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ABSTRACT

This paper describes the design and implementation of a file server for variable bit rate continuous
media. Most continuous media file servers have been designed for constant bit rate streams. We
address the problem of building a server where each stream may have a different bit rate and, more
importantly, where the bit rate within a single stream may vary considerably. Such servers will be
come increasingly more important because of Variable Bit Rate (VBR) compression standards such
as 1s possible with MPEG-2.

1 INTRODUCTION

The motivation for the design of a specialized file server for continuous media such as video and
audio is well established .>12:1% Data Access patterns, as well as the services provided to the client by
a continuous media file server (CMFS) differ considerably from a conventional distributed file service
such as NFS. A continuous media client typically transfers large volumes of sequential data. As well,
the resource requirements of the network and server itself differ considerably. In order to guarantee
continuity, the allocation of network resources such as bandwidth must be guaranteed. Similarly,
the availability of resources at the server, such as processor cycles, RAM, and disk bandwidth, must
be guaranteed to properly service the client.

In order to provide such guarantees at the server, some assumptions must be made about the
resources availlable, such as the bandwidth of the disk and the resource requirements of the client.
Most of the prior research in this area has made simplifying assumptions about these two aspects.?!?
In reality, however, a continuous media file server must be able to handle many different transfer rates
concurrently. Some recent work has been done that attempts to analyze such servers.* Such analysis
still assumes, however, that each individual stream has a constant bit rate (CBR). Compression
methods such as motion JPEG or MPEG-2 produce streams whose bit rates vary considerably. Tt
18, of course, possible to use these schemes to produce a constant bit rate stream but then either too
many resources are required or the quality of the stream is impaired. Computers and data networks
are well-suited to handle bursty traffic. In particular, much effort has gone into making ATM
networks capable of handling the bursty traffic characteristic of data networks. It seems reasonable
to design a file service which can explicitly accommodate such variation in resource requirements and
thereby increase the number of simultaneous streams supportable. This is similar to the approach
labeled planned bandwidth allocation by Dey-Sircar.®



The CMFS described here addresses two major design issues:

Synchronization support A client typically requires multiple concurrent media streams. For
example, a session may include video, audio and captioned text. Standards exist that allow
all three of these to be combined into a single stream, but this severely limits the flexibility of
the resulting system. For instance, a user may wish to display the same video together with
a one of a variety of different audio streams depending on the preferred language (English,
French, etc.). As well, the streams may come from different servers. In order to support such
flexibility the server should not be restricted to a single media syntax such as MPEG-2, or
even a limited selection of syntaxes, but should support any syntax a client wishes to store.
Since such a server cannot assume that it understands the syntax of any media stream, 1t must
provide a suitable abstraction for time such as media units per second. Section 3 presents the
abstract playback interface that the server exports to its client.

VBR Admission Control The I/O scheduling is based on variable bit rate streams rather than
constant bit rates. This permits the scheduling of streams that have been compressed using
VBR schemes such as motion JPEG and MPEG-2. In addition to the variation inherent in
the encoding of I, B and P frames, variation also arises on granularities of a second or more
across video scene boundaries. Section 4 describes both the admissions control algorithm and
the stream scheduler for variable bit rate traffic.

The next three sections describe the architecture of the system, how clients synchronize multiple
streams and the admissions control/scheduling algorithm respectively. This is followed by a section
on related work. We end the paper with some conclusions, a report on the status of our server, and
a description of future work.

2 ARCHITECTURE

The design of the file server is based on a controller node and a set of server nodes, each with a
processor and disk storage on multiple local SCSI-2 Fast/Wide buses. Each node is connected to an
ATM network for delivering continuous media data to the client systems (see Figure 1).

A sufficient number of disk drives are attached to the SCSI buses to provide the required band-
width. The disks can be striped along a single SCST bus (usually to a maximum of four disks) or
striped across multiple SCSI buses.

Multiple server nodes can be configured together to increase the capacity of the service. Since
each server node is independent of the others, any number can be added subject only to the capacity
of the network switch configuration. Configurations can consist of either completely independent
computers, or processor cards interconnected via an I/O bus such as VME. In the latter case, the
nodes can communicate over the I/O bus rather than the ATM network. In either case, the initial
client open request goes from the client to the controller node. This node determines which of the
server nodes has the requested stream and forwards the request to the appropriate server node along
with a detailed description of the bandwidth for each display unit required by the stream, known
as its playout vector (See Section 4) . Communication from then on takes place directly between a
particular server node and the client.

In our configuration, the ATM network consists of NewBridge switches, connecting the the clients
and server nodes with 100 Mb/s multimode fibre. The nodes are IBM RS/6000s (350) running ATX.
The local bus is a micro channel operating at a peak of 80 MBytes per second. We currently have
four disks attached to a single SCSI-2 Fast/Wide bus. Software striping is done across these four
disks. Currently we have two server nodes.

Client applications have been written for both Sun workstations and IBM RS/6000s. On both
platforms, the client can perform hardware JPEG decoding (using a Parallax card on the Sun and
an IBM JPEG card on the RS/6000s). Using hardware decoding, frame rates of 30 frames per
second can be supported at a resolution of 640x480. A client application that performs software
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MPEG decoding is supported although at a much reduced frame rate and resolution. These clients
can playback audio, video and/or text in a synchronized fashion on an Xterminal (or NTSC video
display for IBM’s decoding card). Further, uncompressed video display clients are supported, but
again at reduced frame rate due to the large amount of data that must be transmitted. Both
platforms also have clients that write continuous media objects to the CMFS.

3 SYNCHRONIZATION

Server support for synchronization is required since a client may request multiple media objects,
potentially from different servers, which need to be synchronized at the client. For example, if a
video object is to be combined with an audio object at the client, it is typically expected that this
will be done in such a way that lip-synchronization is achieved. In our design, the video and audio
objects may be completely independent — they may even exist on different server nodes. Another
example of where synchronization is required at the client is in support of scalable video. In scalable
video, a video stream is composed of a base stream and one or more additional streams which can
be combined with the base stream to produce higher quality video.” Depending on the quality
demanded by and bandwidth available to the client, 1t may require zero or more of the additional
streams, each of which is stored as a separate object at the server. Since the server does not have
knowledge of the video syntax, it is not possible for the server to combine these streams; therefore,
1t must provide a mechanism which permits multiple streams to arrive at the client sufficiently close
to the same time to allow the streams to be combined at the client.

Media objects are composed of sequences of data objects called “segmented objects” or simply
“segments.” The duration of a segment is determined at the time the media object is created and
may depend on the syntax of the media. For example, if the media object is an MPEG stream, a
segment could be an I-B-P sequence of frames. For motion JPEG a segment may be an individual
frame.



Reading a media object from the server is done via three RPC requests: open, prepare and read.
The open request is sent as an RPC to the Server Controller. The media object to be read is specified
with a universally unique object identifier. The controller determines if the object exists and on
which node (or nodes) it resides (objects may migrate from node to node, or be replicated). The
request, along with the playout vector is forwarded to the selected node. The node then determines
the client’s buffering requirements and passes this information along with the transport-level protocol
connection open request to the client. We assume that the client is capable of double buffering for
the worst case. That is, given a variable bit rate stream, the maximum buffering requirement is
the maximum data required in any two successive time intervals. This 1s the minimum amount of
buffering required for the read operations to have no external (network and server) latency. The
server completes the open request and returns the worst-case delay that a prepare request will take.
No stream data is transmitted over the connection at this time.

When the client is ready to begin receiving the data, it sends a prepare request to the server
indicating the positions within the media object at which the server should start and end the playout
(specified as segment identifiers), the speed of the playout, and whether each segment should be sent
or whether segments should be skipped. The latter two parameters provide the capability to play
back the stream at speeds other than that at which it was recorded. The analysis in® indicates that a
reasonable way by which fast motion display can be done without immense increase in bandwidth 1s
to skip sequences that are a reasonably long (1 second or more) length of time. The user will be able
to observe fast forward (or fast rewind). Rewind is indicated by specifying a ending position that is
earlier in time than the starting position. The server runs the admissions control algorithm and if
successful, schedules the disk manager to begin reading the media blocks for the client. When the
first interval of data has been read from the disk and sent to the client, the prepare request returns
to the client. Since the stream is now scheduled, however, the server continues to read and transmit
blocks subject to buffering constraints at the server and client. The client is now ready to read and
process the media stream. This is done via read requests. Reads are local client operations which
simply pass the data from the network buffers to the application. Once prepare has returned, the
client must begin reading within a designated interval of time determined by the buffering allocated
at the client and server.

This interface has been designed to support the synchronization of multiple streams, as explained
in the following example. Assume that the client must synchronize three streams; one for video, one
for audio and one for text. The client issues three open requests. Each open returns the maximum
time a prepare will take for that stream. Based on this information, the client schedules the three
prepares so that the read operations can begin immediately thereafter. This is easily implemented
using a real-time threads® environment where each thread controls a stream. Each prepare may
take a different amount of time to return. Since the client cannot start reading the data until all
of the prepare operations complete, there may be a significant lag time between the completion of
the final prepare and the earlier ones. During this lag time, the server will continue to schedule and
read blocks for each stream. As a result, sufficient buffer space must exist at either the client or
the server to accommodate this lag. In order to determine whether sufficient resources exist, the
client specifies the maximum lag time in each prepare request. If the combination of the buffering
available at the client and the server is not sufficient, the prepare request will fail.

4 ADMISSIONS CONTROL ALGORITHM AND I/O
SCHEDULER

When a client first stores a media object, a presentation unit vector is created which contains
the number of bytes which must be read for each presentation unit for the stream. For example, a
presentation unit can be a video frame or a second of audio. Because the stream may be VBR, the
values for the vector may vary considerably.

In order to schedule variable bit rate (VBR) streams, the server divides time into fixed length



intervals called “slots” or “rounds”.* When a media object is prepared, the data required is divided
into these slots as explained below.

The admissions control algorithm must know the minimum number of blocks that the server can
read in a single slot, called minRead. This value i1s determined by running a calibration program.
The minimum number is calculated by uniformly spacing the blocks across the disk thus maximizing
the seek times (assuming a SCAN algorithm). This value most accurately reflects the actual capacity
of the server since it includes all transfer delays (through SCSI bus and I/O bus to memory) as well
as server software overhead.

This single value is the only piece of information required from the disk system. The admissions
control algorithm is therefore independent of the mechanism used to layout blocks on the disk or any
other disk management technique such as striping. Clearly, the more optimized the disk management
is, the higher the value for the minimum number of disk blocks that can be read, and therefore,
more clients can be accepted and scheduled. The admissions scheme itself, however, 1s not affected
by these optimizations. The value for minRead must be reasonably close to the actual number of
reads per slot. Otherwise, the admissions algorithm will be very conservative. It is possible to relax
the value for minRead if only statistical guarantees are required.

The scheduling of the disk reads for a stream is done whenever a media object is prepared
(Section 3). At this time the presentation unit vector, is converted to a “block schedule” which
records the number of blocks to be read per slot for that stream. This number is influenced by
the flexible parameters that the user can select in prepare. These are the values of the start and
stop positions and the values of speed and skip specified in the prepare request. More data may be
read than the required number of bytes in any given slot, due to block boundaries and offsets into
blocks, but this is compensated for in subsequent slots, unless the settings of prepare parameters
cause discontiguities in the data locations on the disk.

A simple admissions algorithm is to sum the block schedules for all the active streams. The
resulting sum is called the “server schedule.” The server schedule indicates for each slot the number
of blocks that must be read for all active clients. If any slot in the resulting vector is greater than
the minimum number of blocks the server can read per slot (minRead ), the admission fails. This
s a very conservative estimate, however, because any single slot may have considerably less than
minRead 1/O operations. In this case, the server is idle at the end of a slot. In order to admit
more streams, we permit the server to read ahead as fast as it can subject to buffering constraints.
By permitting the server to read ahead we can admit a stream where the total number of blocks
required to be read within a slot is greater than the minimum number of blocks the server can read
for a slot.

The following example illustrates this method. Assume that the server is capable of reading a
minimum of 10 (fixed size) disk blocks per slot. Figure 2 shows the current schedule for the server
and a new stream to be admitted. In these vectors, the numbers represent the number of disk blocks
that must be read in each slot (block schedule). For instance, in the current server schedule, at slot
¢t the server must read 3 disk blocks, at slot ¢ + 1 the server must read 5 disk blocks, etc. These
blocks represent the total number of blocks for all active streams. The vector for the new stream
to be admitted represents the blocks which must be read just for that new stream. For instance, in
the first slot for the new stream the server must read 1 block, then 1 again for the next slot, etc.

In the conservative admissions control algorithm, we would simply add the new block schedule
to the current schedule. In this case, the i + 2"¢ slot would have a value of 12 which is higher than
the minimum number of blocks the server can read in that slot (10). If we permit the server to read
more than a single slot’s worth, however, the first two slot’s worth of disk blocks would be read in
one slot time. This read-ahead permits the given schedule to be accepted. By the time the server
reads slot i + 2 it will still be in the 2°? slot of time assuming the server reads at the minimum
number of blocks per slot.

The server in practice reads more than the minimum number of blocks per slot. While we cannot

*A reasonable length for such a slot is 500 milliseconds. If the slot size is too large, the granularity of control is
compromised; if too small, the overhead incurred is too great.
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Figure 2: Server Schedule During Admission

count on this for the future, we can take advantage of read ahead that has already been accomplished
in the past. The algorithm starts with this number of actual read-ahead blocks and then continues
assuming the server will read a minimum number of blocks in each future slot.

So far in this discussion, we have assumed that there are an arbitrary number of buffers. That
is, the server can read ahead with out fear of running out of buffers. Clearly this is not the case.
Therefore, we have to stop read-ahead in the admissions algorithm once we have run out of buffers.
For purposes of buffer consumption we again assume the server reads a minimum number of blocks
per slot. As buffers are transmitted on the ATM network, they are freed. Thus, we factor in the
number of buffers that are being freed into the admissions algorithm. Data is transferred to the
client, and the corresponding buffers freed, however, at a rate which depends on the amount of buffer
space available at the client and the negotiated bit rate of the network connection. We therefore
maintain another vector called the “buffer allocation vector.” This vector is initially the same as
the server schedule vector. As data is transferred to the client and buffers are freed, however, the
values in the vector are decremented. Note that there 1s a 1 slot delay in recovering buffers. That is,
buffers containing data to be sent to a client in slot ¢ are not reclaimed until the start of slot ¢ + 1.

For both the server schedule and the buffer allocation vector there is a “current slot” index. For
the server schedule, this index identifies the next slot to read. For the buffer allocation vector it
indicates the point of division between buffers that have been filled and buffers that will be required
for future reads. As well, there is a “should be” index. This index is incremented by one after each
slot time. The difference between “current slot” and “should be” is the number of slots read ahead.
As the server reads a slot, it sets the value in the corresponding entry in the server schedule to
zero, indicating the slot has been read. Figure 3 illustrates the manipulation of these values. Notice
in this example that in the first three slots the network was able to transmit slightly earlier than
required by the playout vector. As a result we were able to free five extra buffers and add them to
the total pool.

Figure 4 describes the algorithm in detail. In this algorithm newStream is the block schedule for
the stream to be added (which may have different numbers of blocks for each slot) and slotCount
is the size of newStream. The total number of free buffers at the start of running the admissions
test 1s given in the variable totalFreeBuffs. The serverSchedule and bufferAllocate vectors are the
disk and buffer allocations per slot. The variables shouldBe and currentSlot refer to the “should be”
and “current slot” indices respectively. For illustration reasons we assume that these vectors are
arbitrarily long.

This algorithm takes into account the actual amount of read-ahead and the actual number of
free buffers at the time the algorithm is run. As a result, it uses the actual performance in the past



Should Be Current Slot

0 0 0 0 0 9 3 6
These are the dlots that
4 6 12 5 9 were read ahead.

< Buffer Allocation

2 4 11 5 9

Vector

Figure 3: Example of Server Schedule and Buffer Allocation Vectors

and assumes the minimum performance in the future based on minRead. If minRead is considerably
smaller than the actual number of blocks read per slot, then we could reject streams which could be
adequately supported by the server. One simple approach to this problem is to increase the value
of minRead to a value approaching the actual number of blocks read. This would prevent us from
offering hard guarantees to clients, but may be a reasonable alternative in some environments.

Another aspect of the system is that if we allow the server to read ahead arbitrarily far it will do
so and thereby, use up all of the buffers. The algorithm may easily reject clients due to insufficient
buffers. A simple approach to this problem is to always keep in reserve some number of buffers for
new clients. Knowing how many buffers to withhold for this purpose, however, would be difficult
to determine. Another approach is to free some number of buffers that contain data with the latest
“deadline” (i.e. data that will not be needed for the longest time). If we knew the correct number of
buffers to reclaim, we could add them back to the server schedule, reset the value of currentSiot, free
the buffers, and then run the admissions algorithm in Figure 4. It is easy to see that both freeing
too few buffers and freeing too many buffers will cause the admissions algorithm to fail. Freeing
too few buffers (in the limit, 0) will not provide sufficient read ahead on the new stream to smooth
out the peaks of its data rate requirements. Freeing too many (in the limit, all of them) eliminates
read ahead that streams which have already been accepted are relying on to smooth out their peak
requirements.

An approximation to this scheme is the following: run the admissions control algorithm, if it
succeeds we report success; if it fails, we move the current slot back one, free the buffers indicated
in the buffer allocation vector at that slot and try again. If it fails again, then we back up two slots
and try again. We repeat this with some back off strategy (either linear or exponential may make
sense in a variety of circumstances) until either the algorithm succeeds or we have moved currentSlot
all the way back to shouldBe in which case we are unable to admit the new stream. Note that in all
these cases, the original values for serverSchedule and bufferAllocate must be reset if the algorithm
fails.

A factor in running the algorithm this many times is the duration the algorithm takes to complete.
However, since the algorithm is linear in the length of the longest stream currently scheduled, this
cost 1s minimal, making this approach feasible.

When the admissions control algorithm is examined in detail, we discover that we can accomplish
the simulation of freeing buffers in the future dynamically as we schedule the new stream. This is
done by modifying the processing when there are not enough free buffers. If this modified algorithm
rejects a new stream, there does not exist a number of buffers to free that would allow us to accept
this stream. The intuition behind this claim is that the new algorithm never wastes disk bandwidth



AdmissionsTest( newStream, slotCount )
begin

for 1 = 0 to slotCount do
serverSchedule[shouldBe + 1] = serverSchedule[shouldBe + 1] + newStream|i]
bufferAllocate[shouldBe + 1] = serverSchedule[shouldBe + 1] + newStream|i]
end

for 1 = shouldBe to MAX VECTOR SIZE do

{ Note thal readAhead may be negative.}
readAhead = minRead — serverScheduleli]

(1) if (totalFreeBuffs < minRead) then
totalReadAhead = totalReadAhead — serverSchedule[i]
else
totalFreeBuffs = totalFreeBuffs — minRead

totalReadAhead = totalReadAhead + readAhead
if totalReadAhead < 0 then ABORT

{ Buffers released from previous slot. }
totalFreeBuffs = totalFreeBuffs + bufferAllocate[i — 1]

end

end

Figure 4: Admissions Control Algorithm

due to a lack of buffers, and at every step aggressively reclaims buffers containing data with the
latest deadline and fills them with data with the earliest deadline. If such an approach cannot find
enough bandwidth to service the combined set of streams, then no approach can do better. The
details of this modification are given in Figure 5 which replaces the code identified by (1) in Figure 4.

The actual reclaiming of buffers is not performed at admissions time. When the disk schedule
gets executed, each disk read attempts to locate a free buffer. If none exist, the buffer with the
latest deadline is reclaimed. Not all of the buffers predicted for reclamation may end up being
reclaimed, since transmission may occur more quickly than anticipated, a user may stop playback or
close a connection on an unrelated stream, or other similar circumstances may occur. The admission
algorithm need only determine that, even in the worst case, sufficient buffers will be available to be
reclaimed to make the schedule feasible.

The algorithm mentioned in this section has execution time linear in the number of slots in the
entire server schedule, because every time period must be checked to see if the bandwidth required
can be supported. We have performed preliminary testing which indicates that, for a 2 hour schedule
(14400 slots @ 500 msec), the amount of time necessary to perform the admissions test on a stream
is less than 14 msec on a 66 Speclnt CPU.



while (totalFreeBuffs < minRead) and (currentSlot > i+1) do
currentSlot = currentSlot — 1
reclaim = min(minRead — totalFreeBuffs, buffer Allocate[currentSlot])
totalFreeBuffs = totalFreeBuffs + reclaim
serverSchedule[currentSlot] = serverSchedule [currentSlot] + reclaim
end

read = min(totalFreeBuffs, minRead)

totalFreeBuffs = totalFreeBuffs — read
totalReadAhead = totalReadAhead + read — serverScheduleli]

Figure 5: Modified Admissions Control Algorithm

5 RELATED WORK

Much of the previous work in Continuous Media File Systems has been based on the constant bit-
rate delivery of individual streams.3'113:15 The structure of the servers described in Anderson and
Homsy? and Lougher and Shepherd!! is similar to ours, but does not provide the linear scalability
of our approach. Hillyer and Robinson'® and Tierney et al.'” do seem capable of this type of scaling,
although the focus in the former is on a more generic file system while the latter focusses on extremely
high volume data transfer of image data. Some work®1? attempts to balance the performance of
real-time and significant amounts of non real-time data in the same server. This needs a more
integrated approach to the entire system design and adds somewhat to the complexity of achieving
the performance goals.

The synchronous playback of multiple streams is addressed by several approaches, in particular
Agarwal et al.! and Anderson and Homsy.? These methods provide comprehensive models for
synchronization that involve both the client and the server. Our model provides the interface to
synchronize many independent streams without inserting complexity into the data itself. Variable
speed playback mechanisms are described in Chen et al.® and Dey-Sircar et al.®

Since the resource requirements of a stream must be known and reserved, there is a limit to
the number of simultaneous users that can be supported by any continuous media system. Every
previous system must provide a method of admission control that does not result in violation of
continuity requirements. Many of these approaches®”151® provide acceptance tests based on disk
bandwidth and network bandwidth assuming the maximum possible data transmission rate at any
point in the life of a stream connection. Their admission control is efficient because it can be done
as a constant-time calculation, but does not take advantage of the variability of the stream to accept
more connections. Vin et al.'® describes an admissions test that incorporates the distribution of
bit-rates into an algorithm that provides statistical guarantees of acceptable continuity. None of
the other approaches address the the exact peaks and valleys in data requirements experienced by
a given set of continuous media streams. Careful layout of disk blocks is used to increase the disk
bandwidth (often of a set of streams expected to be played out in some kind of synchronous fashion)
to increase the likelihood of a successful admission. 1517

6 CONCLUSIONS

In this paper, we have described a Continuous Media File Server that we have both designed and
implemented. This server delivers scalable performance because the nodes of which it is comprised
are completely independent. The server provides an API that permits client applications to schedule



multiple, concurrent streams in a simple, direct fashion, given that they are informed of a bound on
the latency of a prepare operation. The API also provides a flexible scheme for alternative playout
requests, rather than the “complete object, full speed, no stop” scenario.

Another contribution of this paper is a unique approach to admission control that examines the
disk bandwidth requirements at a fine granularity. This admission control introduces very little
overhead and allows a greater number of simultaneous requests to be serviced. The benefit is
achieved because we permit the server to read ahead of its schedule at the maximum possible rate,
subject to buffering constraints. We assume a minimum rate of disk reads, which is calibrated a
priori. based on worst case assumptions of block layouts and use that amount to provide the ability
to smooth out peaks in individual stream requirements. This does not additionally restrict future
admissions, because filled buffers which are needed for the new stream can be aggressively chosen
for reclamation (at no cost) without altering the feasibility of the schedule, keeping the disk busy as
much as possible. Our design particularly complements both the variable nature of digitized audio
and video and the ability of ATM networks to handle bursty traffic.

7 CURRENT STATUS AND FUTURE WORK

A multiple node version of the file server has been implemented. The server runs on IBM
RS/6000s (350) or Sun Sparcstations over a 100 Mbps ATM link (or Ethernet, or Token Ring) to
multiple clients running on either of those same two architectures. The system environment uses a
real-time threads package developed for this project which operates within a single Unix process.®
This package also provides an operating system shield to native systems which do provide some form
of real-time threads such as AIX 4.1.

Future work 1s underway to investigate the details of performing real-time transmission of the
continuous media across the network. The variable bit-rate schedule and information about client
resources provides information which the server can use to schedule the network sends in a manner
that effectively and fairly utilizes the available network bandwidth. This scheduling is complicated
due to the fact that the clients may have varying amounts of buffer space or may have negotiated a
network resource allocation that is not sufficient to utilize the available buffer space.
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