
Server Based Flow Control in A Distributed Continuous MediaServerGerald Neufeld, Dwight Makaro�, and Norman HutchinsonDepartment of Computer ScienceUniversity of British ColumbiaVancouver, British Columbia, CanadaAbstractTraditional approaches to ow control are not ap-propriate for distributed continuous media systems.Neither rate control nor feedback based ow control aresu�cient to deal with the variability of data rate andclient bu�er space that arise in variable bit rate datadelivery. We present a protocol based on the alreadyexisting temporal contraints on data consumption atthe client which results in e�ective use of the networkresources and prevents both overow and underow atthe client.1 IntroductionThe motivation for the design of a specialized �leserver utilizing specialized network protocols for con-tinuous media such as video and audio is well estab-lished [5, 7]. A continuous media application typicallytransfers large volumes of sequential data. As well, theresource requirements of the network and server dif-fer considerably from a conventional distributed �leservice. In order to guarantee continuity, the alloca-tion of network resources such as bandwidth must beguaranteed. Similarly, the availability of resources atthe server, such as processor cycles, RAM, and diskbandwidth, must be guaranteed to properly servicethe client.The continuous media streams stored at the servernodes may be either Constant Bit-Rate (CBR) orVariable Bit-Rate (VBR). In this paper, we do notconsider constant bit rate streams, but focus on VBRstreams where the disk and network bandwidth re-quired can di�er signi�cantly within short periods oftime (within a second) and over long periods of time(scenes of several seconds in duration). In such anenvironment, the amount of data in bu�ers will alsovary over time. When dealing with VBR data, there isneed for sophisticated management of ow to accom-modate the variability in the use of bandwidth andclient bu�ering.A client application requires su�cient data to

present media units to the user at isochronous inter-vals. Since this amount varies, a method must be uti-lized to instruct the server to send data at a rate thatboth prevents starvation and does not cause overowat the receiver. The protocol presented in this paperprovides such a method in the context of a ContinuousMedia File Server.The general architecture of our continuous me-dia �le server (CMFS) is shown in Figure 1. Theserver nodes are responsible for the transmission ofcontinuous media, while the administrator node pro-vides management functionality and metadata stor-age. More information on the design can be foundin [2]. A server will typically consist of several servernodes.2 Motivation for Server-Based FlowControlContinuous media streams have real-time deliveryrequirements for the presentation of media units toperipheral devices, such as display monitors or audiospeakers. The delivery of this data can be regulated bythe client, which requests data packets (pull model),or by the server, which sends packets to the client asit has resources (push model). In the push model, ifthe transport layer is incapable of receiving data atthe rate it is being sent, a ow control mechanism isoften implemented (such as in TCP-IP) to prevent theserver from ooding the receiver. This suggests thattwo extremes are possible in designing a continuousmedia transfer protocol: one based on the push modeland one based on the pull model.In the push model, the server transmits bits ata negotiated rate and trusts the receiver to decodeand present them to the user in the appropriate timeframe. This is unacceptable for VBR streams becausethe server would be unaware of when the client hadresources (bu�ers) available to accept the data. If theserver sent at the maximum bit rate allowed, then theclient bu�er utilization would grow over time because

Network
Interface

Client Application

Writer

Network
Interface

Client Application

Reader

Network
Interface

Meta
Data

Server SideClient Side

Processor

Administrator Node
Attribute
Database

Network
Interface

Real-Time
Data

Processor

Server Node(s)
SCSI

Controller Controller

SCSI
Controller Controller

Network
Switch

Figure 1: Organization of Systemfewer bits are freed by displaying than would be sentby the server. Alternatively, sending data at the av-erage bit rate could result in starvation of a streamwhen the bit rate necessary for display is temporarilygreater than the average.A receiver-based ow control model is equally un-desirable since the round trip delay in sending the re-quest for more data may result in an underow at theclient. If the client correctly anticipates its needs fordata and has su�cient bu�ering capabilities, it couldrequest data early, avoiding this problem, but requir-ing the server to be ahead in both reading and sendingin order to be able to respond to the client's requests.As well, the tra�c in the reverse data stream could besigni�cant if su�ciently detailed granularity is to beachieved.In this paper, we suggest an alternative that pro-vides ow control in the sense that the server neversends data faster than the client can handle it, butdoes not require explicit requests from the client formore data. Since the server has knowledge of theexact presentation requirements, it can send data atprecisely the rate needed every second. By utilizingthis information, plus knowledge of the client bu�er-ing capabilities and the rate at which the client canhandle incoming packets, the server can send data atthe maximum rate allowed by the network in order tokeep client bu�ers full, subject to having transferredthe data from disk.The details of the protocol will be explained in thenext section. Performance issues are briey discussed

in Section 4, where we discuss the additional bene�tsthat can be achieved with an acceptable increase incomplexity. We end the paper with a comparison ofexisting work and conclusions regarding our approach.3 The ProtocolThe Continuous Media File Server divides time intosmall units called slots. A typical slot value is 500msec, and data is retrieved from the disk and sentacross the network in units of slots. For example, 15video frames of a 30 frame per second video clip maybe the amount of data retrieved and sent during a slot.The concept of slots is signi�cant in the design of theprotocol, and delay times are directly proportional tothe granularity of slot times.3.1 Connection EstablishmentWhen a client wishes to initiate delivery of con-tinuous media data, the administrator node must becontacted to identify the server worker node that con-tains the object. This is accomplished by an inter-face routine to open a connection. No stream data issent to the client during connection establishment, butrather, data is retrieved over the connection by a sub-sequent, separate call to prepare the stream. Duringopen, the attributes of the object are retrieved by theserver node to determine the data rate requirements ingeneral for the stream. Based on these calculations,a real-time connection is opened from the server tothe client. This connection is neither ow-controllednor error controlled in the server-to-client direction.Our application level ow control scheme obviates the

Network

Client

Client

Provides
Credit

Queues
blocks

Disk
Manager

Stream
Manager

Stream
Manager

Network
Manager

Figure 2: Data Flow At Serverneed for transport level ow control, and error controlimplies the possibility of retransmission, which is con-sidered inappropriate for continuous media [7]. Fromthe client to the server, critical control messages mustbe passed, so the connection is made reliable in thisdirection.The server will request a connection of su�cientbandwidth and inform the client of the minimumbu�er requirements for continuous display at normalspeeds. The calculation of bu�ering requirements isexplained in Section 3.5. A quality of service nego-tiation takes place and the client completes the nextphase of connection establishment by setting the val-ues for bandwidth and bu�er space that it is willingto devote to the stream. Control is returned back tothe client with indication of success if the connectionparameters are acceptable to the server as well. Aconnection identi�er is used subsequently to identifythe real-time connection in all control requests.When data delivery is desired, a client applicationcalls an interface routine to prepare the stream. Thiscall instructs the server to performan admission test ofthe disk and network requirements of the VBR streamand schedules all subsequent disk reads required forthe duration of the stream. The interface to the pre-pare call allows the application to vary both the speed(fast or slow motion) as well as the direction (forwardor reverse) of the data transfer. Once the stream hasbeen prepared, data is sent from the server to theclient via the protocol. The client application con-sumes data by reading it from the connection.

3.2 Network Structure Overview andFlow Control DetailsThe structure of the data ow in the server nodeis outlined in Figure 2. The server is built as a dis-tributed application with parallel user-level threads ofcontrol in the application's single address space. Onethread is created for every active stream for actual net-work transmission (Stream Manager). There is also athread per disk in the system (Disk Manager) whichreads blocks containing continuous media accordingto its schedule and enqueues them for the particularper stream network transmission thread. The streammanager dequeues blocks and sends the appropriateportions across the network.The protocol operates via the execution of a net-work manager thread. This thread knows the rate ofeach connection and the amount of bu�er space at eachclient as well as the amount of data to be displayed perslot. Without ow control of some kind, the streammanagers would send as fast as the network would al-low or as fast as the disk could read, causing overowat one or more of the following locations: 1)networkbu�ers at the server, 2) bu�ers in the network switch,or 3) bu�ers at the client.The protocol prevents overow or starvation byhaving the Stream Manager wait for credit from theNetwork Manager before sending data across the net-work. Bu�ers may be queued between the disk andthe streammanager until the system runs out of bu�erspace. A timer thread generates a timing signal onceper slot. This causes the network manager to exam-ine all the active streams and perform the followingactions:1. If a client is actively reading data o� the stream

Slot n Slot n + 1 Slot n + 2 Slot n + 3

Schedule
Stream S

Read Slot 0
of Stream S

Read Slot 1
Send Slot 0
of Stream S

Read Slot 2
Send Slot 1
of Stream S

T1 T2

Prepare returns
for Stream S

Prepare arrives
for Stream S

Total Server Schedule (Real Time)

Guaranteed Operations for Stream S

T1 Figure 3: Prepare Timingsconnection, the bu�er space capacity is increasedby the amount of data displayed, and thereforeconsumed from the client's bu�ers, in the previ-ous slot time.2. The server's notion of available client bu�er spaceis decreased by the amount of data required to besent for the current slot.3. Credit is issued to the stream manager for thecurrent slot if data must be sent at this time inorder to maintain continuity.4. While there is excess bandwidth at the networkinterface, �nd a stream with unused bandwidthand enough bu�er space, decrease client bu�erspace by this amount and issue credit for thestreammanager. This step achieves what we termas \network send-ahead." In most cases, the net-work will send ahead to �ll up the client bu�erspace and most streams will have no work to dofor steps 2 and 3.Credit is only issued for a stream if there are bu�ersqueued for transmission. This is because the creditthat is outstanding at any given moment in time can-not be greater than a slot's worth of connection band-width. If credit was issued early, then at some point inthe future, the disk could supply several slot's worthof data, and the network would send it all (up to thecredit allowed), and thereby violate the bandwidthQuality of Service characteristics.3.3 Prepare SchedulingThe delivery of data is guaranteed in the sense thatthe server will always send data ahead of time, or justin time to allow presentation of the data to the user.

The correct arrival of this data cannot be guaranteed,but lost data can be compensated for by client appli-cations.Starvation is prevented by sending the �rst slotof data before returning from the call to prepare astream. At the server, this requires scheduling thedisk reads for the entire stream, completing the diskreads for the �rst slot, and sending the bytes of dataacross the network. This is shown in Figure 3.On a lightly loaded system, this may happen in avery small amount of time, and prepare could returnas early as time T1 (if the scheduling and reading op-eration was done so quickly that bu�ers were availablefor send ahead at that time), although the data is notguaranteed to arrive until T2 (the end of slot n+2). Ifthe client begins reading at T1, then later in time, thesystem may become heavily loaded, preventing trans-mission of data until the end of the guaranteed slot.This results in starvation for the client application.Therefore, the protocol waits until time T2 before re-turning from prepare.3.4 Read ProcessingThe server begins to send data to the client asquickly as possible. This continues as credit is issuedby the network manager. During the initial part ofdata transfer, the rate is limited by bandwidth con-siderations, but client bu�er space becomes used upquickly if the client does not commence reading andfreeing up that space. The server must also be awareof when the space is being freed to properly send moredata.Our ow control protocol utilizes a start packet(sent at time Ts) on the �rst client read to notify theserver that the client has begun to read (see Figure4). No further communication from the client to the

Client

1. T = Tc1 - Ts
2. Calculate number of bytes
consumed in T.
3. Thereafter, calculate number of
bytes in complete slots (Tc1 - Tc0)

Start Packet (ts)

Server

Time

Ts Ts

Ta

Tc0

Tc1

T

TimeFigure 4: First Read Packetserver is necessary, because the server then assumesthat the client will continue to consume data at therate which was speci�ed in the prepare call.There is delay in the transmission of the startpacket, so the client sends the local time (assumingsynchronized clocks) inside the packet. This allowsthe server to get an estimate of network delay (Ta -Ts). Additionally, the server calculates the proportionof a slot that has been consumed at the client at theexact time of a slot boundary. On the �rst timer in-terrupt after the receipt of the start packet (at Tc1 inFigure 4), a fraction of a slot proportional to the timeTc1 - Ts is added to the client bu�er capacity andthereafter, complete slots are used. This is known asthe Total Client Credit (TCC) schedule, which is cal-culated as the stream is delivered.3.5 Client Bu�er Space RequirementsThe minimum amount of data needed by a clientapplication is the data required in the largest two con-secutive slots. This is because the model requires dou-ble bu�ering: both the consumption of bits as they aredisplayed and the arrival of bits from the server pro-ceed at variable rates. We therefore require that allthe data for a slot must be bu�ered before display ofthat data begins. During the display of that slot, thedata for the next slot is guaranteed to be transmitted.Due to the variable bit-rate nature of media displayunits, the unit being displayed may be much smallerthan the next unit being transferred. If an entire slotwas not available, there would not be room for themedia unit in the client bu�er space. As well, thenetwork may deliver at a higher burst rate during thebeginning of a slot. If bu�er space for the largest slot

is not available at the beginning of a slot, then datamay get thrown away.4 Performance EnhancementsThis protocol ensures that any client applicationwill receive continuous media data on time withoutexcessive delays due to round-trip packet times, norsu�er from connection overow. When the system islightly loaded and send-ahead by the network is be-ing e�ectively used, there is likely to be unused band-width. A reasonable extension to the current protocolwould allow the server to utilize this bandwidth toresend portions of the stream that did not arrive cor-rectly. The client can identify what portion of the datait is missing and request retransmission. The servercan then retransmit and have the data sequenced inthe proper order for the client application.This appears to imply a drastic increase in serverbu�er requirements because data must be kept until itis known that it will no longer be needed for retrans-mission. In the case of video data, certain packets canbe tagged as important (such as an I-frame in MPEG),with only important data being retained for retrans-mission.5 ResultsPreliminary performance experiments have beenconducted to verify that the push model does not re-sult in either underow or overow at the client. Inthe experiment, the server performance with a singleclient was compared for a constant bit-rate stream anda variable bit-rate stream varying the frequency andtherefore the size of the bursts of network tra�c usedto send the data. Our continuous data is sent using

the XTP transport protocol, and we were concernedthat the discrete nature of its rate control (XTP sendsa burst of data several times per second) could interactbadly with the arrival of the start packet causing shortterm underow at clients when they were con�guredwith a minimum amount bu�er space.The amount of client bu�er space is as describedin Section 3.5. Increasing the bu�er space above theminimum required amount would allow the server tosend aheadmore signi�cantly and certainly never be indanger of underow when the server and network arelightly loaded. Having any less bu�er space violatesour assumption that the client is able to simultane-ously bu�er the data needed for the current and thenext slot.A client application measured the amount of datawaiting in client bu�ers at the beginning of every slot,measured from the client's point of view. The clientconsiders time to begin when it begins to read and dis-play the continuous data, and so there may be someskew between the client's and server's notion of slotboundaries. The client applications was executed re-peatedly on an otherwise unloaded server and net-work. Two continuous media streams were used: onewhich was encoded at a constant bit rate of 3 Mbps,and another which varied from 2 Mbps to 8 Mbps.Transport level burst intervals of 20 msec, 30 msec,50 msec, and 100 msec were used which correspondto burst frequencies of 50, 33, 20, and 10 Hz. Nonoticeable di�erence in the performance of the serverwas detected. In approximately 1% of the slots, theamount of data available for reading dropped to 90%of what was required at the beginning of the slot. Webelieve that this is due to either the skew betweenthe client and server slot boundaries, or to short termscheduling irregularities (cron jobs and the like) in ourhost AIX operating systems.We have just begun additional experiments de-signed to verify that even under heavy load our owcontrol algorithm is able to prevent starvation.6 Related WorkConsiderable work has been done in the last sev-eral years regarding protocol support for continuousmedia applications. These can be classi�ed into twobroad categories: those which deal with novel, e�cientmechanisms to provide rate control and ow controland those that implement �ltering at the server or net-work to accommodate heterogeneous client hardwarecapabilities in a network that supports multicast.Shepherd et al. [6] supports a stream abstraction,and describes the negotiation of connection rate pa-rameters and bu�er sizes, as well as providing client

level ow control. They consider priming streams be-fore playout begins as well as adaptations for appli-cations requiring error-free transmission. Wol�ngerand Moran [7] also de�ne a stream oriented service,focusing on delivery of stream data units and provid-ing mechanisms for the server to work ahead. Thisis described at a lower level than in [6]. In the Net-work Multimedia File System (NMFS) [4], bu�eringstrategies that employ pre-sending of frames are uti-lized along with ow control based on client bu�er oc-cupancy. The NMFS views knowledge of stream char-acteristics as hints and not contracts and has a morerestricted environment in which it is applicable. Ex-plicit feedback from the client is required in all thesesystems.In Ho�man et al. [1] and Pasquale et al. [3], proto-type systems have been developed that place �ltersat di�erent points in the network with the goal ofsupporting scalable ows from hierarchical encodingalgorithms. Ramanathan et al. [5] manage the net-work ow by discarding packets on a frame basis forthose media data units which cannot be properly dis-played due to transmission errors. This requires thenetwork switches to have information on frame bound-aries, while the former approaches require identifyingseparate components of the stream in order to do theappropriate �ltering.7 ConclusionsWe have shown that traditional approaches to owcontrol and rate control in distributed continuous me-dia systems are insu�cient to deal with the variabilityof data in the stream to be transmitted without re-sulting in excess feedback mechanisms. Our protocolutilizes the knowledge of the bandwidth requirementsfor display as well as the client bu�ering capabilitiesto maximize the use of the network resource and shareit e�ectively among the streams requiring service.This protocol does not provide for reliable transmis-sion of continuous media data, which would introducesigni�cant variation in arrival times at the client, butallows for retransmission to enhance the correctnessof the data during times of light system usage, at theexpense of requiring a larger amount of bu�ering atthe server.Preliminary performance indicates that client ap-plications with minimal bu�ering are never starvedfor data. In regular usage we increase the bu�eringavailable to the clients by a factor of 4 over the mini-mum, and with many clients presenting a mix of audio,video, and text streams we have never observed dataunderow at the client, even on a moderate to heavilyloaded server. Providing additional bu�er space at the

client has the additional advantage that the server isable to tolerate short term network overload situationswithout violating its contract with the clients. This issimilar to the readahead advantages described in [2].A multiple node version of the �le server has beenimplemented. The server runs on IBM RS/6000s(running AIX 3.2.5) or Sun Sparcstations (SUN OS4.1.3/Solaris 2.3) over a 100 Mbps ATM link (or Eth-ernet, or Token Ring) to multiple clients running oneither of those same two architectures.References[1] Dan Ho�man, Michael Speer, and Gerard Fer-nando. \Network Support for Dynamically ScaledMultimedia Data Streams," Proceedings of the 4thInternational Workshop on Network and Operat-ing Systems Support for Digital Audio and Video,Lancaster UK, November 1993.[2] Gerald Neufeld, Dwight Makaro�, and NormanHutchinson, \Design of a Variable Bit Rate Con-tinuous Media File Server for an ATM Network,"IS&T/SPIE Multimedia Computing and Network-ing, San Jose, January 1996.[3] Joseph C. Pasquale, George C. Plyzos, Eric W.Anderson, and Vachaspathi P. Kompella. \FilterPropagation in Dissemination Trees: Trading O�Bandwidth and Processing in Continuous MediaNetworks," Proceedings of the 4th InternationalWorkshop on Network and Operating Systems Sup-port for Digital Audio and Video, Lancaster UK,November 1993.[4] Sameer Patel, Ghaleb Abdulla, Marc Abrams, andEdward A. Fox. \NMFS: Network Multimedia FileSystem Protocol," Proceedings of the 3rd Interna-tional Workshop on Network and Operating Sys-tems Support for Digital Audio and Video, SanDiego, November 1992.[5] Srinivas Ramanathan, P. Venkat Rangan, andHarrick M. Vin, \Frame-Induced Packet Discard-ing: An E�cient Strategy for Video Networking,"Proceedings of the 4th International Workshop onNetwork and Operating Systems Support for Dig-ital Audio and Video, Lancaster UK, November1993.[6] Doug Shepherd, David Hutchison, Francisco Gar-cia and Geo� Coulson, \Protocol Support for Dis-tributed Multimedia Applications," Proceedings ofthe 2nd International Workshop on Network andOperating Systems Support for Digital Audio andVideo, Heidelberg, Germany, November 1991.

[7] Bernd Wol�nger and Mark Moran, \A Contin-uous Media Data Transport Service and Proto-col for Real-Time Communication in High SpeedNetworks," Proceedings of the 2nd InternationalWorkshop on Network and Operating System Sup-port for Digital Audio and Video, Heidelberg, Ger-many, November 1991.

