Server Based Flow Control in A Distributed Continuous Media

Server

Gerald Neufeld, Dwight Makaroff, and Norman Hutchinson
Department of Computer Science
University of British Columbia
Vancouver, British Columbia, Canada

Abstract

Traditional approaches to flow control are not ap-
propriate for distributed continuous media systems.
Neither rate control nor feedback based flow control are
sufficient to deal with the variability of data rate and
client buffer space that arise in variable bit rate data
delwery. We present a protocol based on the already
existing temporal contraints on data consumption at
the client which results in effective use of the network
resources and prevents both overflow and underflow at
the client.

1 Introduction

The motivation for the design of a specialized file
server utilizing specialized network protocols for con-
tinuous media such as video and audio is well estab-
lished [5, 7]. A continuous media application typically
transfers large volumes of sequential data. As well, the
resource requirements of the network and server dif-
fer considerably from a conventional distributed file
service. In order to guarantee continuity, the alloca-
tion of network resources such as bandwidth must be
guaranteed. Similarly, the availability of resources at
the server, such as processor cycles, RAM, and disk
bandwidth, must be guaranteed to properly service
the client.

The continuous media streams stored at the server
nodes may be either Constant Bit-Rate (CBR) or
Variable Bit-Rate (VBR). In this paper, we do not
consider constant bit rate streams, but focus on VBR
streams where the disk and network bandwidth re-
quired can differ significantly within short periods of
time (within a second) and over long periods of time
(scenes of several seconds in duration). In such an
environment, the amount of data in buffers will also
vary over time. When dealing with VBR data, there is
need for sophisticated management of flow to accom-
modate the variability in the use of bandwidth and
client buffering.

A client application requires sufficient data to

present media units to the user at isochronous inter-
vals. Since this amount varies, a method must be uti-
lized to instruct the server to send data at a rate that
both prevents starvation and does not cause overflow
at the receiver. The protocol presented in this paper
provides such a method in the context of a Continuous
Media File Server.

The general architecture of our continuous me-
dia file server (CMFS) is shown in Figure 1. The
server nodes are responsible for the transmission of
continuous media, while the administrator node pro-
vides management functionality and metadata stor-
age. More information on the design can be found
in [2]. A server will typically consist of several server
nodes.

2 Motivation for Server-Based Flow
Control

Continuous media streams have real-time delivery
requirements for the presentation of media units to
peripheral devices, such as display monitors or audio
speakers. The delivery of this data can be regulated by
the client, which requests data packets (pull model),
or by the server, which sends packets to the client as
it has resources (push model). In the push model, if
the transport layer is incapable of receiving data at
the rate it is being sent, a flow control mechanism is
often implemented (such as in TCP-IP) to prevent the
server from flooding the receiver. This suggests that
two extremes are possible in designing a continuous
media transfer protocol: one based on the push model
and one based on the pull model.

In the push model, the server transmits bits at
a negotiated rate and trusts the receiver to decode
and present them to the user in the appropriate time
frame. This is unacceptable for VBR streams because
the server would be unaware of when the client had
resources (buffers) available to accept the data. If the
server sent at the maximum bit rate allowed, then the
client buffer utilization would grow over time because

Client Application

Writer

Network
Interface

Client Side

- — Server Node(s) —
Client Application Processor L SCSU T Controler Controller
Reader Network Real-Time
Interface)|

Data

Server Side

SCsI
L 2> J] controller Controller

Network | g ——>

Interface

Administrator Node

Attribute
Database

Processor |
-

Y

Network |
Y
Interface

Y

Figure 1: Organization of System

fewer bits are freed by displaying than would be sent
by the server. Alternatively, sending data at the av-
erage bit rate could result in starvation of a stream
when the bit rate necessary for display is temporarily
greater than the average.

A receiver-based flow control model is equally un-
desirable since the round trip delay in sending the re-
quest for more data may result in an underflow at the
client. If the client correctly anticipates its needs for
data and has sufficient buffering capabilities, it could
request data early, avoiding this problem, but requir-
ing the server to be ahead in both reading and sending
in order to be able to respond to the client’s requests.
As well, the traffic in the reverse data stream could be
significant if sufficiently detailed granularity is to be
achieved.

In this paper, we suggest an alternative that pro-
vides flow control in the sense that the server never
sends data faster than the client can handle it, but
does not require explicit requests from the client for
more data. Since the server has knowledge of the
exact presentation requirements, it can send data at
precisely the rate needed every second. By utilizing
this information, plus knowledge of the client buffer-
ing capabilities and the rate at which the client can
handle incoming packets, the server can send data at
the maximum rate allowed by the network in order to
keep client buffers full, subject to having transferred
the data from disk.

The details of the protocol will be explained in the
next section. Performance issues are briefly discussed

in Section 4, where we discuss the additional benefits
that can be achieved with an acceptable increase in
complexity. We end the paper with a comparison of
existing work and conclusions regarding our approach.

3 The Protocol

The Continuous Media File Server divides time into
small units called slots. A typical slot value is 500
msec, and data is retrieved from the disk and sent
across the network in units of slots. For example, 15
video frames of a 30 frame per second video clip may
be the amount of data retrieved and sent during a slot.
The concept of slots is significant in the design of the
protocol, and delay times are directly proportional to
the granularity of slot times.

3.1 Connection Establishment

When a client wishes to initiate delivery of con-
tinuous media data, the administrator node must be
contacted to identify the server worker node that con-
tains the object. This is accomplished by an inter-
face routine to open a connection. No stream data is
sent to the client during connection establishment, but
rather, data is retrieved over the connection by a sub-
sequent, separate call to prepare the stream. During
open, the attributes of the object are retrieved by the
server node to determine the data rate requirements in
general for the stream. Based on these calculations,
a real-time connection is opened from the server to
the client. This connection is neither flow-controlled
nor error controlled in the server-to-client direction.
Our application level flow control scheme obviates the

Disk
Manager

Queues
blocks

Stream
Manager

Stream
Manager

Provides
Credit

Network
Manager

Client

Y

Network

Client

Figure 2: Data Flow At Server

need for transport level flow control, and error control
implies the possibility of retransmission, which is con-
sidered inappropriate for continuous media [7]. From
the client to the server, critical control messages must
be passed, so the connection is made reliable in this
direction.

The server will request a connection of sufficient
bandwidth and inform the client of the minimum
buffer requirements for continuous display at normal
speeds. The calculation of buffering requirements is
explained in Section 3.5. A quality of service nego-
tiation takes place and the client completes the next
phase of connection establishment by setting the val-
ues for bandwidth and buffer space that it is willing
to devote to the stream. Control is returned back to
the client with indication of success if the connection
parameters are acceptable to the server as well. A
connection identifier is used subsequently to identify
the real-time connection in all control requests.

When data delivery is desired, a client application
calls an interface routine to prepare the stream. This
call instructs the server to perform an admission test of
the disk and network requirements of the VBR stream
and schedules all subsequent disk reads required for
the duration of the stream. The interface to the pre-
pare call allows the application to vary both the speed
(fast or slow motion) as well as the direction (forward
or reverse) of the data transfer. Once the stream has
been prepared, data is sent from the server to the
client via the protocol. The client application con-
sumes data by reading it from the connection.

3.2 Network Structure Overview and
Flow Control Details

The structure of the data flow in the server node
is outlined in Figure 2. The server is built as a dis-
tributed application with parallel user-level threads of
control in the application’s single address space. One
thread is created for every active stream for actual net-
work transmission (Stream Manager). There is also a
thread per disk in the system (Disk Manager) which
reads blocks containing continuous media according
to its schedule and enqueues them for the particular
per stream network transmission thread. The stream
manager dequeues blocks and sends the appropriate
portions across the network.

The protocol operates via the execution of a net-
work manager thread. This thread knows the rate of
each connection and the amount of buffer space at each
client as well as the amount of data to be displayed per
slot. Without flow control of some kind, the stream
managers would send as fast as the network would al-
low or as fast as the disk could read, causing overflow
at one or more of the following locations: 1)network
buffers at the server, 2) buffers in the network switch,
or 3) buffers at the client.

The protocol prevents overflow or starvation by
having the Stream Manager wait for credit from the
Network Manager before sending data across the net-
work. Buffers may be queued between the disk and
the stream manager until the system runs out of buffer
space. A timer thread generates a timing signal once
per slot. This causes the network manager to exam-
ine all the active streams and perform the following
actions:

1. If a client is actively reading data off the stream

Slotn Slotn+1 | Slotn+2 | Slotn+ 3
Schedule Read Slot 0 |Read Slot 1 |Read Slot 2
Stream S of Stream S |Send Slot 0 |Send Slot 1

of Stream S |of Stream S
T1 T

Total Server Schedule (Real Time)

Guaranteed Operations for Sream S

Prepare arrives
for Stream S

Prepare returns
for Stream S

Figure 3: Prepare Timings

connection, the buffer space capacity is increased
by the amount of data displayed, and therefore
consumed from the client’s buffers, in the previ-
ous slot time.

[\

. The server’s notion of available client buffer space
is decreased by the amount of data required to be
sent for the current slot.

3. Credit is issued to the stream manager for the
current slot if data must be sent at this time in
order to maintain continuity.

4. While there is excess bandwidth at the network
interface, find a stream with unused bandwidth
and enough buffer space, decrease client buffer
space by this amount and issue credit for the
stream manager. This step achieves what we term
as “network send-ahead.” In most cases, the net-
work will send ahead to fill up the client buffer
space and most streams will have no work to do
for steps 2 and 3.

Credit is only issued for a stream if there are buffers
queued for transmission. This is because the credit
that is outstanding at any given moment in time can-
not be greater than a slot’s worth of connection band-
width. If credit was issued early, then at some point in
the future, the disk could supply several slot’s worth
of data, and the network would send it all (up to the
credit allowed), and thereby violate the bandwidth
Quality of Service characteristics.

3.3 Prepare Scheduling

The delivery of data is guaranteed in the sense that
the server will always send data ahead of time, or just
in time to allow presentation of the data to the user.

The correct arrival of this data cannot be guaranteed,
but lost data can be compensated for by client appli-
cations.

Starvation is prevented by sending the first slot
of data before returning from the call to prepare a
stream. At the server, this requires scheduling the
disk reads for the entire stream, completing the disk
reads for the first slot, and sending the bytes of data
across the network. This is shown in Figure 3.

On a lightly loaded system, this may happen in a
very small amount of time, and prepare could return
as early as time Ty (if the scheduling and reading op-
eration was done so quickly that buffers were available
for send ahead at that time), although the data is not
guaranteed to arrive until Ty (the end of slot n+2). If
the client begins reading at Ty, then later in time, the
system may become heavily loaded, preventing trans-
mission of data until the end of the guaranteed slot.
This results in starvation for the client application.
Therefore, the protocol waits until time Ty before re-
turning from prepare.

3.4 Read Processing

The server begins to send data to the client as
quickly as possible. This continues as credit is issued
by the network manager. During the initial part of
data transfer, the rate is limited by bandwidth con-
siderations, but client buffer space becomes used up
quickly if the client does not commence reading and
freeing up that space. The server must also be aware
of when the space is being freed to properly send more
data.

Our flow control protocol utilizes a start packet
(sent at time T,) on the first client read to notify the
server that the client has begun to read (see Figure
4). No further communication from the client to the

Client Server
—_ —_ Tcg
s ——————----"7""7""7"7""""""""“"“~"“"“"=°=°=°7=°-- — Ts A
Start Packet (tg)
Ty T
1 T=Tcy-Tg
e 2. Calculate number of bytes 1T T -
consumedin T.
3. Theresfter, calculate number of
v bytes in complete slots (Tcq . Tcg) v
Time Time

Figure 4: First Read Packet

server is necessary, because the server then assumes
that the client will continue to consume data at the
rate which was specified in the prepare call.

There is delay in the transmission of the start
packet, so the client sends the local time (assuming
synchronized clocks) inside the packet. This allows
the server to get an estimate of network delay (T, -
T,). Additionally, the server calculates the proportion
of a slot that has been consumed at the client at the
exact time of a slot boundary. On the first timer in-
terrupt after the receipt of the start packet (at Tey in
Figure 4), a fraction of a slot proportional to the time
Tcy - Ty is added to the client buffer capacity and
thereafter, complete slots are used. This is known as
the Total Client Credit (TCC) schedule, which is cal-
culated as the stream is delivered.

3.5 Client Buffer Space Requirements

The minimum amount of data needed by a client
application is the data required in the largest two con-
secutive slots. This is because the model requires dou-
ble buffering: both the consumption of bits as they are
displayed and the arrival of bits from the server pro-
ceed at variable rates. We therefore require that all
the data for a slot must be buffered before display of
that data begins. During the display of that slot, the
data for the next slot is guaranteed to be transmitted.
Due to the variable bit-rate nature of media display
units, the unit being displayed may be much smaller
than the next unit being transferred. If an entire slot
was not available, there would not be room for the
media unit in the client buffer space. As well, the
network may deliver at a higher burst rate during the
beginning of a slot. If buffer space for the largest slot

is not, available at the beginning of a slot, then data
may get thrown away.

4 Performance Enhancements

This protocol ensures that any client application
will receive continuous media data on time without
excessive delays due to round-trip packet times, nor
suffer from connection overflow. When the system is
lightly loaded and send-ahead by the network is be-
ing effectively used, there is likely to be unused band-
width. A reasonable extension to the current protocol
would allow the server to utilize this bandwidth to
resend portions of the stream that did not arrive cor-
rectly. The client can identify what portion of the data
it is missing and request retransmission. The server
can then retransmit and have the data sequenced in
the proper order for the client application.

This appears to imply a drastic increase in server
buffer requirements because data must be kept until it
is known that it will no longer be needed for retrans-
mission. In the case of video data, certain packets can
be tagged as important (such as an I-frame in MPEG),
with only important data being retained for retrans-
mission.

5 Results

Preliminary performance experiments have been
conducted to verify that the push model does not re-
sult in either underflow or overflow at the client. In
the experiment, the server performance with a single
client was compared for a constant bit-rate stream and
a variable bit-rate stream varying the frequency and
therefore the size of the bursts of network traffic used
to send the data. Our continuous data is sent using

the XTP transport protocol, and we were concerned
that the discrete nature of its rate control (XTP sends
a burst of data several times per second) could interact
badly with the arrival of the start packet causing short
term underflow at clients when they were configured
with a minimum amount buffer space.

The amount of client buffer space is as described
in Section 3.5. Increasing the buffer space above the
minimum required amount would allow the server to
send ahead more significantly and certainly never be in
danger of underflow when the server and network are
lightly loaded. Having any less buffer space violates
our assumption that the client is able to simultane-
ously buffer the data needed for the current and the
next slot.

A client application measured the amount of data
waiting in client buffers at the beginning of every slot,
measured from the client’s point of view. The client
considers time to begin when it begins to read and dis-
play the continuous data, and so there may be some
skew between the client’s and server’s notion of slot
boundaries. The client applications was executed re-
peatedly on an otherwise unloaded server and net-
work. Two continuous media streams were used: one
which was encoded at a constant bit rate of 3 Mbps,
and another which varied from 2 Mbps to 8 Mbps.
Transport level burst intervals of 20 msec, 30 msec,
50 msec, and 100 msec were used which correspond
to burst frequencies of 50, 33, 20, and 10 Hz. No
noticeable difference in the performance of the server
was detected. In approximately 1% of the slots, the
amount of data available for reading dropped to 90%
of what was required at the beginning of the slot. We
believe that this is due to either the skew between
the client and server slot boundaries, or to short term
scheduling irregularities (cron jobs and the like) in our
host AIX operating systems.

We have just begun additional experiments de-
signed to verify that even under heavy load our flow
control algorithin is able to prevent starvation.

6 Related Work

Considerable work has been done in the last sev-
eral years regarding protocol support for continuous
media applications. These can be classified into two
broad categories: those which deal with novel, efficient
mechanisms to provide rate control and flow control
and those that implement filtering at the server or net-
work to accommodate heterogeneous client hardware
capabilities in a network that supports multicast.

Shepherd et al. [6] supports a stream abstraction,
and describes the negotiation of connection rate pa-
rameters and buffer sizes, as well as providing client

level flow control. They consider priming streams be-
fore playout begins as well as adaptations for appli-
cations requiring error-free transmission. Wolfinger
and Moran [7] also define a stream oriented service,
focusing on delivery of stream data units and provid-
ing mechanisms for the server to work ahead. This
is described at a lower level than in [6]. In the Net-
work Multimedia File System (NMFS) [4], buffering
strategies that employ pre-sending of frames are uti-
lized along with flow control based on client buffer oc-
cupancy. The NMFS views knowledge of stream char-
acteristics as hints and not contracts and has a more
restricted environment in which it is applicable. Ex-
plicit feedback from the client is required in all these
systems.

In Hoffman et al. [1] and Pasquale et al. [3], proto-
type systems have been developed that place filters
at different points in the network with the goal of
supporting scalable flows from hierarchical encoding
algorithms. Ramanathan et al. [5] manage the net-
work flow by discarding packets on a frame basis for
those media data units which cannot be properly dis-
played due to transmission errors. This requires the
network switches to have information on frame bound-
aries, while the former approaches require identifying
separate components of the stream in order to do the
appropriate filtering.

7 Conclusions

We have shown that traditional approaches to flow
control and rate control in distributed continuous me-
dia systems are insufficient to deal with the variability
of data in the stream to be transmitted without re-
sulting in excess feedback mechanisms. Our protocol
utilizes the knowledge of the bandwidth requirements
for display as well as the client buffering capabilities
to maximize the use of the network resource and share
it effectively among the streams requiring service.

This protocol does not provide for reliable transmis-
sion of continuous media data, which would introduce
significant variation in arrival times at the client, but
allows for retransmission to enhance the correctness
of the data during times of light system usage, at the
expense of requiring a larger amount of buffering at
the server.

Preliminary performance indicates that client ap-
plications with minimal buffering are never starved
for data. In regular usage we increase the buffering
available to the clients by a factor of 4 over the mini-
mum, and with many clients presenting a mix of audio,
video, and text streams we have never observed data
underflow at the client, even on a moderate to heavily
loaded server. Providing additional buffer space at the

client has the additional advantage that the server is
able to tolerate short term network overload situations
without violating its contract with the clients. This is
similar to the readahead advantages described in [2].

A multiple node version of the file server has been
implemented. The server runs on IBM RS/6000s
(running AIX 3.2.5) or Sun Sparcstations (SUN OS
4.1.3/Solaris 2.3) over a 100 Mbps ATM link (or Eth-
ernet, or Token Ring) to multiple clients running on
either of those same two architectures.

References

[1] Dan Hoffman, Michael Speer, and Gerard Fer-
nando. “Network Support for Dynamically Scaled
Multimedia Data Streamns,” Proceedings of the Jth
International Workshop on Network and Operat-
ing Systems Support for Digital Audio and Video,
Lancaster UK, November 1993.

[2] Gerald Neufeld, Dwight Makaroff, and Norman
Hutchinson, “Design of a Variable Bit Rate Con-
tinuous Media File Server for an ATM Network,”
ISHT/SPIE Multimedia Computing and Network-
ing, San Jose, January 1996.

[3] Joseph C. Pasquale, George C. Plyzos, Eric W.
Anderson, and Vachaspathi P. Kompella. “Filter
Propagation in Dissemination Trees: Trading Off
Bandwidth and Processing in Continuous Media
Networks,” Proceedings of the jth International
Workshop on Network and Operating Systems Sup-
port for Digital Audio and Video, Lancaster UK,
November 1993.

[4] Sameer Patel, Ghaleb Abdulla, Marc Abrams, and
Edward A. Fox. “NMFS: Network Multimedia File
System Protocol,” Proceedings of the 3rd Interna-
tional Workshop on Network and Operating Sys-
tems Support for Digital Audio and Video, San
Diego, Novemnber 1992.

[5] Srinivas Ramanathan, P. Venkat Rangan, and
Harrick M. Vin, “Frame-Induced Packet Discard-
ing: An Efficient Strategy for Video Networking,”
Proceedings of the 4th International Workshop on
Network and Operating Systems Support for Dig-
ital Audio and Video, Lancaster UK, November
1993.

[6] Doug Shepherd, David Hutchison, Francisco Gar-
cla and Geoff Coulson, “Protocol Support for Dis-
tributed Multimedia Applications,” Proceedings of
the 2nd International Workshop on Network and
Operating Systems Support for Digital Audio and
Video, Heidelberg, Germany, November 1991.

[7] Bernd Wolfinger and Mark Moran, “A Contin-
uous Media Data Transport Service and Proto-
col for Real-Time Communication in High Speed
Networks,” Proceedings of the 2nd International
Workshop on Network and Operating System Sup-
port for Digital Audio and Video, Heidelberg, Ger-

many, November 1991.

