
Teaching Requirements Engineering
to an Unsuspecting Audience

David Callele, Dwight Makaroff
Department of Computer Science

University of Saskatchewan
Saskatoon, Saskatchewan, Canada S7N 5C9

callele,makaroff@cs.usask.ca

ABSTRACT
One of a Software Engineer’s most important skills is the
ability to define the scope of the problem and ascertain the
requirements from general and vague specifications. Teach-
ing this skill is known to be difficult and is made more com-
plex because students are conditioned to expect that this
portion of programming projects is already complete. This
paper reports on experience in teaching a second year com-
puter science class designed to give an appreciation for the
need for requirements engineering and to provide students
an opportunity to engage in the activity. We found that
the student response was bimodal, and while some students
met the challenge, more felt betrayed by the experience. We
conclude that students gained the requisite knowledge using
this approach but that a less traumatic approach may pro-
duce better results.

Categories and Subject Descriptors
K.3.2 [Computing Milieux]: Computers and Education—
Computer and Information Science Education

Keywords
Software engineering, requirements engineering, pedagogy

1. INTRODUCTION
The present work describes our experiences with intro-

ducing Requirements Engineering (RE) principles and tech-
niques to students who were unaware that developing famil-
iarity with the fundamentals of RE was a significant (yet
unstated) learning objective for their course. CMPT 214
Programming Principles and Practices is a new course in
our curriculum, presented in the first term of second year.
The course is a requirement for all majors in Computer Sci-
ence, has an enrollment of approximately 100 students, and
is described in the calendar as follows.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’06,March 1–5, 2006, Houston, Texas, USA.
Copyright 2006 ACM 1-59593-259-3/06/0003 ...$5.00.

The purpose of this course is to broaden stu-
dents’ view of software development. Topics in-
clude introductions to imperative programming
languages and scripting languages, programming
practices, and tools and techniques for program
development and maintenance.

Implicit within programming practices is an introduction
to RE. The course is presented in a combined lecture and
mandatory laboratory format (3 hours and 1.5 hours per
week respectively, for 13 weeks). Formal tutorials are not
provided but significant support is provided by the faculty,
lab instructors, and other students via a discussion board.

To restate the calendar description, the primary objective
of the course is to familiarize the students with approaches
to problem solving, development methodologies, and devel-
opment tools to enable the students to choose “the right tool
for the right job”. In other words, to be able to understand
what they are asked to achieve, and then to solve the task by
applying the appropriate development techniques and tools.
As a side effect, we expect students to learn skills that lessen
the syntactic and process-oriented overhead associated with
completing their assignments.

In the remainder of this paper, we review the literature
then present a summary of our RE learning objectives for
this course. We describe our method for introducing RE
in the context of the first major assignment for the class
and the student reactions to the technique. We describe our
techniques for reinforcement throughout the term, including
our capstone scenario, and the results of our efforts as shown
by student response. We conclude with a summary of our
findings and directions for future work.

2. BACKGROUND
Despite its importance, there is little published work on

teaching requirements engineering. Curricula seem to be
based around perceived needs for practitioners, often in-
fluenced by the personal experience of the course designer
and/or the choice of textbook for the course.

Macaulay and Mylopolous [2] examined issues in RE edu-
cation via a roundtable discussion with other academics at
RE ’95. At that time, RE education was typically a topic for
final-year undergraduates or graduate students. Despite the
relatively mature student body, they concluded that teach-
ing RE was inherently challenging:

Requirements are variously described by prac-
titioners as ‘intangible’, ‘moving targets’, ‘inher-



ently inconsistent’, ‘ever-changing’ and a host of
other adjectives which fill the average university
lecturer with horror... In contrast to this, univer-
sity courses normally have a prescribed syllabus
and strive to provide students with a solid foun-
dation of knowledge, which will guide practice
and will direct future learning.

The educational dilemma in teaching Require-
ments Engineering is to provide the student with
this solid foundation in the subject matter while
at the same time exposing the student to the in-
herent uncertainties, inconsistencies and idiosyn-
crasies associated with real requirements prob-
lems.

Despite these challenges, we have seen a steady migra-
tion of RE education into ever-earlier introduction to the
students. Tuya and Garcia-Fanjul [5] describe teaching re-
quirements analysis to 4th and 5th year students in a sim-
ulated production environment. Roscà [4] describes a RE
core course in their SE program, seemingly at the 3rd year
level. Zowghi and Paryani [6] describe a 2nd year course
while our course is also offered in 2nd year.

In all reported cases [2, 5, 4, 6, 3], the literature describes
courses with requirements engineering as the primary topic.
Role-playing is a universally applied pedagogical tool, with
students cast in all roles due to resource constraints. How-
ever, requirements engineering is not the primary topic of
our course. Therefore, only basic concepts are introduced
and any role-playing is performed in conjunction with a fac-
ulty member or tutorial leader.

There is solid justification for introducing core RE con-
cepts as early as possible (either explicitly, via formal in-
struction in RE, or implicitly, as we have done here), despite
the complexity of the material. If the RE process does not
accurately capture the target for a development project, it
does not matter how well the rest of the development pro-
cess is executed – the output is wrong. The earlier that this
lesson is learned by the students, and the more often that
it is reinforced, the better. In an absolute sense, success in
software development is not measured by how well a process
was followed but by the suitability and quality of the result.

3. OBJECTIVES AND ASSESSMENT
The introduction of this course was motivated, in part, by

the authors’ observations that the effort exerted by upper-
year students when completing their computer science as-
signments was significantly greater than that expected when
the assignments were set. Further investigation showed stu-
dents were weaker than expected at identifying what they
were supposed to actually deliver for an assignment. As a
result, students expended considerable effort on exploratory
design and implementation in an effort to identify the re-
quirements. These exploratory efforts increased the time
spent on the assignment by approximately 100%.

After considerable review and discussion, the RE-related
learning objectives for this course were defined as follows:

1. Recognizing the Semantic Gap: Never assume that you
know what something means; take a critical approach
to all documentation.

2. Critical Thinking: You can no longer accept that the
assignments, as presented, are perfectly stated and

without ambiguities or inconsistencies. You must be-
gin to take responsibility for ensuring that you under-
stand what you are expected to achieve.

3. Requirements Elicitation: You are expected to ask
questions about the assignment statement.

4. Requirements Validation: The validity of everything
in the assignment statement must be confirmed and
the assignment statement updated as necessary.

5. Recognizing Emergent Requirements: Try to deter-
mine what, if anything, is missing from the assignment
statement. In particular, learn to recognize assump-
tions and implied information.

We follow a relatively strict constructivist pedagogy [1] in
the class. Concepts are introduced ‘in the small’ via ex-
amples in the lectures. The concepts are then reinforced in
mandatory laboratory sessions before the students are asked
to apply them ‘in the large’ as part of a major assignment.
Constant application of principles to scenarios and active
discussion makes the classroom a lively place.

Student performance was evaluated via examinations and
assignments. Examinations counted for 60% of the final
grade, with a lab exam accounting for 13% of the grade. The
remaining 27% of the grade was for lab assignments (12%)
and major assignments (15%). Twelve mandatory laborato-
ries provided straightforward practice in the use of software
tools for productivity and the fundamental components of
imperative programming and scripting. Each lab posed a
simple task and the lab instructors (a graduate student and a
senior undergraduate student) guided the students through
a review of the required tools and concepts. These concepts
were introduced earlier in the classroom. Student deliver-
ables comprised software artifacts and test results, including
a revision history of their work. Major assignments formed a
significant evaluation component. Students had about four
weeks to complete a substantial analysis, design, implemen-
tation, and testing effort. Examinations were open-book and
required competence in simple synthesis of course concepts
and programming fundamentals.

Given that this is a 2nd year course, we are only able to
provide a gentle introduction to these learning objectives.
Our techniques are presented later in the paper, but first we
present a review of the role of the customer when teaching
requirements engineering.

4. THE ROLE OF CUSTOMER
Requirements engineering generally assumes the presence

of a customer (or stakeholder(s)). Polajnar and Polajnar [3]
state that this customer can be ‘real’ (a stakeholder with a
true interest in the outcome of the process) or ‘virtual’ (a
stakeholder that simulates a true interest in the outcome of
the process). While we agree, we prefer to apply a more
finely-grained categorization when identifying customers for
pedagogical purposes. Table 1 is a summary of the resources
we have used in this, and other, software engineering classes.
All but one resource simulates the customer experience and
we present brief commentary on each entry.

Many useful learning experiences can be constructed with-
out a customer of any form – the first assignment in this
class creates an intense “customer experience” with only an
assignment statement. However, a customer of some form
generally enhances the entire learning process.



Table 1: Customers

None Problem statement serves as customer com-
munication.

Student Undergraduate from within the class.
Undergraduate who has recently taken the
class, usually one of the top performers.
Graduate, ideally with large-scale or indus-
trial experience.

Faculty Without RE experience.
With RE experience.

Faculty Instructor and Evaluator for the course.
Industrial
partner

Support from local industry.

Real cus-
tomer

Best learning experience, highest risk.

As noted earlier, due to cost and time constraints, cus-
tomers are most commonly simulated by students. The
risks are substantial – the student customer must separate
their role as customer, educator, and (fellow) student. While
some students, particularly those with industrial experience,
are able to simulate a customer in an acceptable manner –
most are not, for they do not yet have the necessary expe-
rience in the domain.

Faculty are usually a better choice than students, partic-
ularly if they can use a research project as the basis for a
(relatively) real customer experience. We have an interest-
ing observation: faculty without requirements engineering
experience often make better customers. We have noted that
experienced practitioners tend to impose their perspectives
on the process in their zeal to enhance the student learning
experience. This can lead to pedagogical conflicts or the
customer dominating the student development team.

Industrial partners can be very effective simulated cus-
tomers. They bring their experience with real customers to
the classroom, are unlikely to interfere with the educational
goals, and tend to view the process as an early recruiting in-
vestment. Unfortunately, it is very difficult to find a partner
that can make a time commitment to a classroom schedule.

There are significant pedagogical risks associated with us-
ing real customers – they are relatively uncontrollable and
their needs may not match the learning objectives for the
course. Their schedules, particularly delivery schedules, are
often too tight to be used in a classroom setting. However,
there is a sense of risk engendered within a development
team when working on a real project [2] that is difficult to
create in simulated scenarios.

We believe that simulated educational experiences should
strive to recreate this sense of risk and have applied this
principle in our classroom. In the absence of the necessary
resources for role-playing [6], carefully crafted scenarios can
selectively introduce risk-generating issues while maintain-
ing pedagogical integrity. For example, a set of requirements
can be presented to the students in the guise of an assign-
ment statement. The instructor can choose to introduce one
or more issues (e.g. missing requirements, contradictions in
the stated requirements) while keeping all other elements of
the scenario under strict control. Given that the instructor
is (usually) the assignor of grades, they are able to induce
a sense of uncertainty and risk in the students (just as if
they were working with a real customer) by manipulating
the number of issues and the grading scheme.

5. WELCOME TO THE REAL WORLD

The first major assignment for the class was to write a
bash shell script. The students were presented with a de-
tailed narrative description of the task that the shell script
was to perform. They were also presented with a table of
command line options that the shell script had to support.

The students had received formal instruction introducing
all shell utilities and constructs necessary for successfully
completing the assignment. Examples, directly related to
the assignment but not explicitly identified as such, were
also presented to the students.

To facilitate instruction of the RE principles, we deliber-
ately placed a contradiction in the assignment statement.
The body of the task description stated that the shell script
was to support standard shell constructs such as I/O redirec-
tion. However, the table of command line options explicitly
listed a “-I” option that identified an input file name and
a “-O” option that identified an output file name. This is
a classic case of contradictory customer requirements: It is
not reasonable to support I/O redirection and explicit file
I/O identification within a single utility.

We reserved 5% of the total marks as a reward for those
students that correctly identified the contradiction and ap-
proached us for clarification. Unfortunately, none of the stu-
dents came to us for clarification. Upon inspection of the
submissions, it did appear that 3 of 97 students identified
the contradiction and attempted to design around it.

Inspecting the contents of the message board revealed
that students focused their immediate attentions on those
requirements that appeared to be explicitly identified; for
example, how to parse the command line. It was only com-
ments posted in the last 24 hours before the assignment was
due that showed that the students were pursuing classic RE
efforts such as defining terms and specifying the format for
various I/O functions. We saw no evidence on the message
board that any of the students considered more advanced
topics such as looking for implied information or checking
for contradictions within the assignment statement.

Immediately after the assignments were submitted, we
identified the contradiction to the students in a classroom
discussion. Without identifying the marking scheme, we
pointed out to the students that none of them had actu-
ally answered the question that we asked of them. Instead,
they had answered something else – if we were so inclined,
we could justify giving them a grade of 0%.

Reaction was swift and vociferous. There were those with
a sense of entitlement (“you have to give me part marks”)
and those with outrage (“you can’t give me an assignment
with an error in it, that’s not fair!”). Most of the students
only heard the “grade of 0%” part of the comment and im-
mediately assumed that we were going to fail every last one
of them. This selective hearing process illustrates just how
ill-prepared the students are to attempt RE tasks with a
real customer and why introducing this material in a learn-
ing environment is so important.

The following student comment, submitted via an anony-
mous class evaluation mechanism at the end of the term, is
a reasonable summary of student reaction.

The assignment specs kept getting changed,
so you would work some 20 odd hours, then have
to SCRAP everything because we were told not
to work on the project a certain way. I under-
stand that they want us to learn how to ask ques-



tions, but this is NOT real life it is UNIVER-
SITY and an assignment should be set in stone.

Enabling the students to understand that part of their
assignment was to determine exactly what that assignment
was really asking for was a challenge for all concerned. This
was the first time that most of the students were ever ex-
pected to take responsibility for analyzing their assignments
for completeness and as the prior quotation illustrates, this
seemed to offend their sense of right and wrong. Some felt
that we were negligent, others that we were deliberately try-
ing to set them up for failure – relatively few understood just
how important these lessons are.

The discrepancy between perception and reality was marked.
As the student’s comprehension of the requirements increase,
many perceived that the specification was changing despite
the fact that it was not. Most of the students that felt the
specifications were changing were those who did not partici-
pate in classroom or electronic discussions of the assignment.

6. PRACTICAL GUIDANCE
The students were then introduced to some simple syntac-

tic and semantic analysis techniques to use in the require-
ments identification and elicitation processes. At the be-
ginning, we introduced actors and use-cases (without iden-
tifying them as such) by grammatical analysis of the doc-
umentation on a sentence-by-sentence basis. Each sentence
was, if necessary, rewritten as a simple declarative state-
ment of the form: subject-verb-object. The subject and ob-
ject nouns were then identified as potential actors and the
verb as a potential use-case for the subject. The students
were also instructed to be careful to look for synonyms dur-
ing this analysis to ensure that consistent terminology was
used throughout the document.

At a semantic level, the students were presented with ex-
amples of implications and assumptions. We introduced the
concept of proactive paranoia, the need to question the ex-
istence of almost everything in the document and provided
them with examples of the kinds of questions that we would
ask the customer, if we were presented with the same docu-
mentation set.

Within the laboratory setting, graduate student labora-
tory leaders assumed the role of the customer for the stu-
dents and provided them the opportunity to practice their
skills at requirements elicitation and identification.

Finally, the students were required to rewrite the assign-
ment statement, including any new information gathered
during their requirements elicitation and identification ef-
forts, in as unambiguous a manner as possible. The mean
grade on this task was 83% with a standard deviation of
22% – clear evidence that the majority of the students had
learned their lesson. Unfortunately, approximately 10% of
the class still had significant misunderstandings about the
basic concepts and processes. By the end of the term, it
was clear that we had been unable to motivate or reach this
group of students.

Our students come to us preconditioned by a lifetime of
“continuous evaluation” and feedback like “there is no fail-
ure, unless you don’t try”. Concepts such as mandatory
submission formats were totally foreign to them. For exam-
ple, we provided formal instruction on concepts related to
meeting contractual requirements, including describing sce-
narios where the work had to be submitted to the customer

in a very particular format or the work would be rejected.
At best, they would still have to resubmit in the correct
format, or at worst, they would not be paid, despite their
efforts. In the words of the great Jedi warrior, Yoda: “Do,
or do not. There is no try.” 1 – a near complete reversal of
their prior conditioning.

To emphasize the necessity to identify and meet all re-
quirements, not just functional requirements, we instituted
a mandatory submission format for the second assignment.
Only 9% of the students complied. Rather than reject the
remaining assignments, we allowed the students to resubmit
their work in the required format but with a performance
penalty (similar to the technique used by Tuya and Garcia-
Fanjul [5]). A 20% penalty was applied to all resubmissions,
effectively blocking the student from receiving an ‘A’ on the
assignment. When we addressed the issue in review with
the students, most reacted negatively. A typical comment,
submitted via the anonymous class evaluation mechanism:

. . . what’s the point of spending 40 hours on
something that you’re going to get 40% on just
because you forgot one line, or handed in the di-
rectory containing the assignment instead of the
files within the directory?

Enabling the students to understand that executable code
is only one part of their deliverables was difficult. Continu-
ous evaluation certainly makes it difficult to teach personal
responsibility and a requirement that some elements must
be right before the rest can be evaluated.

7. REINFORCEMENT
We continued to reinforce the message “ask questions”

throughout the remainder of the class. At times we deliber-
ately inserted ambiguities or contradictions into our mate-
rials as an instant test of the student uptake of the concept.
Our perception was that a distinguishable subset of the stu-
dent population noticably improved their ability to detect
these issues.

In general, the students felt that the first assignment taught
a harsh lesson. Their emotional response was strongly bi-
modal. One group felt intellectually challenged and eagerly
responded to this stimulus. The second group felt abused,
and put upon, and embraced defeat. We found it quite dif-
ficult to reach the group of students that gave up and get
them motivated again.

We followed through on building the clarification skills
with the second assignment in the course. Assignment 2
was a C function library for manipulating doubly-linked
lists. The level of algorithmic difficulty was similar to as-
signments from 1st year, but the implementation was in C
rather than Java. The technical differences were the use of
pointers rather than references, providing a statically allo-
cated block of memory for data structures, and using the
development environment to create a library.

We invited students to ask questions to clarify their un-
derstanding of the requirements within the classroom en-
vironment. A student who asked a question was required
to type up the question and our response then forward the
material to us. After double-checking their submission for
accuracy, we then added the information to the assignment
statement in a revision history format.

1Star Wars Episode V: The Empire Strikes Back



With the design/development methods available and sug-
gested programming tools actually being used, the better
students added complexity to the assignment – rather than
reducing the time required, time was kept constant and extra
work was performed. When asked, one of the students said
that they did not believe that the assignment could actually
be that easy. In contrast, a different student stated (in the
anonymous end-of-term course evaluations) that this was
“. . . an assignment that was so unclear (and yet advanced)
that many students still don’t understand it.”

8. A FINAL LESSON
An in-class exercise was scheduled for the second last lec-

ture of the term. The purpose of the exercise was to allow
the students to practice their newly acquired skills with a
simulated customer. One author played the role of the cus-
tomer, the other author the role of the team leader, and the
students composed the development team.

The exercise began with the customer stating their needs:
“I need a program to manage tournaments.” Then, the cus-
tomer walked out the door, much to the astonishment of
the students. The team leader then stimulated conversation
within the classroom and captured the students’ questions
on the board. The questions were typical of requirements
elicitation: “How many competitors must we support?”,
“What determines winning and losing?” and “How do we
display or disseminate the results?”

After 15 minutes, the customer returned and stated that
he was ready to answer questions. He was immediately bom-
barded with questions about sports and rules, judging and
prizes, etc. After pausing for a few moments, he looked at
the class and stated (in an outrageously bad accent) “What
is all this stuff about sports? I work for the Lucky Mint
Manufacturing company and we make mints. In order to
keep our inventory fresh, we need to turna-de-mints on a
regular basis. I need a program to manage the mint-turning
robots, not something for games.”

After the groans, catcalls, cheers and jeers subsided we
felt truly successful – the students would not soon forget
that, when performing requirements engineering, you must
question everything!

9. POSITIVE FEEDBACK
The experiences reported in the last few pages may make

it seem like the course was not a success. This was not the
case – approximately 25% of the student body reacted very
positively to the course content and delivery mechanism.
The intellectual and emotional growth we witnessed in some
of the students was simply amazing. Here are just a couple
of their comments:

This course was incredible, who ever thought
of it is a freaking genius. Seriously, this course is
everything I wanted to learn . . .

Give a raise to whoever thought of having this
course, we need more courses like these, really we
do!

While it is still too early to quantify the long-term efficacy of
this technique, we have observed that the students are still
talking about their experience in this class nearly a year later
– a sure sign that our approach is, at the very least, memo-
rable. We believe that the students are now more aware of

RE principles and some of the fundamental RE techniques
which should allow them to recognize the need to apply them
in the future. A colleague, teaching a 3rd year software en-
gineering course, commented that the students’ approaches
to the materials in his class were noticeably more mature
after the introduction of this course. As well, the students’
more proactive approach in clarifying assignment specifica-
tions has been noted by the instructor in the programming
languages course.

10. CONCLUSIONS AND FUTURE WORK
Requiring students to perform critical analysis of their

assignment statements is a major, if not traumatic, shift in
their thinking. Forcing 2nd year students to assume respon-
sibility for determining what they have to submit divided
the class in two – a group of students who become benefited
from the introduction of this class and a group of students
that gave up.

The emotional maturity in our student population may
not have been high enough for this pedagogical approach.
This technique can create an emotionally-charged atmosphere
in the student body and a degree of finesse in classroom
management may be required.

Many students found it difficult to adjust to evaluation
methods such as mandatory submission formats as a re-
quirement that must be met before marking can begin or
receiving marks proportional only to the quality of the re-
sult after a lifetime of receiving “marks for effort”. We have
proposed changes to the 1st year curriculum to include the
introduction of mandatory submission requirements in a less
dramatic manner.

We continue to investigate alternative pedagogies in an
effort to identify a mechanism that replicates (some of)
the stress associated with requirements engineering, yet less
stress than the current technique. We are also continuing
to explore the role of evaluator as customer in a controlled
learning environment.

11. REFERENCES
[1] Peter E. Doolittle. Constructivism and Online

Education. In 1999 Online Conference on Teaching
Online in Higher Education, pages 1–13, 1999.

[2] L. Macaulay and J. Mylopoulos. Requirements
Engineering: An Educational Dilemma. Automated
Software Engineering, 2(4):343–351, September 1995.

[3] D. Polajnar and J. Polajnar. Teaching Software
Engineering through Real Projects. In WCCCE 2004
Western Canadian Conference on Computer Education,
pages 83–90, Kelowna, B.C., Canada, May 2004.

[4] D. Rosca. An Active/Collaborative Approach in
Teaching Requirements Engineering. In 30th Annual
Frontiers in Education Conference, pages 9–12, Kansas
City, MO, October 2000.

[5] J. Tuya and J. Garcia-Fanjul. Teaching Requirements
Analysis by Means of Student Collaboration. In 29th
Annual Frontiers in Education Conference, pages
11–15, San Juan, Puerto Rico, November 1999.

[6] D. Zowghi and S. Paryani. Teaching Requirements
Engineering through Role Playing: Lessons Learnt. In
11th IEEE International Requirements Engineering
Conference (RE’03), pages 233–241, Monterey Bay,
CA, USA, September 2003.


	Introduction
	Background
	 Objectives and Assessment
	The Role of Customer
	Welcome to the Real World
	Practical Guidance
	Reinforcement
	A Final Lesson
	Positive Feedback
	Conclusions and Future Work
	References

