridgeMainstreet 31650 ATM Switch, with 100 Mbps Taxi net-work interface cards. Results for stream scenario acceptancedecisions are given based on this hardware con�guration,due to the availability of network bandwidth to transmit thestreams and Asynchronous I/O facilities in the AIX operat-ing system to read blocks o� the disk device.The server has been implemented on several hardwareplatforms, including Pentium processor based PCs runningFreeBSD, connected via a 10 Mbps ethernet network. Toexamine the execution performance of the admission controlalgorithm itself, we chose to use this con�guration becauseof its superior CPU speed. This environment did not havethe bandwidth to send the continuous media data when theexperiments were initially performed.3.3 Disk CalibrationThree separate methods of calibrating the disk were used.Initially, a program was written that performed disk readson an otherwise empty system, completely independent ofthe CMFS. This program simply requested disk blocks invarious granularities from evenly spaced locations on the diskand measured the bandwidth achieved, using the raw diskI/O facilities on the AIX operating system, and performingseparate seek and read system calls for each read request. Inevery case, at least 40 blocks per second could be successfully4



read o� the disk. For 500 msec slots, 20 is a possible valuefor minRead.The CMFS, however, is designed to utilize the asyn-chronous I/O facilities of the host operating system if avail-able. When the same test was performed on the same diskdevice, but making requests for groups of blocks, the diskcould retrieve 23 blocks in a slot time in nearly every case.The worst read time was 502 msec. Given that this is acontrived worst case example, we believe that 23 is a morerealistic value of minRead.The third method utilized the CMFS to calibrate the diskperformance, Simultaneous requests for several CBR streamswere submitted to the server to determine the worst casedisk performance. The server was capable of supporting 26streams which were spread out across the entire surface ofa single disk and required an average of 1 block per slot, sothe level of seek activity was high. Therefore, 26 could alsobe chosen as the value for minRead.For the purposes of this study, the actual value ofminReadis not of ultimate importance, because it will vary among dif-ferent disk con�gurations. These values provide interestingbounds on disk performance, however, and allow us to inves-tigate the signi�cance of the value of minRead. In particu-lar, we wish to examine whether a conservative estimate ofminRead signi�cantly a�ects the maximum cumulative band-width of stream scenarios accepted by the algorithms.3.4 Initial Algorithm EvaluationThere are two other performance factors utilized in evalu-ating the algorithms. The average number of blocks readduring a slot is de�ned to be averageRead and varies de-pending on the location of the data on the disk. On ourexperimental data, averageRead varied between 27 and 33blocks per slot. The maximum number of blocks which canbe read in a slot is de�ned to be maxRead. This value is de-termined by reading as many contiguous blocks as possibleduring a slot time where all the blocks are on the outsideedge of the disk and was observed to be 40 blocks.Figure 3 and Table 1 show that the streams are highlyvariable; the Simple Maximum Algorithm would reject manystream con�gurations. In particular, the Boxing clip has amaximum bandwidth which is more than twice its averagebandwidth. For streams with these characteristics, SimpleMaximum is very conservative, accepting less than half ofwhat the Average algorithm accepts.The Instantaneous Maximum Algorithm is also very con-servative, but less so than the Simple Maximum algorithm.Figure 4 depicts an example of a simultaneous arrival pat-tern for 5 streams. The average bandwidth requirements forthis set of streams is 22 blocks per slot, but the peak is at 32.Although the average rate is signi�cantly below minRead (=26), this set of streams will be rejected by both Simple Maxi-mum and Instantaneous Maximum algorithms and acceptedby the Average and VBR Simulation algorithms.Although both Simple Maximum and Instantaneous Max-imum are overly conservative, one major advantage of bothof these algorithms is that neither of them require any addi-tional bu�er space for read-ahead at the server, since all thedisk requirements for every slot can be met by the disk readsperformed during that slot time. The amount of bu�eringneeded in these algorithms is 2�minRead bu�ers, as we em-
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Figure 4: Instantaneous Maxima of 5 streamsploy a double-bu�ering technique that reads data into oneset of minRead bu�ers while transferring data across thenetwork from the other.It has already been shown [13] that the VBR Simulationalgorithm (hereafter referred to as vbrSim) provides deter-ministic guarantees of data delivery to the clients. The setof streams in Figure 4 is accepted by vbrSim due to thesmoothing e�ect.In fact, all scenarios accepted by the Simple Maximumand Instantaneous Maximum algorithms are also acceptedby vbrSim because no instantaneous peaks above minReadare allowed in the former algorithms and therefore, vbrSimhas no peaks to smooth out.The Average algorithm makes use of server bu�er space toread at the average rate of the accepted streams or faster ifpossible. Bu�ered data which is read earlier than required istransmitted to the clients during the times that the requireddisk bandwidth rate is above the average. The Average al-gorithm, however, is overly aggressive and can fail in twoways: 1) there may be insu�cient disk bandwidth at somepoint to support the requirements of the set of streams; or2) there is insu�cient bu�er space.The �rst case happens when cumulative average diskbandwidth required exceeds cumulative average disk band-width achievable. This typically happens early in the stream.As a result, it is possible for some set of streams, where thevariation is great but the average is low, to be accepted butfor which it is not possible to properly read the blocks duringpeak times.The second case occurs because bu�er space is �nite. TheAverage algorithm will not be able to read at the averagedisk transfer rate once all server bu�ers are full. The per-formance will decrease to the rate at which bu�ers are freed(i.e. playout rate of admitted streams). This translates intoa lack of read ahead for future transient peaks in the sched-ule.Another typical scenario is depicted in Figure 5. The value5



of averageRead in this scenario is 27.6. With minRead = 26,the Average algorithm accepts the set of streams as the sumof the average of each stream is 25.55. It is obvious fromthe graph that there is insu�cient cumulative average diskperformance to support the transfer of the required amountof data for many slots during the playout. The average re-quirement is initially over 27.6 blocks and only much laterin the scenario does it drop below minRead.
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averageReadFigure 5: Average Bandwidth AlgorithmIt is interesting to note that vbrSim is optimal when aver-ageRead, maxRead, and minRead are all equal. We observethat when there is no variability in disk performance, thevbrSim algorithm knows the future performance of the disk.Any set of streams with a cumulative average bandwidthless than minReadwill be accepted, provided there is enoughbu�er space. So, under these conditions, when bu�er spacelimitations result in a rejection of a stream scenario by thevbrSim algorithm, it would also be the case that the optimalalgorithm would reject that scenario.The Simple Maximum and Instantaneous Maximum arealso optimal in this case, but the Average Algorithm is not.It will still make incorrect admission decisions if peaks indisk bandwidth or bu�er usage are above the capacity of thesystem.If there is any variability in disk performance (the com-mon case), vbrSim is less than optimal. In this case, min-Read will be smaller than averageRead. Therefore, the cu-mulative average rate that can be accepted by vbrSim is lessthan averageRead and thus depends on the value selected forminRead. Figure 6 shows the required minRead values (x-axis) for scenarios with a particular disk bandwidth (y-axis),from the scenarios generated in Section 3. A particular sce-nario was matched to the minimum value of minRead whichcould admit that scenario, although it is obvious that anylarger value of minReadwould also accept the scenario. Thisplot shows that streams are accepted when the cumulativeaverage bandwidth of the scenario approaches minRead, andoccasionally a small amount more.
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Figure 6: Bandwidth Supportable as a Function ofmin-Read using the vbrSim algorithm3.5 Scenario CharacterizationThere is an in�nite number of possible combinations ofstream requests that could be presented to a continuous me-dia �le server. They can be characterized in the followingway: all possible scenarios, all valid scenarios, and all sce-narios accepted by a particular algorithm. This is depictedin Figure 7 for the Average and vbrSim algorithms. The sce-narios accepted by the Simple Maximum and InstantaneousMaximum algorithms are contained inside those accepted byvbrSim (as described earlier) and so are not shown. This di-agram allows us to examine only the qualitative di�erencesybetween the scenarios accepted by the algorithms. For thisdiscussion, we assume minRead = 26.
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Figure 7: Streams Accepted by Admission AlgorithmsThere are several cases of inclusion to consider:yDiagram is not \to scale", i.e. does not represent quantitativedi�erences.6



Case 1: vbrSim � V alid. All streams which are acceptedby the vbrSim algorithm are valid streams. The vbrSimalgorithm will not accept any invalid stream scenarios, sincewe guarantee that the disk has su�cient bandwidth to readall the required blocks and that there is always enough bu�erspace in which to read the blocks. This is shown in moredetail in [13].Case 2: Average � V alid 6= fg. The Average algorithmaccepts invalid scenarios. If requests for the 6 streams in Fig-ure 5 arrive simultaneously, the average bandwidth neededis 25.55, calculated by adding up the sums of the individualaverage bandwidths. This scenario would be accepted by theaverage algorithm, but the disk cannot support this scenarioas too many blocks must be read in the early part of thescenario.Case 3: V alid�(Average[vbrSim) 6= fg. There are validscenarios that neither Average nor vbrSim accepts. This oc-curs if 7 of the selected streams (aretha, bloop93, chases, si-intro, maproom, coaches and boxing) are requested with a 5second stagger between request times. The sum of the aver-age bandwidths is 27.13 blocks per slot. This is higher thanminRead, so the Average algorithm would reject the sce-nario. The vbrSim algorithm also rejects this set of streams,but the scenario is valid.Case 4: (V alid�Average)\vbrSim 6= fg. There are validscenarios which vbrSim accepts while Average rejects. Con-sider a 2 stream scenario where Stream A has a constant bitrate of 12 blocks per slot for 50 slots and Stream B arrives 2seconds later and has a requirement of 20 blocks per slot for6 slots. The average algorithm rejects this scenario becausethe average is 32. The vbrSim algorithm accepts this setof streams because it will have achieved readahead of 56 bythe time the request for the second stream arrives (assum-ing su�cient bu�er space). The new stream will then readat minRead for 4 slots adding to the amount of read-aheadblocks by 6 blocks per slot, because it was only necessary toread 20 blocks in each slot. For the next 2 slots, 32 blocksare needed, so this uses up 6 read-ahead blocks per slot,but there is su�cient of read-ahead achieved in the previousslots to accept these stream. In practice, such a scenario isunlikely, but possible.Case 5: (V alid�vbrSim)\Average 6= fg. There are validstream scenarios which Average accepts and which vbrSimrejects. This is observed in a particular experimental sce-nario where 6 streams (bengals, chases, rescue, intro, boxing,and aretha) are requested simultaneously. The sum of theaverage bandwidth of each these streams is 25.77 blocks perslot. There is insu�cient read-ahead guaranteed by vbrSim,so this scenario is rejected, but the server was capable ofdelivering all the data on time. Thus, the optimal algorithmwould have accepted the scenario, due to disk bandwidthabove minRead during some slot times.4 RESULTSThis section describes the results of the experiments for theInstantaneous Maximum and vbrSim algorithms. The Sim-ple Maximum algorithm accepts so few streams that the re-sults are not interesting at all. We also do not show theresults for the Average algorithm for two reasons: 1) its per-formance is analytically predictable accepting all streamswith cumulative average rate less than minRead and 2) it

has been shown to provide incorrect admission decisions, ei-ther by being both too conservative or too aggressive, withrespect to the set of valid streams.4.1 Admission Algorithm ExecutionTimeA major advantage of the Simple Maximum and Averagealgorithms is their execution time. Since stream character-ization and is done with a single number, the time to de-termine admission is a single calculation, merely adding thenew requirements to the existing requirements. Both In-stantaneous Maximum and vbrSim require a block scheduleto be computed and the bandwidth in each slot to be com-pared with the guarantee. The amount of overhead in theseoperations is a concern when utilizing them in a real system.The block schedule for a 2-hour video clip can be com-puted in approximately 125 msec on a Pentium 200 run-ning FreeBSD. If segments are to be skipped, or fast motionrequested, less of the data stream or fewer slots (or both)are required, so in these situations the calculation typicallytakes less time. The block schedule for the same video clipstored at 30 frames per sequence, and skipping one sequencefor every one displayed takes 64 msec to compute. When astream is stored in smaller sequences, there is more calcula-tion to perform, leading to a longer time for schedule creationand a smaller reduction in execution time when skipping se-quences.The time to examine the block schedule simulating read-ahead is proportional to the length of the non-empty portionof the server block schedule. For the same 2 hour videoclip, the admission control process takes roughly 34 msecon a Pentium 200 running freeBSD. This value is higherthan previously reported [13] due to the measurement of thealgorithm within the entire CMFS. Earlier measurementswere performed on the admission algorithm in total isolation.4.2 Admission DecisionsAs argued in Section 3, the vbrSim algorithm is an optimalalgorithm if the disk performance is constant. Since that isnot true in practice, we investigate how the performance ofthe algorithms degrades on a disk system with variable disktransfer rates. In order to isolate disk bandwidth issues frombu�er space, we model a server with an unlimited amountof bu�er space.The results for the vbrSim algorithm, the InstantaneousMaximum algorithm and the optimal algorithm are com-pared using the three speci�c values for minRead obtainedby calibration in Section 3.3: 20, 23, and 26. It is most inter-esting to consider those scenarios having cumulative averagebandwidth near minRead blocks per slot and which wouldbe accepted by the optimal algorithm.Figures 8 and 9 show the acceptance rate of stream sce-narios for the admission algorithms. Since we only considerscenarios that the disk was able to support, the values for theoptimal algorithm would be uniformly at 100%, so it is notshown on the graph. Since each scenario uses di�erent diskresources, we chose to group the scenarios in bands of thecumulative average bandwidth requirements as a percentageof the average disk performance obtained in the executionof that scenario. The observed values of disk performance7



vary considerably, depending on the location of the streamson the disk and the amount of contiguous disk reading thatwas possible. This is most noticeable when a small amountof stagger is introduced. In this case, the disk reads thenew stream, which is usually contiguous on disk, for a shortamount of time immediately after being admitted until itcatches up to the level of read-ahead of the existing streams,increasing the overall performance of the disk. When min-Read = 20, minRead/averageRead ranges between .60 to .74,showing that disk performance is variable. Similar rangesexist for the other values of minRead.
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Figure 8: Acceptance Rate - Instantaneous Maximum
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Figure 9: Acceptance Rate - vbrSimBoth �gures show that for low levels of disk utilization,all the stream scenarios are accepted. In Figure 8, with min-

Read = 20, no scenarios above 54% disk utilization are ac-cepted by the Instantaneous Maximum algorithm, and somescenarios that request less than 35% of the available diskbandwidth are rejected. When minRead = 26, no scenariosare accepted whose bandwidth request is greater than 69%of available disk bandwidth.The vbrSim algorithm performs much better. Below 60%,the vbrSim algorithms accept all stream scenarios for all se-lected values of minRead. When minRead = 20, the ac-ceptance rate starts to decline in the 60 to 64 percent band,which is very close to the percentage that minRead is of aver-ageRead. The vbrSim algorithm with minRead = 20 acceptssome streams whose disk utilization request is over 70%, dueto the combination of readahead smoothing in the past (priorto the arrival of some streams) and read-ahead in the future(at minRead). Further investigation will attempt to iden-tify which of these components is more signi�cant. WhenminRead = 23, almost all scenario requests below 75% areaccepted and a steady drop-o� is observed as the requestedlevel of disk utilization is increased. The pattern is similarfor minRead = 26. The range of minRead/averageRead is .79to .96, and some stream scenarios are accepted in the 90 to94% range. This shows that vbrSim does come quite close toaccepting streams with cumulative average bandwidth verynear the level of minRead/averageRead. For some of thesescenarios, the cumulative average bandwidth required didindeed exceed the value of minRead.More insight into the vbrSim algorithm can be gained bymeasuring the bandwidth achieved by the server as it acceptspartial stream scenarios. This is shown in Figures 10 and 11.It would be reasonable to assume that the server would becapable of supporting near or slightly more than minReadblocks per slot, regardless of the request size.
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Figure 10: Bandwidth Supported by Disk Requests(vbrSim only)Each graph contains two lines: one which indicates thelargest bandwidth accepted for scenarios within that per-centage band of requested disk utilization, and one whichindicates the smallest bandwidth that was accepted. This8
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Figure 11: Bandwidth Supported by Disk Requests(vbrSim only)is when the total request �t into the particular percentageband and only part of the scenario was accepted. Thus, thelines are parallel during the low level of disk utilization whereall scenarios are accepted.When the level of disk performance requested increases,the range between the 2 lines begins to increase. As streamsare rejected, the minimum value accepted 
attens out. Thishappens immediately after 59% for minRead = 20. For min-Read = 26, this happens later.There is also a 
attening of the line for the maximumbandwidth supportable. This comes at slightly over 75% forminRead = 20. The graph indicates that no matter whatlevel of disk performance is requested, the most that vbrSimwith minRead = 20 will achieve is 79% of the disk band-width. This is reasonable, considering minRead/averageReadranges from 61-74% of disk utilization. For minRead = 26,the maximum achievable bandwidth is approximately 94%,again an indication that disk utilization approaches min-Read/averageRead.4.3 Bu�er Space RequirementsSince a real server will not have an unlimited amount ofbu�er space, we now consider the impact of limited bu�erspace. Some of the analysis in this section uses in
ated val-ues of minRead, so that we can isolate bu�er space utiliza-tion from the restrictions placed on stream acceptance bythe amount of guaranteed bandwidth.If the rate at which bu�ers are freed is less than aver-ageRead, the value of averageRead decreases towards theplayout rate of the accepted streams. The server was in-strumented to capture the number of bu�ers utilized to keepthe server reads from slowing down as a result of insu�-cient bu�ers. In one particular scenario, the �rst 7 streamsof Table 1 were requested with a 3 second stagger in ar-rival time. This scenario was supported by the server. The

cumulative average disk bandwidth achieved was approxi-mately 30.5 blocks per slot. In order to support that rate,this particular scenario utilized 832 bu�ers (approximately52 MBytes).Static analysis of the bandwidth requirements determinedthat 30 was the smallest value of minRead which was ableto accept this scenario. Static analysis of the bu�er require-ments was also performed to determine the minimum num-ber of bu�ers required for the vbrSim algorithm to accept ascenario. This analysis assumed that the disk reads preciselyminRead blocks in every slot. For minRead = 30, only 605bu�ers were required to smooth out all the peaks in the blockrequirements of these 7 streams. This implies that with thisamount of bu�er space, the disk must throttle itself at somepoint during the reading process, while waiting for bu�ersto be returned to the system, but will still never fall behind.Further analysis shows that when minRead = 31, 321 bu�ersare needed when minRead = 32, the number required dropsto 157 bu�ers. This is because there are fewer peaks aboveminRead and they are of shorter duration.Figure 12 shows the number of bu�ers required to ac-cept several of the stream scenarios with minRead = 26. Asimilar pattern is observed with the other selected values ofminRead. This seems to suggest a relationship between thenumber of bu�ers and the cumulative average bandwidththat can be supported. We can see from this scatter plotthat the amount of bu�er space appears to grow exponen-tially as the cumulative average bandwidth of the admittedstreams approaches minRead. When valid scenarios withlarger bandwidth requirements (w.r.t. minRead) are sub-mitted to the CMFS, there is a signi�cant increase in bu�errequirements. In these scenarios, staggering arrivals allowsthe cumulative average bandwidth in the accepted streams tobe over minRead at many points in the schedule. In one par-ticular case (not shown on this graph), when 5 streams aresubmitted (bloop93, bengals, intro, maproom, and coaches),with 5 seconds between arrivals and with minRead = 20, thecumulative average bandwidth is 21.34 blocks per slot andthe number of bu�ers required is 1175, which is 75.2 MBytes,but vbrSim does accept the scenario.It is easy to construct other scenarios in which largeamounts of bu�ering will be bene�cial and increase per-formance signi�cantly. If streams are relatively small com-pared with bu�er space, entire streams could be bu�eredin the server. When the stream requests arrive simultane-ously, admission would still be largely based on bandwidth.If inter-arrival time was long, relative to stream length, thenthe ability to read contiguously from the disk during streamstart up would result in disk performance much greater thanaverage for those points in time. These considerations intro-duce extra levels of complexity into the analysis which arebeyond the scope of this paper.For most of the stream scenarios depicted in Figure 12, areasonable amount of bu�er space is required. This presentsa design alternative for the administrator of a continuousmedia �le server. Additional bu�ers may be used to extractthe most bandwidth out of a particular disk device, or thenumber of disk devices may be increased, which also has thee�ect of increasing bandwidth.Adding more disks must also be accompanied by morebu�er space, or the number of bu�ers available for each diskdecreases. Increasing from n to n+1 disks incurs a 1=(n+1)decrease in bu�er allocation for each disk. As can be seen in9
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MinRead 26Figure 12: Bandwidth supportable versus Bu�er Spacethis section, this will reduce the ability of the system to ac-cept scenarios that require average bandwidth close to min-Read, and may not provide an increase in system through-put. A more detailed quantitative analysis of this tradeo� isplanned as part of future work.5 RELATED WORKThere have been several admission control algorithms in-troduced in the literature. Much of the work in continu-ous media servers has focussed on either conservative ap-proaches based on bandwidth peaks or statistical methodswhich model arrival rates and stream bandwidths with prob-ability distributions and determine a satisfactory level of per-formance by the disk and network subsystems, either sepa-rately or as a system.The majority of early work in VBR systems simply ex-tended the principles used in CBR streams and followed thepattern of Simple Maximum ([7, 18]). In Vin and Rangan[18], data layout patterns as well as admissions schedulingwas done with streams of varying data rates, but the ratewithin a stream was considered a constant. Lau and Lui[11] perform an admission test that considers the peak rateneeded to determine if a stream is admissible, by delayingthe starting time and readjusting the disk tasks to minimizeother measures of performance. They utilized streams thathad bandwidths which varied uniformly between 2.5 and 5MBytes per second, and performed statistical analysis of ar-rival rates with their deterministic algorithm. We can seethat for streams with a reasonable di�erence between theiraverage and their peak rates, this provides an unacceptablylow level of utilization.The performance of a video server is measured in Liu et al.[12], wherein di�ering types of video are compared. In theirstudy, each type of video has a constant bit rate, and thefocus is on data placement (i.e. striping) and bu�er usage,not on admission control details.

In Kamath et al. [9], the admission control checks to see ifthe cumulative necessary disk transfer rate required violatesthe guarantee and that there would be su�cient bu�er spaceto read the additional disk blocks. Their algorithm is similarto Instantaneous Maximum, but their focus is on sharingdata between multiple users, thereby achieving a reductionin disk activity when the same stream is requested more thanonce within short periods of time.Statistical methods based on the recent past performanceare introduced in Jamin et al. [8] that combine client spec-i�ed parameters of the new stream with the observed mea-surements of the system to make an admission decision. Thenew performance measurements are then utilized in futureadmission control requests.In Vin et al. [17], a statistical admission control algo-rithm is presented, which considers not only average bitrates, but the distributions of frame sizes, and probabilitydistributions of the number of disk blocks needed during anyparticular service round. They acknowledge that the algo-rithm breaks in certain circumstances referred to as over
owrounds (i.e. over subscribes the disk). In over
ow rounds,the system has the complexity of dealing with the loss ofdata. A greedy disk algorithm attempts to reduce the ac-tual occurrence of over
ow rounds, and the system attemptsto judiciously distribute the e�ective frame loss among thesubscribed clients. This requires some knowledge of the syn-tax of the data stream, at least to the point of knowing wheredisplay unit (i.e. video frame) boundaries exist and whichdisplay units are more important than others (i.e. MPEGI-frames vs. MPEG B-frames).A more complex version of the Average Algorithm is givenfor Constant Time Length (CTL) video data retrieval byChang and Zakhor [3]. Constant Data Length retrievalmethods introduce bu�ering for the purposes of prefetchingportions of the stream and incorporating a start-up latencyperiod. In further work [4], they show via simulation thata variation of deterministic admission control admits 20%more users than their statistical method for a small proba-bility of overload.Knightly et al. [10] perform a comparison of di�erent ad-mission control tests in order to determine trade-o�s betweendeterministic and statistical guarantees. The streams usedin their tests are parameterized by a tra�c constraint func-tion, known as the empirical envelope. It describes the band-width needed at various points during stream transmission,so it is somewhat similar in form and function to the blockschedule as presented in this paper, but much less detailed.This characterization is used in admission control. This isthen combined with di�erent packet transfer schemes and sodoes not particularly isolate each subsystem. Zhang et al.[19]have worked on network call admission control methods withsmoothed video data taking advantage of client bu�ering ca-pabilities. This reduces the amount of bu�ering needed atthe server and increases potential network utilization.Recent work by Dengler et al. [6] and Biersack and Thiesse[2] builds on the work of Knightly et al.[10] and Chang andZakhor [4], describing admission control methods which pro-vide statistical and deterministic guarantees of disk servicefor VBR streams. The major focus is data placement strate-gies and the use of tra�c constraint functions is prominent.Constant Time Length (CTL) placement with deterministicguarantees is investigated in [6], while statistical admissioncontrol and Constant Data Length is examined in [2].10



6 CONCLUSIONS ANDFUTURE WORKIn this paper, we have presented �ve disk admissions controlalgorithms for variable bit rate continuous media streams.We introduced the VBR Simulation Algorithm (vbrSim)that explicitly considers the detailed variable bit rate pro�leand accommodates disk read ahead based on the achievedread ahead in the past and the guaranteed worst-case readahead performance in the future.The Simple Maximum, Instantaneous Maximum, and vbr-Sim algorithms provide deterministic guarantees that thecontinuous media will be read o� the disk for proper deliv-ery to the client, while the Average algorithm provides onlystatistical guarantees. We showed that the Average algo-rithm can make incorrect decisions on rejecting and accept-ing stream scenarios. The performance of the InstantaneousMaximum algorithm was signi�cantly worse than vbrSim forall cases of the representative selection of Variable Bit Ratemedia stream scenarios.Comparisons of admission performance showed thatthe vbrSim algorithm admits a very large percentage ofstream scenarios that have disk utilization below min-Read/averageRead. As the disk bandwidth requested ap-proaches minRead/averageRead, fewer scenarios are ac-cepted, but the level of bandwidth supported by the algo-rithm remains relatively constant. Having an appropriatevalue for minRead signi�cantly a�ects the disk utilization,and in situations where the worst case disk performance issigni�cantly less than averageRead, the vbrSim algorithmdegrades proportionally.Designers of continuous media systems must take into ac-count the negative e�ect of aggressively incorrect admissiondecisions on the client population. As well, the amount ofbu�er space that can be allocated for read-ahead to smooththe peaks in disk data-rate requirements is a factor whichmust be considered.We have shown that reasonable amounts of bu�er spacecan enable the vbrSim algorithm to work close to its max-imum acceptance rate, which is close to optimal. It is alsosimple and e�cient to execute [13]. Utilizing a simpler al-gorithm will result in conservative resource utilization. Theuse of statistical algorithms may result in failure to deliverthe data to the client. In statistical algorithms, if the diskperformance measure is the average disk bandwidth, thenthe admission decision results in failure to deliver if eitherthe instantaneous maximum over-subscribes the disk or thedisk achieves less than this average bandwidth. UtilizingminRead as the disk performance estimate provides littleperformance bene�ts over vbrSim, while eliminating deliv-ery guarantees. Thus, vbrSim seems a completely reasonablechoice of admission algorithm for continuous media servers.Further performance analysis is underway to examine thesensitivity of several other factors in the con�gurations ofthe streams and the server resources. These factors include:the amount of variability in the streams, the length of thestreams, the availability of additional client bu�er space (ac-companied by su�cient network bandwidth), and the inter-arrival time of requests at the server. This performance anal-ysis must be extended to consider the network transmission.This has been examined in some detail in [14], and morework is planned for the near future.
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