
Pergamon Information Systems Vol. 19, No. 4, pp. 33{54, 1994Copyright c 1994 Elsevier Science LtdPrinted in Great Britain. All rights reserved0306-4379/94 $7.00 + 0.000306-4379(94)E0004-9SCHEMES FOR IMPLEMENTING BUFFER SHARING INCONTINUOUS-MEDIA SYSTEMSDwight J. Makaroff and Raymond T. NgDepartment of Computer Science, University of British Columbia, Vancouver, British Columbia, Canada(Received 18 June 1993; in �nal revised form 1 November 1993)Abstract | Bu�er management in continuous-media systems is a frequently studied topic. One ofthe most interesting recent proposals is the idea of bu�er sharing for concurrent streams. As analyzedin [6], by taking advantage of the temporal behaviour of concurrent streams, bu�er sharing can leadto a 50% savings in total bu�er space. In this paper, we study how to actually implement bu�ersharing. To this end, we develop the CES Bu�er Sharing scheme that is very e�cient to implement,and that permits savings asymptotically very close to the ideal savings predicted by the analysis in [6].We show that the CES scheme can operate e�ectively under varying degrees of disk utilizations, andduring transition periods when the number of concurrent streams changes. We also demonstrate howthe scheme can be further improved, particularly for situations when the number of concurrent streamsis small. In ongoing work, we will integrate the proposed scheme into a distributed continuous-media�le system which is under development at the University of British Columbia.Key words: continuous media, bu�er management, �le systems.. .1. INTRODUCTIONThe advances in networking and storage technologies in the past decade have made multimediacomputing possible. Providing e�ective multimedia support in information systems has naturallybecome a topic of great interest and practical value. For a multimedia information system to workwell, however, it must deal with two major properties of or challenges presented by multimediadata. First, audio and video data are delay-sensitive. As recording and playback of video andaudio data are continuous operations, once an information system starts displaying audio or videodata, it must guarantee that enough resources are allocated so that the continuity and real timerequirements are not violated. Second, (even compressed) audio and video data consume largeamounts of system resources { primarily storage space and bandwidth.Many excellent studies regarding the storage and retrieval of audio and video data have beenconducted, such as those reported in [1, 2, 3, 4, 6, 7, 8, 10, 11, 13]. In particular, [1, 3, 4, 7, 11, 13]have studied, among other issues, the bu�er space requirements for multiple multimedia streams.Most of these analyses are based on the bu�er space needed by each stream individually. In otherwords, if S1; : : : ; Sn are the n streams running simultaneously in the system, the total amount ofbu�er space needed is nXi=1Bi, where Bi is the bu�er space required by Stream Si. Recent work[6, 11] has shown that by taking advantage of the temporal behaviour of the concurrent streams,bu�ers can be shared among these streams (cf. more details given in Section 2). The analysisand simulation in [6] indicate that bu�er sharing can reduce the total bu�er requirements to aslittle as 1=2 � nXi=1 Bi, achieving a 50% savings. Thus, sharing provides more e�cient use of bu�ersand often improves the response times to queries, namely by increasing the number of concurrentstreams that can be supported by a �xed amount of bu�er space.33

34 Makaroff and NgGiven the bene�ts of bu�er sharing, in this paper we study how to implement this idea (as [6]and [11] only give analyses and simulation results). A crucial issue which has not been examinedelsewhere is bu�er addressing. That is to say, after knowing how much bu�er space to allocate toa collection of concurrent streams, how can the system decide exactly which bu�ers (i.e., blocks ofmemory) to use to contain the data read for each stream? Similarly, how can the playback processof each stream know where to �nd its data? As will be demonstrated in Section 3.1, the answersto these questions are complicated by the temporal aspects of the concurrent streams in that thebu�er locations for each stream change over time.To some extent, the problem of bu�er addressing we are trying to solve here is similar tothe problem of allocating blocks of memory to processes in a multi-programming operating systemenvironment. However, a key di�erence between the two problems is a di�erence in time granularity.In operating system memory allocation, most changes in (virtual) memory allocation are made inthe time granularity of process lifetimes, which are typically in seconds or minutes. In contrast, thetime granularity for changes in bu�er locations is on the order of milliseconds, assuming a displayrate of 30 frames per second. Thus, we are looking for bu�er addressing schemes that are with aslittle overhead as possible. To this end, the contributions of this paper are as follows.� We will report the development of the CES Bu�er Sharing Scheme that is very e�cient toimplement (i.e., constant-time computation). The scheme permits savings in bu�er spaceasymptotically very close to the \ideal" savings predicted by the analysis given in [6].� We will show how this scheme can be further improved, particularly for situations when thetotal number of concurrent streams is small, say less than 10.� We will also demonstrate how the scheme operates under varying degrees of disk utilizations.� As noted in [6, 7], when the number of concurrent streams changes (normally due to acompletion/termination of a stream, or the admission of a new stream), the system entersinto a transition period. We will show how to make the CES Bu�er Sharing Scheme workduring such periods of transition.The organization of the paper is as follows. Section 2 presents several preliminary conceptsand formulas, and gives an analysis on the bene�t of bu�er sharing. Section 3 introduces the CESBu�er Sharing Scheme and analyzes its behaviour with full disk utilization. Section 4 shows howthe CES scheme can be further optimized by a more careful reuse of bu�ers. Section 5 analyzes thebehaviour of the CES scheme when the disk utilization is less than full. Finally, Section 6 showshow to make the CES scheme work during periods of transitions.2. BACKGROUND: AN ANALYSIS OF BUFFER SHARING2.1. Periodic Retrieval of Multiple Streams with No Bu�er SharingFollowing the framework established in [4], we associate with each stream Si a consumption ratepi, which is the rate the data obtained from disks are consumed. For an uncompressed stream,its consumption rate is the same as its playback rate. To support n streams, S1; : : : ; Sn, it isnecessary that the data transfer rate R from disk is greater than the total consumption rate nXi=1 piof all the streams, so that the continuity requirements of all the streams will not be violated. More

Schemes for Implementing Bu�er Sharing in Continuous-Media Systems 35speci�cally, the disky multiplexes itself by reading data for each stream in a periodic or cyclicfashion. Within a period, the disk spends ti time units to read for Si. Thus, if si;j denotes theseek/switching time from Streams Si to Sj, we have:t1 + : : :+ tn + s1;2 + : : :+ sn;1 � T (1)where T denotes the total length of the period. To simplify notations, let s = s1;2 + : : :+ sn;1.Then the disk utilization for the concurrent streams is given by:� = t1 + : : :+ tn + sT (2)Intuitively, it measures the degree to which the disk has been dedicated to the concurrent streams.The disk utilization is 1 when the disk is fully dedicated. The disk utilization is less than 1 whenthere is some time within each cycle that the disk is not serving the concurrent streams. We referto this as the idle time within a cycle. Any value can be selected as the length of the readingperiod, keeping in mind that bu�er utilization is directly proportional to that time value. If astream needs 1.5 Mbps (as in MPEG-1 video), then 5 streams can be serviced in a period of length10 seconds, if 15 Mbits are read for each stream. The total amount to be read is 75 Mbits orapproximately 9 MBytes of bu�er space would be required, assuming all of the data needs bu�erspace at some point.In order for each stream to satisfy its continuity requirements, it is necessary to read su�cientdata of Si in time ti so as to cover the (continuous) consumption of Si for time T , that is,ti �R � T � pi (3)In order to reduce the number of bu�ers used for each stream, however, we have:ti �R = T � pi (4)From Equation (4), it is easy to see that titj = pipj . In other words, to minimize bu�er consumption,the reading time for each stream should be proportional to its consumption rate. Let P denotethe total consumption rate, i.e., P = p1 + : : :+ pn. Then by combining Equations (2) and (4), tican be determined by: ti = (T � � � s) � piP (5)By combining Equation (3) with the above equation, we can establish a lower bound on T :T � s �RR � � � P (6)Since the data transfer rate R is greater than the consumption rate pi of each individual stream,bu�ers are needed for each stream. In particular, the maximum number of bu�ers is needed rightafter Si has just �nished reading. Thus, the number of bu�ers required by Si is: Bi = ti�R�ti�pi.By substituting Equation (5) into the above, we get:Bi = pi � (R� pi) � T � � � sP (7)Thus, the total bu�er requirements for the n streams is:B = nXi=1 Bi = T � � � sP � nXi=1 pi � (R� pi) (8)yFor ease of presentation here, we only consider the situation when there is only one disk. As far as bu�er sharingis concerned, extending from one disk to multiple disks is straightforward.

36 Makaroff and Ng
t/3 time

buffers

3b/2

3b

4t/3

b

one cycle t

S S S321Fig. 1: Bu�er Sharing for 3 Streams with Identical Consumption RatesIf Bmax is the maximumnumber of bu�ers available in the system, it is necessary that B � Bmax.By substituting Equation (8) into B � Bmax, we get an upper bound of the cycle length T :T � Bmax � P� �Pni=1 pi � (R� pi) + s� (9)This equation can be combined with Equation (6) to decide whether it is possible to accept a newstream Sn+1. In particular, the admission controller computes the two equations by including thecharacteristics of Sn+1 (i.e., sum to n+1). If the range de�ned by the two equations is empty (i.e.,the right-hand-side of Equation (6) is strictly greater than that of Equation (9)), admitting Sn+1is not feasible. Otherwise, Sn+1 can be admitted, and any value within the range can be picked asthe value of T .The analysis above assumes that apart from the seek required for switching from Si�1 to Si,no extra seek is needed throughout time ti when Si is being read. This can be achieved by usingthe technique of storing data in clusters as proposed in [3], or by storing data contiguously (e.g.such as in a spiral optical disk). [6] discusses how to handle other situations of data placement.2.2. The Bene�t of Bu�er SharingMany studies, such as [1, 3, 4, 7, 11, 13], have analyzed, among other issues, the bu�er spacerequirements for multiple concurrent multimedia streams. However, nearly all the analyses arebased on the bu�er space needed by each stream individually. In other words, the total bu�erspace needed by the n streams is nXi=1 Bi. Figure 1 shows clearly, however, that Si does not needall Bi bu�ers at all times. In fact, Si's bu�er requirement can be less than Bi, for example whenStream Si+1 requires its maximum number of bu�ers. This fact is also observed in [11]. Thus,a simple way to minimize total bu�er consumption and thus to maximize bu�er utilization is toallow the n streams to share bu�ers.Figure 1 shows a simple situation when there are 3 streams S1; S2; S3 in the cycle, each of whichhas the same consumption rate, but their data consumption cycles are o�set in time with respectto each other, as in [11]. Thus, by Equation (5), each stream has an equal amount of reading time,i.e., same ti. Since the cycle length T is normally much larger than the total switching time s,Figure 1 shows the simpli�ed situation when ti = T=3. Let us consider the total bu�er requirementat time 4T=3, at which point S1 has just �nished reading and requires b bu�ers, the maximumnumber of bu�ers that it ever needs. S2, which is about to start reading, has run out of data.

Schemes for Implementing Bu�er Sharing in Continuous-Media Systems 37Thus, the bu�er requirement of S2 is 0. As for S3, there were b bu�ers at time T , but at time5T=3, all the data in those bu�ers will be consumed. Thus, at the current time 4T=3, S3 needs b=2bu�ers. Hence, the total number of bu�ers required by all 3 streams is b + 0 + b=2 = 3b=2. Notethat if all the streams have identical consumption rates, their total bu�er requirement does notchange with time. Thus, 3b=2 bu�ers are all the 3 streams need. However, without bu�er sharing,3b bu�ers are required. Thus, bu�er sharing gives a 50% reduction in total bu�er consumption.An analysis of bu�er sharing for the general case when there are n streams with heterogeneousconsumption rates p1; : : : ; pn involves �nding the time point within a period when the total bu�errequirement reaches the maximum. This is necessary because this maximum is no longer constantwhen p1; : : : ; pn are not all the same. See [6] for more details. But here we will only considerthe case when there are n streams with identical consumption rates. Since the consumption ratesare the same, then by Equation (7), the individual bu�er requirement Bi is the same, which wede�ne to be b. This is equal to pT (n� 1n) when the disk is fully utilized and servicing n streams.The amount that must be displayed is pT and pT=n is what has been displayed while reading.Similarly, the reading time ti for each stream is the same, say equal to t0. Now let us consider thetime when Sn has just �nished reading. The following table shows the bu�er requirement of eachstream at that point. Streams S1 S2 S3 : : : SnBu�ers needed 0 1n�1b 2n�1b : : : n�1n�1bFirst, Sn has just �nished reading, thus requiring all b bu�ers. S1 is about to start reading. Thus,it has 0 bu�ers of data at this point. S2, at an earlier point in time, had b bu�ers of data whichare supposed to cover the consumption of S2 for a period of (n � 1) � t0. At the point when Snhas just �nished reading, (n� 2) � t0 has elapsed from the time S2 started consuming its data, oralternatively, S2 will run out of data t0 seconds later. Thus, the current level of bu�ered data forS2 is t0(n � 1) � t0 b = 1n� 1b. Similarly, it is not di�cult to see that the current level of bu�ereddata for S3 is 2n� 1b. Hence, the total number of bu�ers needed is:Bshar = nXi=1 i � 1n� 1b = n2 b (10)In this case, without bu�er sharing, the total number of bu�ers required is B = nb. Thus, bu�ersharing reduces total bu�er consumption by 50%.Example 1 Consider a homogeneous set of streams whose consumption rate is 240KB per second.(This is based on 24 frames per second where each frame is JPEG compressed to 10KB [9].)Given a disk whose maximum reading rate is 1000KB per second, 4 streams can be supportedsimultaneously, provided that there are enough bu�ers. If the length of the period for the 4streams is 2.5 seconds, the bu�er requirement for each stream is b = 456KB. Thus, without bu�ersharing, about 2MB of bu�er space is needed. But with bu�er sharing, only 1MB is needed.Alternatively, if the system only has 1MB of bu�er space, the number of streams that can besupported simultaneously without bu�er sharing is only 2. With bu�er sharing, the system candouble the throughput and support all 4 streams. 2The above analysis assumes that the disk utilization � is equal to 1. To take variations of diskutilization into account, we generalize the above table that shows the bu�er requirement of eachstream at the point after Sn has �nished reading to become:Streams S1 S2 S3 : : : SnBu�ers needed cb (c+ �n��)b (c+ 2�n��)b : : : (c+ (n�1)�n��)b

38 Makaroff and Ngwhere c = 1��1��=n . For more information regarding these calculations, see [12]. A simple summationyields: Bshar = 2n� n� � �2(n� �) � nb (11)Thus, in general, the percentage savings in bu�ers is given by:%savings = 100 � (1 � 2n� n� � �2(n� �)) = 100 � (n� 1)�2(n� �) (12)The above quantity is the largest when the disk utilization � = 1, in which case the percentagesavings is 50%.All the analyses presented so far are based on a �xed reading order of streams within a cycle.The bene�t of allowing the reading order to change from one period to another is explored in [2, 3].The gain is a reduction in total seek time, whereas the price to pay may be a doubling of bu�errequirements. In ongoing work, we are studying whether we can get the best of both worlds byintegrating bu�er sharing with variable reading orders.3. CES: A BUFFER ADDRESSING SCHEME BASED ON SLOTSSince bu�er sharing can lead to considerable savings, the aim of this paper is to devise e�ectiveschemes to implement the idea. The main issue involved is bu�er addressing. In other words,after deciding how much bu�er space is needed by the concurrent streams, the system must decidewhere to put the data of each stream at what time. In this section, we will �rst present a naiveimplementation scheme which requires very costly bookkeeping. We will then present a bu�eraddressing scheme based on the notion of slots. We will show that the addressing scheme is easyto implement/maintain, and that the scheme permits savings in bu�er space asymptotically veryclose to the \ideal" savings predicted by Equation (12).3.1. Observations from a Naive ImplementationThe following example demonstrates that with the minimum amount of bu�er space (via bu�ersharing), it is not possible to allocate contiguous blocks of memory space to the streams.Example 2 Suppose we have 4 streams: A, B, C and D, each having the same consumption ratep. Consider the case when the disk utilization is 1. Then if the period is of length T , each streamwill read for time T4 within each period. Thus, it is easy to see that the bu�er space needed for eachstream is given by b = p(T � T4) = pT (4� 1)4 = 34pT . Thus, by Equation (10), the total amountof space needed is 2b = 6pT4 . For ease of illustration, let us divide this amount of memory spaceinto 6 equal portions, each of size pT4 . Hereafter, we call these portions \slots." The followingshows how these 6 slots will be used over time.� At time t = 0, no portions are in use. Immediately after this moment, the disk starts to readfor Stream A, and begins to use the space in Slots 1, 2, 3 and 4.� At time t = T4 , Stream A occupies b bu�ers. In fact, more than b bu�ers worth of dataof A has been read, because while reading takes place, some of the bu�ers being �lled havealready been consumed (i.e., Slot 1). Slot 1 is empty because the amount of data displayedduring the reading period for A (T4) is exactly equal to the size of slot 1. Thus, the bu�erspace can be diagrammed as follows:

Schemes for Implementing Bu�er Sharing in Continuous-Media Systems 391 2 3 4 5 6free A A A free freeImmediately after the moment t = T=4, the disk starts to read for Stream B, and begins byusing Slot 5.� At time t = 2T=4, Stream A has just �nished consuming its data in Slot 2. Meanwhile,Stream B now requires b bu�ers (i.e., 3 slots). Thus, the bu�er space looks like:1 2 3 4 5 6B B A A free B� At time t = 2T=4 + T=16, Stream C has just �nished �lling its �rst (of 4) slots, namely Slot5. At this moment, the bu�er space looks like:1 2 3 4 5 6B B A* A C* B*The asterisks under Slots 3, 5 and 6 indicate that only parts (in fact, one quarter) of theseslots are empty. Then the question is where to put C's data to be read next. The unfortunateanswer is that C's data will have to be interleaved within the space in Slots 3, 5 and 6.� At time t = 3T=4, Stream C has �nished reading, and the bu�er space diagram becomes:1 2 3 4 5 6B B C+ A C+ C+The + signs under Slots 3, 5 and 6 denote that the data in these slots are interleaved andnot in contiguous order.� After time t = 3T=4, reading for Stream D begins. Unfortunately, the fragmentation of Dbecomes even worse than that of C above. The fragmentation escalates even further whenthe next cycle begins. Eventually, data of all streams are totally interleaved. 2The above example illustrates that with the minimum amount of bu�er space (as predicted byEquation (10)), interleaving of data streams in bu�ers occurs rampantly. In fact, such interleavingis unavoidable. This is because at the steady state when the bu�ers are all full, having the minimumamount of bu�er space implies that every bu�er released after consumption by every stream mustbe �lled immediately by the stream that is reading data at that time. More importantly, thoselocations will not always be contiguous. Even if a special attempt has been made to make surethat those locations are contiguous in one cycle, the previous example shows that the locations willno longer be contiguous in the next cycle. In sum, a key observation is that with the minimumamount of bu�er space, interleaving is unavoidable.The next question to ask then is how to record the interleaving, so that the system knowswhere to �nd the ith piece of a data stream in the bu�ers. One straightforward way is by using alinked list or some indexing structure, one for each stream. When a data block is read from disk,the contents would be copied to the bu�er and the start address copied to the indexing structure.Similarly, when a data block is consumed, the indexing structure would be accessed to �nd thestart address, and then the data would be transferred to the display hardware. However, thedisadvantages of this naive approach are:

40 Makaroff and Ng� As illustrated by the above example, the degree that the data of a stream is interleavedor fragmented is very high. This implies that there would be many, many small contiguouspieces whose start addresses need to be recorded. Thus, the amount of storage space requiredby the indexing structure may not be small. Moreover, the indexing structure may use upmemory space which would otherwise be available as bu�er space for streams.� Each read operation from and write operation to bu�ers require accessing or updating theindexing structure. As a data stream is highly fragmented, the frequency of accesses to theindexing structure would be very high. This would undoubtedly lead to a major performanceloss.So far, we have observed that with the minimum amount of bu�er space, a high degree ofinterleaving is unavoidable. And we have just seen that dealing with such a high degree of in-terleaving is very costly. Furthermore, if we reect on the situation without bu�er sharing, thiswould correspond to the other extreme with a maximum amount of bu�er space but a zero degreeof interleaving (as each stream has its own bu�er space). Thus, the amount of bu�er space andthe degree of interleaving are two opposing factors. The goal then is to �nd a suitable point inbetween the two extremes described above.3.2. Bu�er Allocation by SlotsLet us take a closer look at the situation described in Example 2. Rampant interleaving beginsimmediately after time 2T=4 + T=16, which is the time when every bu�er released (e.g., in Slots3, 5 and 6) must be reused immediately to contain data of the reading stream (e.g., Stream C).Thus, to avoid rampant interleaving, our approach is to design a scheme that satis�es the followingcondition.The reading stream must read its data to slots that are completely empty when thestream starts its reading period.Hereafter, we will refer to the above condition as Condition CES (\completely empty slots").Obviously, for any scheme to obey the given condition, it must have enough bu�er space at thebeginning of each reading period to contain all the data of the reading stream to be read in thatperiod. Then it is not di�cult to see that the total bu�er space needed is more than the \ideal"amount given by Equation (10). In the remainder of this section, we present a scheme called theCES Bu�er Sharing Scheme that permits bu�er savings asymptotically very close to the ideal, andthat satis�es the above condition.We begin the description of the CES scheme by re-visiting the concept of slots which we haveused rather informally in Example 2. Recall that there is some amount of data of the readingstream that will be consumed before the reading stream �nishes its reading in the cycle. Forexample, if we have 4 concurrent streams, each cycle is broken up into 4 reading periods, one foreach stream. Thus, the amount of data that are consumed in one reading period is p � T4 , wherep is the consumption rate of the streams, and T is the cycle length. This assumes that the diskutilization is 1 and that the total switching time among streams is small compared with the readingtimes. Section 5 will consider the situation when the disk utilization is less than 1. In general,for n concurrent streams, an amount of pTn of each stream is consumed in every reading period.Thus, we can divide the data to be consumed for a given stream in a cycle into portions of sizepTn . That is to say, the �rst portion of a stream is consumed during the reading period of thatstream, while the second and further portions are consumed during the reading periods of other

Schemes for Implementing Bu�er Sharing in Continuous-Media Systems 41Reading PeriodsSlot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 A1 B1 C1 A1 B1 C1 A1 B1 C1 A1 B1 C1 A1 B1 C11 A2 C2 B2 A2 C2 B2 A2 C22 B2 A2 C2 B2 A2 C2 B23 A3 A3 A3 A3 A3 A3 A3 A3 A3 A34 B3 B3 B3 B3 B3 B3 B3 B3 B3 B35 C3 C3 C3 C3 C3 C3 C3 C3 C3Table 1: Slot Allocations for 3 Streams Under the CES Schemeconcurrent streams. A slot is a block of bu�er space that can contain exactly one portion. Thus,the slot size is also pTn .Having introduced portions and slots, we now try to �nd the minimumnumber of slots necessaryto satisfy Condition CES. On one hand, during each reading period, n completely empty slots areneeded { one for consumption during the reading period, and n� 1 for the other reading periods.On the other hand, at the end of each reading period, n slots are released { one for each concurrentstream, including the reading stream. Thus, if n slots are added to the minimum amount of bu�erspace, then the stream currently reading data can have n completely free slots, thereby satisfyingCondition CES; and when the current reading period ends, the next reading stream will also haven completely free slots, because n slots have just been released.Table 1 illustrates the situation when there are 3 concurrent streams. The columns of thetable give the reading periods. For example, the �rst reading period is a period when Stream Ais reading. Since there are 3 streams, 3 periods correspond to one cycle. Each row of the tablespeci�es the portions that occupy the corresponding slot at the end of the reading periods. Forinstance, at the end of the �rst reading period, the second and third portions of A (i.e., A2 and A3)are in Slots 1 and 3 respectively. Notice that Slot 0 is actually empty at the end of each readingperiod, but the portion is included in Table 1 to indicate the stream that has just stopped readingin that period.Let us consider the 7th reading period in greater details, which is the steady-state version ofthe �rst reading period. Here Stream A has just �nished reading, and Slots 1, 3 and 5 are occupied.For the next reading period, we need 3 slots to contain the data of Stream B. And there are exactly3 empty slots available: Slot 0, 2 and 4. Thus, Condition CES is satis�ed. At the end of the 8threading period, the second and third portions of B are in Slots 2 and 4 respectively. Meantime, theportions A2 and C3 have just been consumed. Thus, the empty slots are 1, 5 and 0, just enoughfor the next reading period. Here a key observation is that the 7th reading period is identical tothe 13th period. The major implication is that by controlling the degree of interleaving, we cannow know precisely where to get a certain portion of a stream at any point in time. In other words,no costly bookkeeping is necessary.Table 2 in Section 3.4 later shows the slot allocations for 4 streams, and a table of this kindcan be produced for any given n. In Section 3.4, we will explain in greater details the meaning

42 Makaroff and Ng
0 5 10 15 20 25 30

40

50

60

70

80

90

100

Number of Streams (* - CES Buffer Sharing Scheme) (o - Minimum)

P
er

ce
nt

ag
e

of
 N

on
-S

ha
re

d

Fig. 2: Percentage Savings in Bu�er Space by the CES Schemeof the speci�c cyclic patterns, and will present a formula computing the slot address of a portion.This is one of the two major questions remain to be answered. The other remaining question ishow much space this scheme requires, which we will answer immediately below.3.3. Space RequirementAs shown above, the proposed scheme satis�es Condition CES, and successfully prevents ram-pant interleaving from occurring. However, as argued in Section 3.1, we must pay a price in doingso, namely by using more space than the \ideal" case. To analyze how much more space we need,we make two observations from our previous description. First, at the end of each reading period,the total space of the occupied slots is equal to the minimum amount of bu�er space needed. Forexample, for 3 streams, by Equation (10), the minimum amount of space needed is 3b=2, whereb = 2p � T=3, where p is the consumption rate and T is the cycle length. This amount is equal tothe space of 3 slots, each of size p �T=3. As shown in Table 1, the number of occupied slots at theend of each reading period is always 3.The second observation from the previous description is that the proposed scheme needs exactlyn empty slots to work, which is the minimum number of slots required by Condition CES. Thus,the space requirement of the proposed scheme is the minimumbu�er space obtained from Equation(10) plus n extra slots. Expressed in terms of b, the space requirement is given by:n2 b+ n � p � Tn = n2 b+ nn� 1b = n+ 1n� 1 � n2 b (13)as pT = (nn� 1)b from Section 2. Recall from Equation (10) that ideal bu�er sharing requires nb2bu�er space. Thus, the proposed scheme is only a factor n+ 1n� 1 o�. And the larger the value of n,the closer is the space requirement of the proposed scheme to the ideal minimum.

Schemes for Implementing Bu�er Sharing in Continuous-Media Systems 43Reading PeriodsSlot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 160 A1 B1 C1 D1 A1 B1 C1 D1 A1 B1 C1 D1 A1 B1 C1 D11 A2 C2 A2 C2 A2 C2 A2 C22 B2 D2 B2 D2 B2 D2 B2 D23 A3 A3 D3 D3 C3 C3 B3 B3 A3 A3 D34 B3 B3 A3 A3 D3 D3 C3 C3 B3 B35 C3 C3 B3 B3 A3 A3 D3 D3 C3 C36 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A47 B4 B4 B4 B4 B4 B4 B4 B4 B4 B4 B4 B48 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C49 D4 D4 D4 D4 D4 D4 D4 D4 D4 D4Table 2: Slot Allocations for 4 Streams Under the CES SchemeFigure 2 shows the bene�ts of bu�er sharing given by the proposed scheme. The x-axis isthe number of concurrent streams, and the y-axis is the percentage of the amount of bu�er spacewithout bu�er sharing (i.e., nb). The curve with asterisks corresponds to the proposed schemebased on Equation (13), and the 50% horizontal line corresponds to the ideal minimum based onEquation (10). The two curves become closer to each other as the number of streams grow. Inother words, as n grows, the percentage savings in bu�er space created by the proposed scheme isalmost 50%, which corresponds to an enormous amount of bu�er space in absolute terms.3.4. Slot AddressingIn the rest of this section, we address the issue of how to compute the location of a portionof a stream at any given time. To do so, we must understand more about the patterns exhibitedby the kind of slot allocation described in tables like Table 1. To better illustrate the patterns,we use Table 2 which describes the slot allocations for 4 streams. Note that the rows of the tableare divided into 4 groups (marked by horizontal lines) based on the portions of the streams. Morespeci�cally, only the �rst portions of the streams (e.g., A1, B1) appear in the �rst group (i.e.,Slot 0), and similarly only the second portions of the streams (e.g., A2, B2) appear in the secondgroup (i.e., Slots 1 and 2). Observe that for a given stream, its lower-numbered portions occupybu�er space for a smaller amount of time than its higher-numbered portions. More speci�cally,its ith portion stays in the bu�ers one more reading period than its (i-1)st portion. Thus, slotscontaining higher-numbered portions have a smaller chance to be reused, and thus we need moreslots for higher-numbered portions than for smaller-numbered ones. In the extreme case, the �rstportion of a stream is consumed at the end of the its reading period. Thus, we need only one slotfor all the �rst portions: A1, B1, etc.As for the second portions of the streams, observe that at the end of each reading period, therecan only be one second portion remaining in the bu�ers { namely the second portion of the streamthat has just �nished reading (e.g., A2 at the end of the �fth reading period). Recall that tosatisfy Condition CES, one more empty slot is needed to contain the second portion of the nextreading stream (e.g., Stream B). This explains why all the second portions require only two slots(e.g., Slots 1 and 2). It also explains the cyclic pattern exhibited by all the second portions of thestreams.

44 Makaroff and Ng4 Streams PortionsCycle No. A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D41 1 2 1 2 3 4 5 3 6 7 8 92 1 2 1 2 4 5 3 4 6 7 8 93 1 2 1 2 5 3 4 5 6 7 8 94 1 2 1 2 3 4 5 3 6 7 8 9Table 3: Slot Addresses for 4 Streams Under the CES SchemeThe situation for the third portions is very similar to that for the second portions. The keydi�erence is that the third portions stay one reading period longer than their corresponding secondportions. Consequently, in the steady state, there are always two third portions contained in thebu�ers (e.g., A3 and D3 at the end of the �fth reading period). Thus, 3 slots are needed to handleall the third portions. The portions use the three slots in an obvious, cyclic fashion.In general, for n concurrent streams, k slots are needed for the kth portion. A special caseoccurs for the last portion (i.e., k = n). Since n slots are allocated for the n last portions, eachof those portions has its own slot. For instance, as shown in Table 2, A4, B4, C4 and D4 haveexclusive uses of Slots 6, 7, 8 and 9 respectively. Incidentally, it is obvious from the above analysisthat the total number of slots needed for n streams is given by nXk=1k. Thus, the total space neededis given by n(n+ 1)2 � p � Tn , where p � Tn is the slot size. This amount, without surprise, is exactlythe same as the �gure computed by Equation (13).We are now in a position to develop a formula to compute the slot address that contains acertain portion of a stream at any given point in time. In particular, the formula is of the formf(stream, portion, cycle number) = slot address/number. As an example, Table 3 gives theslot numbers that should be computed by the formula for 4 streams. The columns of the tablecorrespond to the di�erent portions of the 4 streams. Since the �rst portions of all streams areconsumed within the same reading period they are read, they do not require any slot and are notincluded in the table. The rows of the table correspond to the cycles. Since each cycle consists of4 reading periods (i.e., given 4 streams), the �rst cycle corresponds to the �rst 4 reading periodsin Table 2, the second cycle the next 4 reading periods, and so on. Notice from Table 2 thatA2 occupies only Slot 1 regardless of which cycle, this corresponds to the column of 1's for A2in Table 3. Similarly, a previous discussion has explained the columns of 6's, 7's, 8's and 9's inTable 3 for A4, B4, C4 and D4 respectively.A slightly more interesting situation occurs for the third portions of the streams. Look atTable 2 again. For A3, it occupies Slot 3 in the �rst cycle, Slot 4 in the second, and Slot 5 inthe third. These correspond to the values given in Table 3 under the column for A3. Whilethe situations for B3 and C3 are very similar, the situation for D3 is slightly more complicated.Observe from Table 2 that D3 stays in bu�ers across cycle boundaries (e.g., the 4th and 5th readingperiods). Thus, strictly speaking, D3 has two di�erent slot addresses in the second cycle: Slot 3at the end of the 5th period, and Slot 4 at the end of the 8th period. However, to simplify thecomputation (i.e., to make slot address computation truly functional), we adopt the convention

Schemes for Implementing Bu�er Sharing in Continuous-Media Systems 45that a cycle number is only valid after the given stream has started its reading period in thatcycle. For instance, as far as Stream D is concerned, the second cycle only begins at the 8threading period. In other words, the slot address at the end of the 5th period corresponds to the�rst cycle. Thus, the column for D3 in Table 3 gives the (unique) value of 3 for the �rst cycle and4 for the second cycle.In the following, we give the procedure/formula that can be used to compute slot addresses.We assume that the concurrent streams are numbered 1, : : : ; n, and we use i to denote a certainstream. We use the symbol K to denote the portion of a stream. Thus, the portion at time t of astream is given by K = &t mod T(Tn) ' (14)where T is the length of the cycle. We use CN to denote the cycle number which is given byCN = 1 + (t div T) (15)Procedure ComputeSlotAddrInput K;CN; i, and n.1. If K = 1, output 0 and halt.2. If K = 2:(a) If n is even, output the value of (i + 1) mod 2 + 1, and halt.(b) Otherwise, output the value of (i +CN) mod 2 + 1, and halt.3. If K = n, output the value of n(n� 1)2 + ((i� 1) mod n) and halt.4. Otherwise (i.e., 2 < K < n), output the value of K(K � 1)2 +[(n�K)(CN�1)+i�1] mod K.2Example 3 Suppose we have 4 concurrent streams (i.e., n = 4). Suppose we want to �nd theslot address of the third portion of Stream D in the second cycle. From Table 3, Slot 4 shouldbe the answer. Now for Procedure ComputeSlotAddr, the values of K;CN and i are 3, 2 and 4respectively. In Step (4), the expression enumerated is 3(3� 2)2 + [(4� 3)(2� 1) + 4 � 1] mod 3,which is equal to 4. Similarly, if we are interested in the fourth portion of D, the answer computedis 9, the same as the value given in Table 3. 2Recall that all �rst portions of the streams are contained in Slot 0. Step (1) of ProcedureComputeSlotAddr gives exactly this value. As for the second portions, if there are an even numberof concurrent streams (e.g., see Table 2), then all odd-numbered streams (e.g., Stream A) useSlot 1, and all even-numbered streams (e.g., Stream B) use Slot 2. If there are an odd numberof streams, then the second portion of every stream uses Slot 1 and 2, depending on the cyclenumber. This explains Step (2) of Procedure ComputeSlotAddr. As for the last portions of thestreams, recall that each stream has its own slot. This gives rise to the expression ((i� 1) mod n)in Step (3). The expression n(n� 1)2 corresponds to the total number of slots required to hold allbut the last portions of all the streams (i.e., n�1Xj=1 j).

46 Makaroff and NgTo understand the computation carried out in Step (4) for 2 < K < n, it is important to notethat during each successive cycle, the Kth portion of a given stream must be placed in the nextavailable slot within the group of slots allocated for all the Kth portions. From one cycle to thenext, there are (n � K) slots used up by the streams that did not �t into the �rst allocation ofthose slots. Thus, in the the next cycle, stream i must be o�set by an additional (n � K) slots.If this causes a wrap-around, the calculation must be performed modulo K, to cycle back to theoriginal beginning of that group of slots. As an example, consider n = 4 and K = 3. As shownin Table 3, each successive cycle moves the portion forward by 4 - 3 = 1 slot. The wrap-around ishandled by the modulo 3 operation that puts each partition into the correct slot.Note that the output obtained from Procedure ComputeSlotAddr only gives the slot number.But once the slot number is obtained, the exact address of a certain sub-portion of a stream can beeasily computed. Also note that some of the expressions computed in Procedure ComputeSlotAddrmay look a bit messy. But in fact, they can enumerated in constant time.To summarize, in this section, we have �rst argued that using the minimum amount of bu�erspace in bu�er sharing would introduce rampant interleaving which is too costly to keep trackof. In response, we have proposed the CES Bu�er Sharing scheme that is based on portions andslots. The scheme, in satisfying Condition CES, only allows interleaving to the level of slots. Akey bene�t then is that to locate any part of a stream at any given point in time, slot addressescan be computed in constant time, and no costly bookkeeping is required. Furthermore, we haveshown that while the scheme needs extra bu�er space, it gives bu�er savings asymptotically equalto the ideal case described in Equations (10) and (12).4. FURTHER IMPROVEMENT: A HYBRID SCHEMEThe curves in Figure 2 show that when the number of concurrent streams is small, the CESBu�er Sharing scheme does not give too much savings in bu�er space. In fact, when there are only3 streams, there is no savings at all (cf: 6 slots needed in Table 1). And for 4 streams, the savingsis less than 20%, far from the 50% predicted by Equation (12). In this section, we show how thissituation can be ameliorated by a more careful reuse of bu�ers.4.1. The NCES Bu�er Sharing SchemeLet us consider the special case when there are only two streams. We can implement thefollowing scheme that requires the minimumamount of bu�ers. The key is to interleave the readinglocations and choose not to bu�er the data which are both read and consumed in the same readingperiod. More speci�cally, Stream A can �ll b bu�ers by reading its data in 2 parts { with everyother read going directly to the process that consumes the data (e.g., display hardware), and theremaining reads being stored in the bu�ers. Data in the stored bu�ers are displayed after StreamA has �nished its reading period. Now when Stream B reads data, it follows the same strategy,consuming one bu�er and storing one bu�er in the same slot as is freed by Stream A during thattime. Note that for this scheme to work, the coordination between reading and consuming mustbe very precise, and no mismatches in timing can be tolerated. Also note that this scheme doesnot satisfy Condition CES in that not every slot used by the reading streams is completely emptyat the beginning of the reading period. Hereafter, we refer to this scheme as the NCES Bu�erSharing scheme.

Schemes for Implementing Bu�er Sharing in Continuous-Media Systems 47Reading PeriodsSlot 1 2 3 4 5 6 7 8 9 10 11 121 A2 C2 B2 A2 C2 B22 B2 A2 C2 B2 A2 C23 A3 A3 C3 C3 B3 B3 A3 A3 C3 C3 B3 B34 B3 B3 A3 A3 C3 C3 B3 B3 A3 A3 C3Table 4: Slot Allocations for 3 Streams Under the NCES SchemeThe NCES scheme can be extended to situations with larger number of concurrent streams.Tables 4 show the slot allocations for 3 streams. As compared with Table 1, Slot 0 and 5 areeliminated. Slot 0 is not needed because data are sent directly to the process that consumes thedata. While Tables 1 and 4 do not di�er in the �rst two reading periods (modulo Slot 0), thedi�erences between the two tables start to show in the third reading period. In the situationdescribed in Table 1, the scheme obeys Condition CES, and thus C3 is read into Slot 5 which iscompletely empty at the beginning of the third period. In the situation described here, PortionC1 is sent directly to the consuming process, and C2 �lls up Slot 1. By the time Slot 1 is �lled, aconsiderable part of A3 has already been consumed (i.e., 2/3 to be exact). In other words, Slot 3is almost empty. Thus, C3 is read into Slot 3. Even though the rate at which C3 is read into Slot3 is three times as fast as the rate A3 relinquishes bu�ers in Slot 3, it is not di�cult to see thatthe data of C3 will never catch up with the data of A3 in Slot 3. In fact, right after the last frameof A3 has been consumed, the space just freed is immediately �lled with the last frame of C3.Similarly, in the next reading period (i.e., the 4th period), A2 �lls up Slot 2, and A3 occupies Slot4 just as B3 frees up space in that slot. Again, contrast this with the situation shown in Table 1.For the NCES scheme in general, it is easy to see that we can set up the kind of slot addressestables like Table 3, and modify Procedure ComputeSlotAddr slightly to compute the slot addressesof the portions of the n streams. The only change needed is the case for the nth portions of thestreams. This is because there are now only (n� 1) slots to be shared among all the nth portionsof the streams. We omit the details here.4.2. A Hybrid SchemeFrom the above analysis, it is quite obvious that the NCES scheme requires 2 fewer slots thanthe CES scheme proposed in the previous section. As shown in Section 3.3, the CES schemeneeds n more slots than the minimum amount of bu�er space. Thus, the NCES scheme requires(n� 2) extra slots when compared with the minimum amount. Slot 0 is not needed because datais displayed directly to the output device, while one slot in the last group is not needed, cince the�nal slot read into was not empty at the beginning of the cycle. Total bu�er requirements become:n2 b+ (n � 2) � p � Tn = n2 b+ n� 2n� 1b = (n� 2n� 1 + n2) b (16)The curve with circles in Figure 3 shows the bene�ts of bu�er sharing by the NCES scheme.When n is very small, the NCES scheme gives a better percentage savings in bu�er space than theCES scheme. But when n increases, the di�erence between the two schemes becomes negligible.Compared with the CES scheme, the NCES scheme has some shortcomings. First, as discussedabove, the NCES scheme requires very precise coordination between data reading and consumption.

48 Makaroff and Ng
0 5 10 15 20 25 30

40

50

60

70

80

90

100

Number of Streams * - CES Buffer Sharing, o - NCES Buffer Sharing, x - Minimum

P
er

ce
nt

ag
e

of
 N

on
-S

ha
re

d

Fig. 3: Percentage Savings in Bu�er Space by the CES and NCES SchemesIt cannot handle any variation in e�ective disk access rate. In contrast, by using slightly morebu�er space, the CES scheme is more resistant to unexpected changes in the hardware conditions.Moreover, recall that the NCES scheme requires reading data in two parts. This necessarilycomplicates the processing that is needed. Therefore, in light of these complications caused by theNCES scheme, we believe that it is not worthwhile to adopt the NCES scheme for all values ofn. Instead, we propose to use the NCES scheme only when the number of concurrent streams issmall, say n less than 10, but to use the CES scheme for larger values of n.5. VARIATIONS OF DISK UTILIZATIONAll the analyses and discussions presented in the last two sections assume that the disk utiliza-tion � is equal to 1. That is, all disk activities are dedicated to the concurrent streams, and thereis no idle period within a cycle. However, there are situations in which it would be necessary tooperate a disk at a utilization level strictly below 1. In those situations, there would be an idleperiod within each cycle. As shown in [6], the idle period may enable the prefetching of data forstreams that are in the waiting queue, and make it easier to increase the number of concurrentstreams. In this section, we will examine how the presence of idle periods a�ect the ways that wecan implement bu�er sharing.5.1. The E�ect of Idle PeriodsThere are at least two di�erent models of idle periods, depending on how the idle time isdistributed within a cycle. Consider for example that there are 3 concurrent streams involved in acycle. Suppose that the cycle length is 3 seconds, 0.3 seconds of which the disk is idle. One wayto operate in this situation is to make the disk read for 0.9 seconds for the �rst stream, pause for0.1 second, read for 0.9 seconds for the second stream, and so on. Another way is to make the diskread 0.9 seconds for each stream without pause, and leave all 0.3 seconds of idle time at the endof each cycle. We argue that the latter model is generally more useful than the former because bycombining all small idle periods (e.g., 0.1 seconds each) into one large period (e.g., 0.3 seconds),operations such as prefetching can be supported more easily [6]. Thus, in this section, we will baseour analysis on the latter model.

Schemes for Implementing Bu�er Sharing in Continuous-Media Systems 49A natural question to ask at this point is what di�erences an idle period at the end of a cyclewould make. A key di�erence is that when � = 1, the �rst stream starts to read (indicating thebeginning of the next cycle) immediately after the last stream has just �nished reading. However,with the presence of the idle period at the end of a cycle, the �rst stream must wait a bit longerbefore it can read again. In fact, this comment applies to all streams in that during the idle period,all streams are being consumed, while no stream is reading. The implication is that more bu�erspace must be allocated to each stream so that it can survive a longer gap between its successivereading periods.5.2. Non-uniform Portion SizesAnother complication caused by � < 1 is that the portion or slot size may need to be changed.Recall that when � = 1, a stream reads for Tn seconds, where T is the length of the cycle and nis the number of concurrent streams. If � < 1, and T is still the cycle length, then to accountfor the idle period, the reading period of each stream must be less than Tn . Therefore, if portionsare still chosen to be Tn seconds worth of data, as discussed in earlier sections, Slot 0 will not beempty after Stream A (i.e., the �rst stream) has just �nished reading. This will complicate theconsumption of Portion A2 because now part of A2 is contained in Slot 0. This motivates the needto change the portion size to an appropriate level. Since there are n reading periods within a totaltime of �T , the portions must be changed to the size of � Tn seconds worth of data, or p� � Tn bytes,where p is the consumption rate of the streams.The above portion size would work for all n reading periods. In particular, if the same numberof slots are used as for the case when � = 1, and all slots are of the size p � � Tn , enough datawould be stored to last until the last stream has just �nished reading. But there would not be anybu�er space for the data to be consumed during the idle time. This motivates the need to havenon-uniform portion sizes. More speci�cally, the portions consumed at the end of a cycle must beenlarged. Consider for example the situation for 4 streams. As shown in Table 2, the portions thatare consumed between the beginning of the last reading period and the beginning of the next cycleare A4, B3, C2 and D1. Each of these portions must be enlarged by an amount of (1��)T secondsworth of data. Since these enlarged portions share slots with other \normal-sized" portions (e.g.,D1 shares Slot 0 with A1, B1 and C1), it would not be economical to simply increase the sizesof the slots that contain these portions. The best way is to make all slots the same size as thenormal-sized portions (i.e., p � T�n bytes), but have n extra slots of size p � (1� �)T to contain theextra data corresponding to the n enlarged portions. Thus, the total space required is given by:n(n+ 1)�2 � bn� 1 + n � p � T � (1� �) (17)The �rst factor corresponds to the normal-sized portions, and the second factor corresponds tothe n enlarged portions. By substituting pT = (nn � 1)b (see Section 2.2), the second factor canbe rewritten in terms of b as (nn � 1) b � n � (1 � �). Figure 4 plots the bu�er space requirementsgiven by the above formula as percentages of nb (i.e., the total amount of bu�er space neededwithout bu�er sharing) when � = 0:9. The curve with circles represents the minimumpredicted byEquation(12) for the same disk utilization level. Similarly, Figure 5 shows the comparison when� = 0:75. In both cases, the proposed adjustment to the CES Bu�er Sharing scheme gives savingsin bu�er space asymptotically close to the ideal minimum.

50 Makaroff and Ng
0 5 10 15 20 25 30

50

60

70

80

90

100

110

Number of Streams (* - CES Buffer Sharing Scheme, o - Minimum)

P
er

ce
nt

 o
f N

on
-S

ha
re

d

Fig. 4: Percentage Savings in Bu�er Space by the CES Scheme: 90% Utilization
0 5 10 15 20 25 30

60

70

80

90

100

110

120

Number of Streams (* - CES Buffer Sharing Scheme, o - Minimum)

P
er

ce
nt

ag
e

of
 N

on
-S

ha
re

d

Fig. 5: Percentage Savings in Bu�er Space by the CES Scheme: 75% Utilization

Schemes for Implementing Bu�er Sharing in Continuous-Media Systems 51The slot address of a portion can be computed in exactly the same way as shown in Section 3.4with one modi�cation. In calculating the value of K, the stream portion parameter, special atten-tion must be made to �nd out if K corresponds to an enlarged portion. If this is the case, the slotthat contains the extra amount of p � (1� �)T must also be accessed, together with the slot whoseaddress is returned by Procedure ComputeSlotAddr. We omit the details here. Furthermore, it isnot di�cult to see that the current arrangement can be slightly enhanced, particularly when n issmall, by the same approach described in Section 4. Again we omit the details here.In sum, in this section, we have studied how the presence of an idle period within a cycle, thatis when � < 1, can a�ect the ways bu�er sharing can be implemented. We have shown that byusing slots of di�erent sizes, the CES scheme introduced in Sections 3 can now handle situationswhen � < 1. Again the adjusted scheme permits savings in bu�er space very close to the minimum.6. THE CES SCHEME DURING TRANSITION PERIODS6.1. Transition PeriodsWhenever the number of concurrent streams changes (typically due to a completion or termi-nation of a stream, or the admission of a new stream), the system enters into a transition period.More speci�cally, let S1; : : : ; Sn be the concurrent streams, and their cycle be denoted by Cn. Nowsuppose that a new stream Sn+1 has been admitted, and that the new cycle will be Cn+1. Thetransition period is the period in between the old cycle Cn and the new cycle Cn+1. The transitionperiod may manifest itself in at least two ways.� The cycles Cn and Cn+1 may have di�erent lengths. If Tn and Tn+1 are the lengths of Cn andCn+1 respectively, then Tn+1 is greater than Tn. In this case, the transition period involvesextending the cycle length from Tn to Tn+1. As noted in [6, 7], a natural way is to increasethe cycle length in small increments, until the cycle length reaches Tn+1. This process maytake seconds to complete. In general, the time taken depends mainly on the exact values ofTn and Tn+1 and the disk utilization �.� The cycles Cn and Cn+1 may also be di�erent in their bu�er allocations and addressing.For example, if the number of concurrent streams increases from 3 to 4, then with the CESscheme, a transition needs to take place from the slot allocations described in Table 1 tothe allocations shown in Table 2. As will be argued later in Section 6.2, this transition canbe very complicated. Actually, this transition would be much simpler if we assume that thesystem always has enough space to accommodate two di�erent sets of slots simultaneously.For example, if the 10 slots for 4 streams can be created in a bu�er region di�erent fromthe region that contains the 6 slots for 3 streams, the transition could be instantaneous.However, this assumption is obviously too strong. In the rest of this section, we consider thesituation when this assumption may not be satis�ed, and slot changes must be done in place.Before we begin to analyze how the CES scheme can be adjusted to deal with transition periods,we point out that as noted earlier, a transition period may be caused by a decrease in the numberof concurrent streams. Since typically making a transition from Cn+1 to Cn is easier to deal withthan the reverse transition, our analysis below focuses exclusively on the case when the number ofconcurrent streams increases.6.2. Complications Caused by Changing Cycle LengthAs observed above, a transition from the cycle Cn to Cn+1 may require a longer cycle length(i.e., Tn+1 > Tn). Thus, each stream must read more data in its reading period to guaranteecontinuous consumption during a longer cycle. From the point of view of bu�er allocation by slots,there are two possible approaches to achieve this.

52 Makaroff and NgThe �rst approach is to change the slot sizes. However, this entails changing the slot boundariesbased on the current cycle length. Furthermore, recall from the above discussion that in most casesextending from Tn to Tn+1 must be done in small increments. This implies that if changing slotsize is our approach, a series of changes to the slot boundaries would be required. However, it iseasy to see that changing slot boundaries can easily corrupt the portions that are contained in theoriginal slots. And a series of slot boundary changes would be extremely messy and complicatedto maintain, and would likely require a larger amount of bu�er space.The aforementioned complications caused by changing slots sizes motivate the second approach.While keeping the slot sizes the same as before, the second approach to allow streams to readmore data is to increase the number of slots allocated to the streams. By keeping the slot sizesunchanged, this approach avoids the tough problem of changing slot boundaries encountered bythe �rst approach. However, it has its own problems to deal with. The major one is that as thecycle length increases, the size of a portion needs to be changed, so much so that the portion size isno longer identical to the slot size. Thus, a portion may be contained in more than one slot, and aslot may contain more than one portion (unless a larger amount of bu�er space can be tolerated).In either case, slot allocation and addressing become complicated, and the CES scheme no longerworks.6.3. Constant Cycle LengthThe above analysis suggests that a change in cycle length would seriously complicate bu�erallocation and addressing during a transition period. The obvious alternative is then to keep thecycle length constant. In this way, there is no need to change slot boundaries, portion and slotsizes when the transition from Cn to Cn+1 is made. The crucial question, however, is whetherit is always possible to keep the cycle length unchanged when the number of concurrent streamschanges.To answer this question, we recall from Section 2 that for a given collection of concurrentstreams, S1; : : : ; Sn, the cycle length T is bounded below by Equation (6) and above by Equa-tion (9). If the range [s �RR � � � P ; Bmax � P� �Pni=1 Pi � (R� Pi) + s�] de�ned by the two equations isempty, then it is not possible to support the collection of streams without violating the continuityrequirements. Otherwise, any value within the range can be picked as the value of the cycle length.Let us take a closer look at the above range, and denote the range for n streams by �n. Naturally,when n increases to (n+1), the range becomes narrower. (Eventually n reaches the value when �nbecomes empty.) However, it is important to observe that when all the streams have an identicalconsumption rate, which is the case considered in this paper, the upper bound of �n does notchange. In particular, the expression Bmax � P� �Pni=1 pi � (R � pi)+ s� is equal to Bmax � n � pi� � pi �Pni=1 (R� pi)+s� , because P can be replaced by n � pi. As nXi=1 (R� pi) = n � (R� pi), the latter expression canbe simpli�ed to become Bmax� � (R � pi) + s� , which is independent of n. This implies that the onlyreason why �n+1 is narrower than �n is that the lower bound s �RR � � � P grows as n increases. yyThis in turn is caused by the increases in s and P as n grows.

Schemes for Implementing Bu�er Sharing in Continuous-Media Systems 53Reading PeriodsSlot 3 idle 4 5 6 7 80 C1 C1 A1 B1 C1 D1 A11 C2 C2 B2 D22 A2 C2 A23 A3 A3 D3 D34 B3 B3 B3 B3 A35 C3 C3 C3 C3 C36 (D1) A4 A4 A4 A47 D2 B4 B4 B48 D3 D3 C4 C4 C49 D4 D4 D4 D4 D4Table 5: Transition Period: Slot Allocations from 3 to 4 StreamsWe can therefore conclude that �n+1 � �n.From the point of view of dealing with the transition periods, the relationship �n+1 � �n isvery desirable. This is because for all the di�erent numbers of concurrent streams that can besupported by the system, we can pick a cycle length T that need not be changed as n changes.In particular, for any given system, we can �nd the maximum number nmax of streams that canbe supported. nmax is equal to nempty � 1, where nempty is the least integer that would cause thelower bound s �RR � � � P to be strictly greater than the upper bound Bmax� � (R� Pi) + s� . Then wecan �nd the range �nmax , and pick any value within the range to be the value of T . And we canbe assured that T is contained in the range �n for all 1 � n � nmax.If the number of concurrent streams increases from n to (n + 1), and yet the cycle lengthremains unchanged, a natural question to ask is which aspect of the system needs to be changed toaccommodate an extra stream. The answer is the disk utilization �. In particular, for n streams,let the disk utilization be �n, and the idle time be In. As the number of streams increases by one,the disk accommodates the extra stream Sn+1 by shortening its idle time to In+1, and using theamount (In � In+1) of time to read for Sn+1. Thus, the disk utilization increases from �n to �n+1.It is not di�cult to verify that as long as (n + 1) � nmax, �n+1 is always less than or equal to 1,indicating that the disk is in a feasible state.We are now in a position to complete our description on how the CES scheme works during atransition period. When the number of streams increases from n to (n+1), (n+1) extra slots areallocated. As described in Section 5, n of these (n+1) slots are of the normal size, and one of theseis enlarged with the amount to be consumed in the idle period. The �rst time when Sn+1 readsfrom disk, all its portions are stored in these newly allocated slots. But as other streams begin toread, these slots will be released to contain the right portions from the other reading streams.Table 5 gives an example of how the slot allocations change during a transition period from3 to 4 streams. The �rst reading period in the table is the 3rd reading period shown in Table 1.As discussed before, the �rst time Stream D reads data is in the idle period of the original cycle.

54 Makaroff and NgThus, to better illustrate the situation during this idle period, we add the column labelled \idle"in Table 5. The �rst six slots in this column are exactly the same as those in the previous column.This is to indicate that as far as Streams A, B and C are concerned, nothing needs to be changed.But the major event taking place during this idle period is the reading of the portions of D. D1,D2, D3 and D4 are read into the newly allocated slots: Slot 6 to 9. The entry \(D1)" in thiscolumn denotes that D1 was read into Slot 6 at the beginning of the idle period, but has beenconsumed by the end of the idle period.Next is the reading period for Stream A which reads its portions into Slot 0, 2, 3 and 6, whichare completely empty at the beginning of this reading period. Meantime, the portions B3, C2and D2 have been consumed. This gives rise to the next column, labelled \4". The reading of theportions and the �lling up of the slots continue in exactly the same way as described in Section 3.2.The end of the second reading period of D, denoted by the column labelled \7", marks the end ofthe transition period. Thus, it is no surprise to �nd that the last column in Table 5, labelled \8",is basically equivalent to the column in Table 2 that represents the 5th reading period.Note that during the transition period, special care must be taken to accommodate the changesin the enlarged portions. More speci�cally, when there are only 3 streams, the enlarged portionsare A3, B2 and C1. But with 4 streams, the enlarged portions become A4, B3, C2 and D1. Thus,in �lling up the slots, the system must act appropriately for these new enlarged portions. We omitthe details here.In sum, in this section, we have analyzed how the presence of transition periods can a�ect theimplementation of bu�er sharing. We have argued that if the cycle length is allowed to changeas the number of concurrent streams changes, the CES scheme would break down. Fortunately,we have shown that it is possible to keep the cycle length constant, while allowing the number ofconcurrent streams to vary. In this case, the CES scheme works just �ne.7. CONCLUSIONSIn this paper, we have studied how to implement bu�er sharing in continuous-media systems.We have proposed the CES Bu�er Sharing Scheme which is based on slots and portions. The schemeonly allows interleaving of streams to the level of slots, and as such, avoids rampant interleavingwhich is extremely costly to maintain. In particular, under the CES scheme, the slot addressof any portion of a stream at any given instant can be computed in constant time, requiring nobookkeeping at all. Furthermore, regardless of the level of disk utilization, the scheme gives bu�ersavings asymptotically very close to the ideal minimum, which may be as high as 50%. Last butnot least, we have also demonstrated that CES can work e�ectively during transition periods.We have also proposed and studied the NCES Bu�er Sharing Scheme which tries to furtheroptimize the CES scheme by a more careful reuse of slots. When n, the number of concurrentstreams, is small, the NCES scheme gives quite signi�cantly higher savings than the CES scheme.However, we only recommend using the NCES scheme when n is small, partly because this di�er-ence in savings gradually becomes negligible as n grows, and partly because the NCES scheme isharder to implement than CES.

Schemes for Implementing Bu�er Sharing in Continuous-Media Systems 55In ongoing work, we will integrate the schemes into a distributed continuous-media �le systemwhich is under development at the University of British Columbia [5]. We will also study howto extend the CES and NCES schemes to handle concurrent streams with di�erent consumptionrates: p1; : : : ; pn. One of the key issues is the impact of variations in consumption rates on slotand portion sizes. While the most general situation may be very di�cult for CES to deal with, webelieve that if for all 1 � i � n, pi has to be a multiple of some base rate, then it is quite likelythat by some form of splitting and merging slots, CES scheme may work just as well.Acknowledgements | Research partially sponsored by NSERC Grants OGP0138055 and STR0134419, IRIS-2Grants HMI-5 and IC-5, and CITR Grant on \Distributed Continuous-Media File Systems."REFERENCES[1] D. Anderson, Y. Osawa, and R. Govindan. A File System for Continuous Media. ACM Trans. on ComputerSystems, 10(4) (1992).[2] M. Chen, D. Kandlur, and P. Yu. Optimization of the Grouped Sweeping Scheduling with HeterogeneousMultimedia Streams. In Proc. ACM-Multimedia, pp. 235{242 (1993).[3] J. Gemmell. Multimedia Network File Servers: Multi-channel Delay Sensitive Data Retrieval. In Proc. ACM-Multimedia, pp. 243{250 (1993).[4] J. Gemmell and S. Christodoulakis. Principles of Delay-SensitiveMultimedia Data Storage and Retrieval. ACMTrans. on Information Systems, 10(1):51{90 (1992).[5] G. Neufeld, N. Hutchinson, R. Ng, and M. Ito. A Distributed Continuous-Media File System (1993).[6] R. Ng and J. Yang. Maximizing Bu�er and Disk Utilizations for News On-Demand. In Proc. VLDB 94 (1994).[7] P. Venkat Rangan and H. Vin. Designing File Systems for Digital Video and Audio. In Proc. ACM Symposiumon Operating Systems Principles, pp. 69{79 (1991).[8] A. Reddy and J. Wyllie. Disk Scheduling in a Multimedia I/O System. In Proc. ACM-Multimedia, pp. 225{233(1993).[9] L. Rowe and B. Smith. A Continuous Media Player. In Proc. 3rd Intl. Workshop on Network and OS Supportfor Digital Audio and Video (1992).[10] K. Tindell and A. Burns. Scheduling Hard Real-Time Multimedia Disk Tra�c. Technical report, Universityof York, England (1993).[11] F. A. Tobagi, J. Pang, R. Baird, and M. Gang. Streaming Raid - A Disk Array Management System for VideoFiles. In Proc. ACM-Multimedia, pp. 393{400 (1993).[12] J. Yang. Maximizing Bu�er and Disk Utilizations for News On-Demand. Master's thesis, UBC (1994).[13] C. Yu, W. Sun, D. Bitton, Q. Yang, and R. Bruno. E�cient Placement of Audio Data on Optical Disks forReal-Time Applications. Communications of ACM, 32(7):862{871 (1989).

