
The Design of a Variable Bit Rate ContinuousMedia ServerGerald Neufeld, Dwight Makaro� and Norm HutchinsonDepartment of Computer Science,University of British ColumbiaVancouver, CanadaAbstract. This paper describes the design and implementation of a �leserver for variable bit rate continuous media. Most continuous media �leservers have been designed for constant bit rate streams. We address theproblem of building a server where each stream may have a di�erent bitrate and, more importantly, where the bit rate within a single streammay vary considerably. Such servers will be come increasingly more im-portant because of Variable Bit Rate (VBR) compression standards suchas MPEG-2.1 IntroductionThe motivation for the design of a specialized �le server for continuous mediasuch as video and audio is well established. Most existing work in this area hasassume constant bit rates for the media stream. Recent work has been done inanalyzing variable rate servers[1]. However, such analysis still assumes that eachindividual stream has a constant bit rate. Compression methods such as motionJPEG or MPEG-2 produce streams whose bit rates vary considerably within thestream. The server describe here is intended to support such variable streams.The primary area of complexity is in the admissions control algorithm and inI/O scheduling. As well, the server described here does not assume any singlesyntax such as MPEG-2.2 ArchitectureThe design of the �le server is based on a set of server nodes, each with aprocessor and disk storage on multiple local SCSI Fast/Wide buses. Each nodeis connected to the ATM network for delivering continuous media data to theclient systems (See Figure 1).Reading a media stream from the server is done via three RPC requests:open, prepare and read. The open request provides basic administration support,while the prepare request primes the connection in preparation for subsequentreads by transmitting an initial amount of data.For example the client application issues open requests for a video, audio andtext streams. Each open request will create an XTP[2] connection { which is rate



CMFS

Controller

Client Application

Reader Writer

Interface
ATM NetworkATM

Interface

Local Bus

SCSI-2 Fast/Wide

(20 MBytes/sec)

Server SideClient Side

ATM

Processor

Micro

Server Node(s)

Fig. 1. Organization of Systemcontrolled but without error recovery { from the server node containing the �leto the client. The XTP connect request (FIRST packet) contains informationabout the minimum size of the window and the required bit rate. If the clientaccepts the request window size (i.e., reserves that amount of bu�er space) thenthe subsequent local read operations will not be delayed. During the transmissionof the media over the XTP connection, the client periodically sends RESERVEpackets back to the server indicating that it has more bu�er space available. Theclient must send a RESERVE packet if the amount of media data bu�ered atthe client falls below the minimum required for continuous operation.3 Admissions control algorithm and I/O schedulerIn order to schedule variable bit rate (VBR) streams, the server de�nes �xedlength cycles or slots for all streams1. Each disk stream is then divided intothese slots. A stream vector is created which contains the number of blockswhich must be read for each slot for the stream. Because the stream may beVBR, the values for the vector may vary considerably.The admissions control algorithmmust know what is the minimumand max-imum number of blocks that the server can read in a single slot. These values arecalculated by running a calibration program. The minimumnumber is calculatedby uniformly spacing the blocks across the disk thus maximizing the seek times(assuming a SCAN algorithm). The maximum number of blocks which can beread is simply the number of contiguous blocks which can be read in a slot time.These values more accurately re
ect the actual capacity of the server since theyinclude all transfer delays (through SCSI bus and I/O bus to memory as well asserver software overhead).1 A reasonable time for such a slot may be 500 milliseconds.



A simple admissions algorithm then is simply to sum the vectors for theactive streams plus the new stream. If any slot in the resulting vector is greaterthan the minimumnumber of blocks the server can read per slot, the admissionfails. This is a very conservative estimate however. Any single slot may haveless blocks to read than the server could read. In this case, the server is idle atthe end of a slot. In order to admit more streams, we permit the server to readahead as fast as it can subject to bu�ering constraints. By permitting the serverto read ahead we can admit a stream where the total number of blocks requiredto be read within a slot is greater than the minimumnumber of blocks the servercan read for a slot. The amount of such over allocation is proportional to thenumber of blocks the server has read ahead. The maximum number of blocksa server can read per slot is required for accurately calculating the bu�eringrequirements.The following example illustrates this method. Assume that the server iscapable of reading a minimum of 10 (�xed size) disk blocks per slot. Figure 2shows the current schedule for the server and a new stream to be admitted. In
93 5 2 7 3 6

i-1 i i+1

9

i+2

93 5 2 7 3 6

i-1 i i+1

9

i+2

1 3 21 3

1 2 3 4 5

1 3 21 3

1 2 3 4 5
New stream vector

9 3 6

i-1 i i+1 i+2

4 6 12 5 9 9 3 6

i-1 i i+1 i+2

4 6 12 5 9

Combined Server Schedule

Current Server Schedule

Fig. 2.these vectors, the numbers represent the number of disk blocks that must beread in each slot. For instance, in the current server schedule, at slot i the servermust read 3 disk blocks, at slot i + 1 the server must read 5 disk blocks etc.These blocks represent the total number of blocks for all active streams. Thevector for the new stream to be admitted represents the blocks which must beread just for that new stream. For instance, in the �rst slot for the new streamthe server must read 1 block, then 1 again for the next slot, etc.In the conservative admissions control algorithm, we would simply add thenew stream vector to the current schedule. In this case, the i+ 2nd slot would



have a value of 12 which is higher than the minimumnumber of blocks the servercan read in that slot (10). However if we permit the server to read more than asingle slots worth, the �rst two slots worth of disk blocks would be read in oneslot time. This read-ahead permits the given schedule to be accepted. By thetime the server reads slot i + 2 it will still be in the 2nd slot of time assumingthe server reads at the minimum number of blocks per slot.The server in practice reads more than the minimum blocks per slot. Thisread-ahead is taken into account when a new vector is added. The number ofblocks that were read-ahead are the actual number of blocks the server wasable to read per slot (between minimum and maximum blocks per slot). Thealgorithm starts with this number of actual read-ahead blocks and then continuesassuming the server will read a minimum number of blocks.So far in this discussion we have assumed that there are an arbitrary numberof bu�ers. That is, the server can read ahead with out fear of running out ofbu�ers. Clearly this is not the case. We therefore have to stop read-ahead in theadmissions algorithm once we have run out of bu�ers. For purposes of bu�erconsumption we assume the server reads a maximum number of blocks per slot.As bu�ers are transmitted on the ATM network they are freed. We thereforefactor in the number of bu�ers that are being freed into the admissions algorithm.A detailed description of this algorithm is given in [3].4 ConclusionsA multiple node version of the �le server has been implemented.We have createda client that supports video (using the Parallax JPEG card), audio and text.Synchronization is accomplished using the described methods to schedule theprepare calls and using a real-time schedule to maintain the synchronizationof the presentation (lip-sync). The server runs on a IBM RS 6000 (350) overan 100 Mpbs ATM link to a client running on a Sun Sparc II. The systemenvironment uses a real-time threads package developed for this project whichoperates within a single Unix process [4]. This package also provides an operatingsystem shield to native systems which do provide some form of real-time threadssuch as AIX 4.1.References1. Bikash, S., Ito, M. and Neufeld, G.: The Design and Performance of a ContinueMedia Server for a High-Speed Network to appear IEEE MultiMedia Conference,Boston, (May 1995)2. Strayer, W. T., Dempsey B. J., and Weaver A. C.: XTP: The Xpress TransferProtocol, Addison Wesley Publishing, 19923. Neufeld, G., Makaro�, D., Hutchinson, N.: Internal Design of the UBC DistributedCMFS, Technical Report, (1995)4. The UBC Real-Time Threads package, Technical Report, July,1994This article was processed using the LaTEX macro package with LLNCS style


