
Design of a Variable Bit Rate Continuous Media File Serverfor an ATM NetworkGerald Neufeld, Dwight Makaro� and Norman Hutchinsonfneufeld,makaro�,hutchinsong@cs.ubc.caDepartment of Computer ScienceUniversity of British ColumbiaVancouver, B.C. V6T 1Z4CanadaABSTRACTThis paper describes the design and implementation of a �le server for variable bit rate continuousmedia. Most continuous media �le servers have been designed for constant bit rate streams. Weaddress the problem of building a server where each stream may have a di�erent bit rate and, moreimportantly, where the bit rate within a single stream may vary considerably. Such servers will become increasingly more important because of Variable Bit Rate (VBR) compression standards suchas is possible with MPEG-2. 1 INTRODUCTIONThe motivation for the design of a specialized �le server for continuous media such as video andaudio is well established .5,12,15 Data Access patterns, as well as the services provided to the client bya continuous media �le server (CMFS) di�er considerably from a conventional distributed �le servicesuch as NFS. A continuous media client typically transfers large volumes of sequential data. As well,the resource requirements of the network and server itself di�er considerably. In order to guaranteecontinuity, the allocation of network resources such as bandwidth must be guaranteed. Similarly,the availability of resources at the server, such as processor cycles, RAM, and disk bandwidth, mustbe guaranteed to properly service the client.In order to provide such guarantees at the server, some assumptions must be made about theresources available, such as the bandwidth of the disk and the resource requirements of the client.Most of the prior research in this area has made simplifying assumptions about these two aspects.3,15In reality, however, a continuous media �le server must be able to handle many di�erent transfer ratesconcurrently. Some recent work has been done that attempts to analyze such servers.4 Such analysisstill assumes, however, that each individual stream has a constant bit rate (CBR). Compressionmethods such as motion JPEG or MPEG-2 produce streams whose bit rates vary considerably. Itis, of course, possible to use these schemes to produce a constant bit rate stream but then either toomany resources are required or the quality of the stream is impaired. Computers and data networksare well-suited to handle bursty tra�c. In particular, much e�ort has gone into making ATMnetworks capable of handling the bursty tra�c characteristic of data networks. It seems reasonableto design a �le service which can explicitly accommodate such variation in resource requirements andthereby increase the number of simultaneous streams supportable. This is similar to the approachlabeled planned bandwidth allocation by Dey-Sircar.6

The CMFS described here addresses two major design issues:Synchronization support A client typically requires multiple concurrent media streams. Forexample, a session may include video, audio and captioned text. Standards exist that allowall three of these to be combined into a single stream, but this severely limits the exibility ofthe resulting system. For instance, a user may wish to display the same video together witha one of a variety of di�erent audio streams depending on the preferred language (English,French, etc.). As well, the streams may come from di�erent servers. In order to support suchexibility the server should not be restricted to a single media syntax such as MPEG-2, oreven a limited selection of syntaxes, but should support any syntax a client wishes to store.Since such a server cannot assume that it understands the syntax of any media stream, it mustprovide a suitable abstraction for time such as media units per second. Section 3 presents theabstract playback interface that the server exports to its client.VBR Admission Control The I/O scheduling is based on variable bit rate streams rather thanconstant bit rates. This permits the scheduling of streams that have been compressed usingVBR schemes such as motion JPEG and MPEG-2. In addition to the variation inherent inthe encoding of I, B and P frames, variation also arises on granularities of a second or moreacross video scene boundaries. Section 4 describes both the admissions control algorithm andthe stream scheduler for variable bit rate tra�c.The next three sections describe the architecture of the system, how clients synchronize multiplestreams and the admissions control/scheduling algorithm respectively. This is followed by a sectionon related work. We end the paper with some conclusions, a report on the status of our server, anda description of future work. 2 ARCHITECTUREThe design of the �le server is based on a controller node and a set of server nodes, each with aprocessor and disk storage on multiple local SCSI-2 Fast/Wide buses. Each node is connected to anATM network for delivering continuous media data to the client systems (see Figure 1).A su�cient number of disk drives are attached to the SCSI buses to provide the required band-width. The disks can be striped along a single SCSI bus (usually to a maximum of four disks) orstriped across multiple SCSI buses.Multiple server nodes can be con�gured together to increase the capacity of the service. Sinceeach server node is independent of the others, any number can be added subject only to the capacityof the network switch con�guration. Con�gurations can consist of either completely independentcomputers, or processor cards interconnected via an I/O bus such as VME. In the latter case, thenodes can communicate over the I/O bus rather than the ATM network. In either case, the initialclient open request goes from the client to the controller node. This node determines which of theserver nodes has the requested stream and forwards the request to the appropriate server node alongwith a detailed description of the bandwidth for each display unit required by the stream, knownas its playout vector (See Section 4) . Communication from then on takes place directly between aparticular server node and the client.In our con�guration, the ATM network consists of NewBridge switches, connecting the the clientsand server nodes with 100 Mb/s multimode �bre. The nodes are IBM RS/6000s (350) running AIX.The local bus is a micro channel operating at a peak of 80 MBytes per second. We currently havefour disks attached to a single SCSI-2 Fast/Wide bus. Software striping is done across these fourdisks. Currently we have two server nodes.Client applications have been written for both Sun workstations and IBM RS/6000s. On bothplatforms, the client can perform hardware JPEG decoding (using a Parallax card on the Sun andan IBM JPEG card on the RS/6000s). Using hardware decoding, frame rates of 30 frames persecond can be supported at a resolution of 640x480. A client application that performs software

Client Application

Reader ATM

Interface
Processor

Processor

ATM

Interface
ATM

Interface

Attribute

Local Bus Database

Interface
ATM Network

Local Bus

ATM

Server Node(s)
(20 MBytes/sec)

SCSI-2 Fast/Wide

Client Side Server Side

Controller Node

Client Application

Writer Figure 1: Organization of SystemMPEG decoding is supported although at a much reduced frame rate and resolution. These clientscan playback audio, video and/or text in a synchronized fashion on an Xterminal (or NTSC videodisplay for IBM's decoding card). Further, uncompressed video display clients are supported, butagain at reduced frame rate due to the large amount of data that must be transmitted. Bothplatforms also have clients that write continuous media objects to the CMFS.3 SYNCHRONIZATIONServer support for synchronization is required since a client may request multiple media objects,potentially from di�erent servers, which need to be synchronized at the client. For example, if avideo object is to be combined with an audio object at the client, it is typically expected that thiswill be done in such a way that lip-synchronization is achieved. In our design, the video and audioobjects may be completely independent { they may even exist on di�erent server nodes. Anotherexample of where synchronization is required at the client is in support of scalable video. In scalablevideo, a video stream is composed of a base stream and one or more additional streams which canbe combined with the base stream to produce higher quality video.7 Depending on the qualitydemanded by and bandwidth available to the client, it may require zero or more of the additionalstreams, each of which is stored as a separate object at the server. Since the server does not haveknowledge of the video syntax, it is not possible for the server to combine these streams; therefore,it must provide a mechanism which permits multiple streams to arrive at the client su�ciently closeto the same time to allow the streams to be combined at the client.Media objects are composed of sequences of data objects called \segmented objects" or simply\segments." The duration of a segment is determined at the time the media object is created andmay depend on the syntax of the media. For example, if the media object is an MPEG stream, asegment could be an I-B-P sequence of frames. For motion JPEG a segment may be an individualframe.

Reading a media object from the server is done via three RPC requests: open, prepare and read.The open request is sent as an RPC to the Server Controller. The media object to be read is speci�edwith a universally unique object identi�er. The controller determines if the object exists and onwhich node (or nodes) it resides (objects may migrate from node to node, or be replicated). Therequest, along with the playout vector is forwarded to the selected node. The node then determinesthe client's bu�ering requirements and passes this information along with the transport-level protocolconnection open request to the client. We assume that the client is capable of double bu�ering forthe worst case. That is, given a variable bit rate stream, the maximum bu�ering requirement isthe maximum data required in any two successive time intervals. This is the minimum amount ofbu�ering required for the read operations to have no external (network and server) latency. Theserver completes the open request and returns the worst-case delay that a prepare request will take.No stream data is transmitted over the connection at this time.When the client is ready to begin receiving the data, it sends a prepare request to the serverindicating the positions within the media object at which the server should start and end the playout(speci�ed as segment identi�ers), the speed of the playout, and whether each segment should be sentor whether segments should be skipped. The latter two parameters provide the capability to playback the stream at speeds other than that at which it was recorded. The analysis in5 indicates that areasonable way by which fast motion display can be done without immense increase in bandwidth isto skip sequences that are a reasonably long (1 second or more) length of time. The user will be ableto observe fast forward (or fast rewind). Rewind is indicated by specifying a ending position that isearlier in time than the starting position. The server runs the admissions control algorithm and ifsuccessful, schedules the disk manager to begin reading the media blocks for the client. When the�rst interval of data has been read from the disk and sent to the client, the prepare request returnsto the client. Since the stream is now scheduled, however, the server continues to read and transmitblocks subject to bu�ering constraints at the server and client. The client is now ready to read andprocess the media stream. This is done via read requests. Reads are local client operations whichsimply pass the data from the network bu�ers to the application. Once prepare has returned, theclient must begin reading within a designated interval of time determined by the bu�ering allocatedat the client and server.This interface has been designed to support the synchronization of multiple streams, as explainedin the following example. Assume that the client must synchronize three streams; one for video, onefor audio and one for text. The client issues three open requests. Each open returns the maximumtime a prepare will take for that stream. Based on this information, the client schedules the threeprepares so that the read operations can begin immediately thereafter. This is easily implementedusing a real-time threads8 environment where each thread controls a stream. Each prepare maytake a di�erent amount of time to return. Since the client cannot start reading the data until allof the prepare operations complete, there may be a signi�cant lag time between the completion ofthe �nal prepare and the earlier ones. During this lag time, the server will continue to schedule andread blocks for each stream. As a result, su�cient bu�er space must exist at either the client orthe server to accommodate this lag. In order to determine whether su�cient resources exist, theclient speci�es the maximum lag time in each prepare request. If the combination of the bu�eringavailable at the client and the server is not su�cient, the prepare request will fail.4 ADMISSIONS CONTROL ALGORITHM AND I/OSCHEDULERWhen a client �rst stores a media object, a presentation unit vector is created which containsthe number of bytes which must be read for each presentation unit for the stream. For example, apresentation unit can be a video frame or a second of audio. Because the stream may be VBR, thevalues for the vector may vary considerably.In order to schedule variable bit rate (VBR) streams, the server divides time into �xed length

intervals called \slots" or \rounds".� When a media object is prepared, the data required is dividedinto these slots as explained below.The admissions control algorithm must know the minimumnumber of blocks that the server canread in a single slot, called minRead. This value is determined by running a calibration program.The minimumnumber is calculated by uniformly spacing the blocks across the disk thus maximizingthe seek times (assuming a SCAN algorithm). This value most accurately reects the actual capacityof the server since it includes all transfer delays (through SCSI bus and I/O bus to memory) as wellas server software overhead.This single value is the only piece of information required from the disk system. The admissionscontrol algorithm is therefore independent of the mechanism used to layout blocks on the disk or anyother disk management technique such as striping. Clearly, the more optimized the disk managementis, the higher the value for the minimum number of disk blocks that can be read, and therefore,more clients can be accepted and scheduled. The admissions scheme itself, however, is not a�ectedby these optimizations. The value for minRead must be reasonably close to the actual number ofreads per slot. Otherwise, the admissions algorithm will be very conservative. It is possible to relaxthe value for minRead if only statistical guarantees are required.The scheduling of the disk reads for a stream is done whenever a media object is prepared(Section 3). At this time the presentation unit vector, is converted to a \block schedule" whichrecords the number of blocks to be read per slot for that stream. This number is inuenced bythe exible parameters that the user can select in prepare. These are the values of the start andstop positions and the values of speed and skip speci�ed in the prepare request. More data may beread than the required number of bytes in any given slot, due to block boundaries and o�sets intoblocks, but this is compensated for in subsequent slots, unless the settings of prepare parameterscause discontiguities in the data locations on the disk.A simple admissions algorithm is to sum the block schedules for all the active streams. Theresulting sum is called the \server schedule." The server schedule indicates for each slot the numberof blocks that must be read for all active clients. If any slot in the resulting vector is greater thanthe minimum number of blocks the server can read per slot (minRead), the admission fails. Thisis a very conservative estimate, however, because any single slot may have considerably less thanminRead I/O operations. In this case, the server is idle at the end of a slot. In order to admitmore streams, we permit the server to read ahead as fast as it can subject to bu�ering constraints.By permitting the server to read ahead we can admit a stream where the total number of blocksrequired to be read within a slot is greater than the minimum number of blocks the server can readfor a slot.The following example illustrates this method. Assume that the server is capable of reading aminimum of 10 (�xed size) disk blocks per slot. Figure 2 shows the current schedule for the serverand a new stream to be admitted. In these vectors, the numbers represent the number of disk blocksthat must be read in each slot (block schedule). For instance, in the current server schedule, at sloti the server must read 3 disk blocks, at slot i + 1 the server must read 5 disk blocks, etc. Theseblocks represent the total number of blocks for all active streams. The vector for the new streamto be admitted represents the blocks which must be read just for that new stream. For instance, inthe �rst slot for the new stream the server must read 1 block, then 1 again for the next slot, etc.In the conservative admissions control algorithm, we would simply add the new block scheduleto the current schedule. In this case, the i + 2nd slot would have a value of 12 which is higher thanthe minimum number of blocks the server can read in that slot (10). If we permit the server to readmore than a single slot's worth, however, the �rst two slot's worth of disk blocks would be read inone slot time. This read-ahead permits the given schedule to be accepted. By the time the serverreads slot i + 2 it will still be in the 2nd slot of time assuming the server reads at the minimumnumber of blocks per slot.The server in practice reads more than the minimumnumber of blocks per slot. While we cannot�A reasonable length for such a slot is 500 milliseconds. If the slot size is too large, the granularity of control iscompromised; if too small, the overhead incurred is too great.

1 3 2

New Stream Block Schedule

1 31 3 21 3

93 5 2 7 3 6

i-1 i i+1

9

i+2

93 5 2 7 3 6

i-1 i i+1

9

i+2

9 3 6

i-1 i i+1 i+2

4 6 12 5 9 9 3 6

i-1 i i+1 i+2

4 6 12 5 9

Combined Server Schedule

Current Server Schedule

43210Figure 2: Server Schedule During Admissioncount on this for the future, we can take advantage of read ahead that has already been accomplishedin the past. The algorithm starts with this number of actual read-ahead blocks and then continuesassuming the server will read a minimum number of blocks in each future slot.So far in this discussion, we have assumed that there are an arbitrary number of bu�ers. Thatis, the server can read ahead with out fear of running out of bu�ers. Clearly this is not the case.Therefore, we have to stop read-ahead in the admissions algorithm once we have run out of bu�ers.For purposes of bu�er consumption we again assume the server reads a minimum number of blocksper slot. As bu�ers are transmitted on the ATM network, they are freed. Thus, we factor in thenumber of bu�ers that are being freed into the admissions algorithm. Data is transferred to theclient, and the corresponding bu�ers freed, however, at a rate which depends on the amount of bu�erspace available at the client and the negotiated bit rate of the network connection. We thereforemaintain another vector called the \bu�er allocation vector." This vector is initially the same asthe server schedule vector. As data is transferred to the client and bu�ers are freed, however, thevalues in the vector are decremented. Note that there is a 1 slot delay in recovering bu�ers. That is,bu�ers containing data to be sent to a client in slot i are not reclaimed until the start of slot i+ 1.For both the server schedule and the bu�er allocation vector there is a \current slot" index. Forthe server schedule, this index identi�es the next slot to read. For the bu�er allocation vector itindicates the point of division between bu�ers that have been �lled and bu�ers that will be requiredfor future reads. As well, there is a \should be" index. This index is incremented by one after eachslot time. The di�erence between \current slot" and \should be" is the number of slots read ahead.As the server reads a slot, it sets the value in the corresponding entry in the server schedule tozero, indicating the slot has been read. Figure 3 illustrates the manipulation of these values. Noticein this example that in the �rst three slots the network was able to transmit slightly earlier thanrequired by the playout vector. As a result we were able to free �ve extra bu�ers and add them tothe total pool.Figure 4 describes the algorithm in detail. In this algorithm newStream is the block schedule forthe stream to be added (which may have di�erent numbers of blocks for each slot) and slotCountis the size of newStream. The total number of free bu�ers at the start of running the admissionstest is given in the variable totalFreeBu�s. The serverSchedule and bu�erAllocate vectors are thedisk and bu�er allocations per slot. The variables shouldBe and currentSlot refer to the \should be"and \current slot" indices respectively. For illustration reasons we assume that these vectors arearbitrarily long.This algorithm takes into account the actual amount of read-ahead and the actual number offree bu�ers at the time the algorithm is run. As a result, it uses the actual performance in the past

4 6 12 5 9

90 0 0 0 0

5 92 4 11
Buffer Allocation

Vector

were read ahead.

These are the slots that

Should Be Current Slot

3 6

Figure 3: Example of Server Schedule and Bu�er Allocation Vectorsand assumes the minimumperformance in the future based on minRead. If minRead is considerablysmaller than the actual number of blocks read per slot, then we could reject streams which could beadequately supported by the server. One simple approach to this problem is to increase the valueof minRead to a value approaching the actual number of blocks read. This would prevent us fromo�ering hard guarantees to clients, but may be a reasonable alternative in some environments.Another aspect of the system is that if we allow the server to read ahead arbitrarily far it will doso and thereby, use up all of the bu�ers. The algorithm may easily reject clients due to insu�cientbu�ers. A simple approach to this problem is to always keep in reserve some number of bu�ers fornew clients. Knowing how many bu�ers to withhold for this purpose, however, would be di�cultto determine. Another approach is to free some number of bu�ers that contain data with the latest\deadline" (i.e. data that will not be needed for the longest time). If we knew the correct number ofbu�ers to reclaim, we could add them back to the server schedule, reset the value of currentSlot, freethe bu�ers, and then run the admissions algorithm in Figure 4. It is easy to see that both freeingtoo few bu�ers and freeing too many bu�ers will cause the admissions algorithm to fail. Freeingtoo few bu�ers (in the limit, 0) will not provide su�cient read ahead on the new stream to smoothout the peaks of its data rate requirements. Freeing too many (in the limit, all of them) eliminatesread ahead that streams which have already been accepted are relying on to smooth out their peakrequirements.An approximation to this scheme is the following: run the admissions control algorithm, if itsucceeds we report success; if it fails, we move the current slot back one, free the bu�ers indicatedin the bu�er allocation vector at that slot and try again. If it fails again, then we back up two slotsand try again. We repeat this with some back o� strategy (either linear or exponential may makesense in a variety of circumstances) until either the algorithm succeeds or we have moved currentSlotall the way back to shouldBe in which case we are unable to admit the new stream. Note that in allthese cases, the original values for serverSchedule and bu�erAllocate must be reset if the algorithmfails.A factor in running the algorithm this many times is the duration the algorithm takes to complete.However, since the algorithm is linear in the length of the longest stream currently scheduled, thiscost is minimal, making this approach feasible.When the admissions control algorithm is examined in detail, we discover that we can accomplishthe simulation of freeing bu�ers in the future dynamically as we schedule the new stream. This isdone by modifying the processing when there are not enough free bu�ers. If this modi�ed algorithmrejects a new stream, there does not exist a number of bu�ers to free that would allow us to acceptthis stream. The intuition behind this claim is that the new algorithm never wastes disk bandwidth

AdmissionsTest(newStream, slotCount)begin for i = 0 to slotCount doserverSchedule[shouldBe + i] = serverSchedule[shouldBe + i] + newStream[i]bu�erAllocate[shouldBe + i] = serverSchedule[shouldBe + i] + newStream[i]endfor i = shouldBe to max vector size dof Note that readAhead may be negative.greadAhead = minRead � serverSchedule[i](1) if (totalFreeBu�s < minRead) thentotalReadAhead = totalReadAhead � serverSchedule[i]elsetotalFreeBu�s = totalFreeBu�s � minReadtotalReadAhead = totalReadAhead + readAheadif totalReadAhead < 0 then ABORTf Bu�ers released from previous slot. gtotalFreeBu�s = totalFreeBu�s + bu�erAllocate[i � 1]endend Figure 4: Admissions Control Algorithmdue to a lack of bu�ers, and at every step aggressively reclaims bu�ers containing data with thelatest deadline and �lls them with data with the earliest deadline. If such an approach cannot �ndenough bandwidth to service the combined set of streams, then no approach can do better. Thedetails of this modi�cation are given in Figure 5 which replaces the code identi�ed by (1) in Figure 4.The actual reclaiming of bu�ers is not performed at admissions time. When the disk schedulegets executed, each disk read attempts to locate a free bu�er. If none exist, the bu�er with thelatest deadline is reclaimed. Not all of the bu�ers predicted for reclamation may end up beingreclaimed, since transmission may occur more quickly than anticipated, a user may stop playback orclose a connection on an unrelated stream, or other similar circumstances may occur. The admissionalgorithm need only determine that, even in the worst case, su�cient bu�ers will be available to bereclaimed to make the schedule feasible.The algorithm mentioned in this section has execution time linear in the number of slots in theentire server schedule, because every time period must be checked to see if the bandwidth requiredcan be supported. We have performed preliminary testing which indicates that, for a 2 hour schedule(14400 slots @ 500 msec), the amount of time necessary to perform the admissions test on a streamis less than 14 msec on a 66 SpecInt CPU.

while (totalFreeBu�s < minRead) and (currentSlot > i+1) docurrentSlot = currentSlot � 1reclaim = min(minRead � totalFreeBu�s, bu�erAllocate[currentSlot])totalFreeBu�s = totalFreeBu�s + reclaimserverSchedule[currentSlot] = serverSchedule [currentSlot] + reclaimendread = min(totalFreeBu�s, minRead)totalFreeBu�s = totalFreeBu�s � readtotalReadAhead = totalReadAhead + read � serverSchedule[i]Figure 5: Modi�ed Admissions Control Algorithm5 RELATED WORKMuch of the previous work in Continuous Media File Systems has been based on the constant bit-rate delivery of individual streams.3,11,13,15 The structure of the servers described in Anderson andHomsy2 and Lougher and Shepherd11 is similar to ours, but does not provide the linear scalabilityof our approach. Hillyer and Robinson10 and Tierney et al.17 do seem capable of this type of scaling,although the focus in the former is on a more generic �le system while the latter focusses on extremelyhigh volume data transfer of image data. Some work3,10 attempts to balance the performance ofreal-time and signi�cant amounts of non real-time data in the same server. This needs a moreintegrated approach to the entire system design and adds somewhat to the complexity of achievingthe performance goals.The synchronous playback of multiple streams is addressed by several approaches, in particularAgarwal et al.1 and Anderson and Homsy.2 These methods provide comprehensive models forsynchronization that involve both the client and the server. Our model provides the interface tosynchronize many independent streams without inserting complexity into the data itself. Variablespeed playback mechanisms are described in Chen et al.5 and Dey-Sircar et al.6Since the resource requirements of a stream must be known and reserved, there is a limit tothe number of simultaneous users that can be supported by any continuous media system. Everyprevious system must provide a method of admission control that does not result in violation ofcontinuity requirements. Many of these approaches3,9,15,18 provide acceptance tests based on diskbandwidth and network bandwidth assuming the maximum possible data transmission rate at anypoint in the life of a stream connection. Their admission control is e�cient because it can be doneas a constant-time calculation, but does not take advantage of the variability of the stream to acceptmore connections. Vin et al.19 describes an admissions test that incorporates the distribution ofbit-rates into an algorithm that provides statistical guarantees of acceptable continuity. None ofthe other approaches address the the exact peaks and valleys in data requirements experienced bya given set of continuous media streams. Careful layout of disk blocks is used to increase the diskbandwidth (often of a set of streams expected to be played out in some kind of synchronous fashion)to increase the likelihood of a successful admission.11,15,176 CONCLUSIONSIn this paper, we have described a Continuous Media File Server that we have both designed andimplemented. This server delivers scalable performance because the nodes of which it is comprisedare completely independent. The server provides an API that permits client applications to schedule

multiple, concurrent streams in a simple, direct fashion, given that they are informed of a bound onthe latency of a prepare operation. The API also provides a exible scheme for alternative playoutrequests, rather than the \complete object, full speed, no stop" scenario.Another contribution of this paper is a unique approach to admission control that examines thedisk bandwidth requirements at a �ne granularity. This admission control introduces very littleoverhead and allows a greater number of simultaneous requests to be serviced. The bene�t isachieved because we permit the server to read ahead of its schedule at the maximum possible rate,subject to bu�ering constraints. We assume a minimum rate of disk reads, which is calibrated apriori. based on worst case assumptions of block layouts and use that amount to provide the abilityto smooth out peaks in individual stream requirements. This does not additionally restrict futureadmissions, because �lled bu�ers which are needed for the new stream can be aggressively chosenfor reclamation (at no cost) without altering the feasibility of the schedule, keeping the disk busy asmuch as possible. Our design particularly complements both the variable nature of digitized audioand video and the ability of ATM networks to handle bursty tra�c.7 CURRENT STATUS AND FUTURE WORKA multiple node version of the �le server has been implemented. The server runs on IBMRS/6000s (350) or Sun Sparcstations over a 100 Mbps ATM link (or Ethernet, or Token Ring) tomultiple clients running on either of those same two architectures. The system environment uses areal-time threads package developed for this project which operates within a single Unix process.8This package also provides an operating system shield to native systems which do provide some formof real-time threads such as AIX 4.1.Future work is underway to investigate the details of performing real-time transmission of thecontinuous media across the network. The variable bit-rate schedule and information about clientresources provides information which the server can use to schedule the network sends in a mannerthat e�ectively and fairly utilizes the available network bandwidth. This scheduling is complicateddue to the fact that the clients may have varying amounts of bu�er space or may have negotiated anetwork resource allocation that is not su�cient to utilize the available bu�er space.ACKNOWLEDGMENTSThe authors would like to acknowledge the e�orts of David Finkelstein, Ann Lo, and RolandMechler for their e�orts in design and implementation of the Real-Time Threads package, the XTPnetwork communication protocol and video/audio display clients to test many of our ideas.8 REFERENCES[1] N. Agarwal and S. Son. Synchronization of Distributed Multimedia Data in an Application-Speci�c Manner. In ACM Multimedia, pages 141{148, San Francisco, October 1994.[2] David P. Anderson and George Homsy. A Continuous Media I/O Server and Its SynchronizationMechanism. IEEE Computer, 24(10):51{57, October 1991.[3] David P. Anderson, Yoshitomo Osawa, and Ramesh Govindan. A File System for ContinuousMedia. ACM Transactions on Computer Systems, 10(4):311{337, November 1992.[4] S. Bikash, M. Ito, and G. Neufeld. The Design and Performance of a Continuous Media Serverfor a High-Speed Network (to appear). In IEEE Multimedia, Washington, D.C., May 1995.[5] Ming-Syan Chen, Dilip D. Kandlur, and Philip S. Yu. Support for Fully Interactive Playout ina Disk-Array-Based Video Server. In ACM Multimedia, pages 391{398, San Francisco, October

1994.[6] K. Salehi Dey, J. Kurose, and D. Towsley. Providing VCR Capabilities in Large-Scale VideoServers. In ACM Multimedia, pages 25{32, San Francisco, October 1994.[7] E. Dubois, N. Baaziz, and M. Matta. Impact of Scan Conversion Methods on the Performanceof Scalable Video Coding. In IS&T/SPIE Proceedings, San Jose, February 1995.[8] D. Finkelstein, R. Mechler, G. Neufeld, D. Makaro�, and N. Hutchinson. Real-Time ThreadsInterface. Technical Report 95-07, University of British Columbia, Vancouver, B. C., March1995.[9] D. James Gemmell. Multimedia Network File Servers: Multi-channel Delay Sensitive DataRetrieval. In ACM Multimedia, pages 243{250, June 1993.[10] Bruce K. Hillyer and Bethany S. Robinson. Communications Issues in BBFS, a BroadbandDistributed Filesystem. In GlobeCom 91, pages 1097{1101. IEEE, October 1991.[11] Phillip Lougher and Doug Shepherd. The Design of a Storage Server for Continuous Media.The Computer Journal (special issue on multimedia), 36(1):32{42, February 1993.[12] Gene Miller, Greg Baber, and Mark Gilliland. News On-Demand for Multimedia Networks. InACM Multimedia, pages 383{392, June 1993.[13] Sape J. Mullender, Ian M. Leslie, and Derek McAuley. Operating-System Support for Dis-tributed Multimedia. In USENIX High-Speed Networking Symposium Procceedings, pages 209{219, Oakland, California, August 1-3 1994. USENIX Association.[14] G. Neufeld, D. Makaro�, and N. Hutchinson. Internal Design of the UBC Distributed Contin-uous Media File Server. Technical Report 95-06, University of British Columbia, Vancouver,B. C., April 1995.[15] P.V. Rangan and H.M. Vin. Designing File Systems for Digital Video and Audio. In Proceed-ings 13th Symposium on Operating Systems Principles (SOSP '91), Operating Systems Review,volume 25, pages 81{94, October 1991.[16] W. T. Strayer, B. J. Dempsey, and A. C.Weaver. XTP: The Xpress Transport Protocol. AddisonWesley Publishing, October 1992.[17] Brian Tierney, Willian Johnston, Hanan Herzog, Gary Hoo, Guojon Jin, Jason Lee, Ling TonyChen, and Doron Rotem. Distributed Parallel Data Storage Systems: A Scalable Approach toHigh Speed Image Servers. In ACM Multimedia, San Francisco, October 1994.[18] Fouad A. Tobagi, Joseph Pang, Randall Baird, and Mark Gang. Streaming RAID - A DiskArray Management System For Video Files. In ACM Multimedia, pages 393{400, June 1993.[19] Harrick M. Vin, Pawan Goyal, Alok Goyal, and Anshuman Goyal. A Statistical AdmissionControl Algorithm for Multimedia Servers. In ACM Multimedia, pages 33{40, San Francisco,October 1994.[20] XTP Forum. Xpress Transport Protocol Speci�cation Revision 4.0, March 1995.

