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ABSTRACT
Generational changes in the preparation of students for en-
tering university have been substantial. The 21st century
high-school experience is very different from that of the prior
generation. In particular, the social and academic skills de-
veloped seem to be those of reaction to external stimuli and
peer-group conformance rather than individuality, personal
responsibility, and problem-solving. Responsibility and ac-
tivity tend to be concentrated in severely restricted environ-
ments, where the skills of creative problem-solving are not
sufficiently emphasized and/or developed. The “Nintendo
generation” of students tend to be visual learners [10] and
they expect significant external motivation. However, intro-
ductory university courses in the sciences assume that inde-
pendent curiosity motivates the expected problem-solving
approach, a significant contradiction between expected and
actual personality traits. The greater mass of the student
body is ill-served by traditional pedagogy geared to those
who readily master the materials.

In this paper, we present a strategy for introducing and re-
inforcing structured problem-solving strategies that are rel-
evant to both the sciences and to the larger audience of
the general student population. We include the motivation,
teaching methods, and course topics. We stress active learn-
ing within a meaningful context that enables students to
take the lessons from this course into the remainder of their
undergraduate degrees and the rest of their lives.

Categories and Subject Descriptors
K.3.2 [Computing Milieux]: Computers and Education—
Computer and Information Science Education
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1. INTRODUCTION
Traditional university pedagogy assumes that, for a class-

room of sufficient size, the demonstrated and measured ca-
pacity, skills, and preparedness of the students within the
class can be approximated by a normal distribution. How-
ever, over the last 10 to 15 years, our experience has led us
to believe that the current student body now demonstrates
capabilities that tend toward a bimodal distribution (see
Figure 1) when evaluated using similar techniques (assign-
ments, laboratories, and examinations). This distribution
has a lower, dominant, mode containing approximately 3/4
of the students, and peaks in the 35% to 55% range. An up-
per, subdominant, mode containing the rest of the student
population peaks in the 75% to 85% range.

Figure 1: Anecdotal distribution of demonstrated
student abilities

Our observations have generally been corroborated in dis-
cussions with our fellow faculty members in Computer Sci-
ence from across North America and Europe. While there
is some variation in the reported (bimodal) distribution, we
do not feel that the differences in the precise values of the
peaks in each mode are significant. The two modes are
generally described by our peers as “those pursuing career
training”and “those pursuing an academic career”, although
there are some in the career mode that desire to be in the
academic mode. While these labels can be misleading, we
shall make use of the designation career mode to refer to the
group of students in the dominant mode and the designa-
tion academic mode to refer to the group of students in the



subdominant mode1.
Other common elements from our discussions include the

recognition that the student population is more diverse (by
almost any measure) than ever before and that student emo-
tional preparedness appears to be falling – most students
demonstrate weaker “life skills” and skills commonly asso-
ciated with a competitive environment.

These informal meetings with other faculty have led to
many lively discussions on topics as varied as “What does
the student body have a right to expect from us (their fac-
ulty) and from their curricula?” and “What are the goals
of the university curricula? Should university computer sci-
ence provide career specific education?” This discussion of-
ten leads to “Should we be teaching to the lower mode? The
upper mode? Both? Do we have the resources available to
do a proper job of teaching any of them?” Sometimes we
even get the time to discuss “Should we try to help some, or
all, of the students in the lower mode join the upper mode?
Why?”

These questions are relatively abstract but they all derive
from a common set of feelings among the practitioners:

Too many of our students are not prepared
for what we are teaching them and the way we
are teaching them. Should we be changing the
curricula to meet the students’ demonstrated ca-
pacity? Or, should we be filtering the student
body such that only those students that can han-
dle the material are allowed to take the courses?
Maybe we should be doing something completely
different...

In this paper, we directly address this issue. After many
hours of reflection and discourse with fellow educators, we
believe that the introduction of a first year course in critical
thinking, problem solving, and communication will better
prepare the students for traditional university learning envi-
ronments and help them move between the identified modes
(if they so desire). An alternative to reducing the complex-
ity of the curricula, or restricting the student body to the
upper mode, our proposed curriculum for a first year course
is useful to the student population at large.

Our analysis shows that the materials that we propose to
gather in this new course are fundamental. These materi-
als are “enablers for success”, knowledge and skills that are
critical to post-secondary learning. We advocate a proac-
tive approach that makes explicit what is so often implicit,
with emphasis on identifying problems, developing strate-
gies for solving these problems, techniques for verifying that
the solutions developed have indeed solved the problem and
communicating with others about the entire process.

The remainder of this paper is organized as follows. Sec-
tion 2 contains related work in recruitment, retention, and
curriculum. In Section 3, we present anecdotal evidence and
needs-based motivation for the specific issues addressed by
our approach. Section 4 develops the principles upon which
this course is based while Section 5 presents a course de-
scription, an outline of topics, and select activities. Finally,
we conclude in Section 6.

1We have not attempted to perform a rigorous quantitative
analysis across numerous student bodies given the current
concerns over research ethics and student privacy; through-
out this paper we report only anecdotal evidence.

2. RELATED WORK
Across North America and Europe, enrollment in Com-

puter Science has been in steep decline over the last sev-
eral years [6, 12, 15]). Despite predictions of a substantial
shortage of IT workers by federal government agencies and
various industry groups [1], the students have not returned.

One of the reasons postulated for declining enrollments
is a fundamental misunderstanding of the nature of com-
puter science and its relevance to problems facing society to-
day, misunderstandings shared with many other disciplines
[6]. For example, a common view among potential students
is that Computer Science and Programming are the same
thing; many students don’t wish to spend their entire ca-
reers behind a keyboard with very little opportunity to deal
with other human beings.

To this end, a number of approaches have been investi-
gated and implemented (e.g. [2, 14]) to captivate students
at an early stage, and to engage them with exciting applica-
tion areas (e.g. healthcare, game development, bioinformat-
ics) that they may encounter in their careers. In particular,
Talton et al. [14] use a creative orientation session to assist
in retention of first-year students.

The EECS department at the University of California at
Berkeley has introduced a non-traditional first year course
in Computer Science [7]. The course uses technology to
solve HCI problems in a hands-on, project-oriented manner
and claims that “the skills you develop, while not directly
relevant to other computer science courses, will be useful
wherever you go after Cal.”. While our course does not focus
so closely on HCI problems, our goal is similar: to provide
those skills that will transcend the current classroom and
the information presented therein.

Similar efforts at providing students with the skills to be-
come better problem solvers and more emotionally mature
have been made in the College of Education at the Univer-
sity of Saskatchewan [3, 9]. The course HLTH 100.3 (Health
Concepts for Elementary and Middle Years) was taught dur-
ing the Winter 2006 session, in an innovative, highly inter-
active manner that emphasized the application of the prin-
ciples that we hold as critical: identifying problems, devel-
oping strategies for solving these problems, techniques for
verifying that the solutions developed have indeed solved
the problem and communicating with others about the en-
tire process.

By the end of the term, after credibility with the instruc-
tor had been formed, students were challenging and ques-
tioning the course content in a meaningful and respectful
way. Various active learning strategies were employed and
there was significant engagement of the student body with
corresponding success at applying the key principles. Stu-
dents demonstrated teamwork and building a sense of com-
munity around shared problems (in the context of teach-
ing health-related information in elementary school) and ac-
tively engaged in the practice of the principles: question
everything, analyze the context of each piece of information
you are given, and don’t take anything for granted. Congru-
ent with our own philosophy, the instructor described these
outcomes as ”enablers for success” at university and beyond.

In prior work [5], we presented a new class, CMPT 214
Programming Principles and Practices. CMPT 214 was in-
troduced to our curricula in response to faculty perceptions
of weaknesses in many students’ abilities to cope with com-
puter science course material. By the completion of their



undergraduate degree, many students didn’t seem to really
understand what a computer is, or what it can do, and had
great difficulty mapping a solution from requirements to
working software artifacts. In particular, one of the most
troubling symptoms was the excessive time students were
spending on their homework. Assignments that faculty ex-
pected to take eight to 10 hours were often taking in excess
of 40 to 60 hours. When this was coupled with a just-in-
time scheduling attitude toward assignments, both student
and faculty frustration was significant.

After the first two years of CMPT 214, we have observed
a marked difference in the student body. While some of
the original goals of CMPT 214 were achieved, most par-
ticularly in the goal of teaching students to question their
requirements and their assumptions about same, the overall
effect upon the student body is less than we had hoped for.

Numerous reviews of CMPT 214 have been performed,
including reviews by the faculty teaching the class, the stu-
dents taking the class, reviews by other faculty, and re-
views by the combined faculty-student curriculum commit-
tee. While the specifics of these reviews are the subject
of another paper, for our current purposes the most rele-
vant factor is an error in identifying student abilities at the
second-year level. Despite significant efforts to the contrary,
we still over estimated the skills and abilities of a typical
second-year student.

3. MOTIVATION
In this section, we characterize the prototypical “early

years” university student, followed by specific observations
on computer science students. We then compare high school
and university teaching environments and discuss perspec-
tives on university teaching. Finally, we justify our position-
ing of this material in first year.

3.1 Characterizing Students
Intellectually, current students exhibit greater breadth of

exposure to topics than 25 - 30 years ago. The top students
are as good as, or better than, any other students within our
experience. However, the number of students demonstrating
weaker communication, critical analysis and problem solving
skills is higher than ever before.

At the emotional level, we perceive our students to be
strongly conditioned by their prior educational experiences
in high school. There, the teacher is a purveyor of “truth”,
the (somewhat arbitrary) arbiter of right and wrong. As-
signments and examinations are “perfectly stated” and there
is no failure, except a failure to (minimally) try. However, as
authority figures teachers have no real power and are not al-
lowed to exert more than minimal pressure on the students.
This lack of consequence for students can induce a cynical
attitude that “this is all just a game” with no relevance, no
sense of personal ownership of the material, and no sense of
personal responsibility for their own success.

The examples in Table 1 are illustrative of the general
mismatch between expected and actual behavior at the uni-
versity level. A direct consequence of this mismatch, ex-
cessive effort on assignments, has already been mentioned.
These incongruities can lead to a general emotional malaise
among the students which can, in turn, lead to feelings of
frustration and failure within the faculty.

Individuals in the career mode do not appear to be well
served by the traditional university model. We have it within

Table 1: Expected vs. actual student behavior

Expected Actual
Review material before
the lecture

Expect the lectures to cover all rel-
evant material, no need to evaluate
what is important

Start assignments im-
mediately, schedule over
time

Earliest deadline first, JIT schedul-
ing

Proactive faculty inter-
action

Weak or non-existent classroom in-
teraction, schedule appointments
only after disaster strikes

Make a concerted effort
to understand the intri-
cacies of the issues

Expect all analysis to be completed
before presentation, student respon-
sible for following the outline and
filling in the blanks

our power to help them make the transition part, or all, of
the way to the academic mode. However, it will require de-
termination and the skills of our best educators to achieve.
This task is critical, for society needs the personnel that
we are educating, and helping students make this transition
should be given the importance that it deserves.

3.2 Computer Science Students
Within computer science, it appears that many incom-

ing students with prior preparation in programming (such
as a high school course or self-taught skills) tend to dis-
count the importance of fundamental problem-solving tech-
niques. They become over-confident due to their familiarity
with syntax and development environments and then ex-
perience significant difficulty adapting to the more rigor-
ous techniques required for addressing problems of increased
complexity or difficulty.

In comparison, those students without programming ex-
perience become fixated on issues like programming lan-
guage syntax and development tools, perceiving them as
the focus of computer science as a discipline, rather than
as a means to an end. This focus on the technology of pro-
gramming distracts them, and for many, they can not or do
not concentrate on developing the requisite problem-solving
techniques.

In other words, students exhibit significant difficulty de-
veloping adequate familiarity and facility with both the tools
and the abstractions needed for success at this level. We
believe that these problems are not restricted to computer
science students. Many otherwise capable natural and so-
cial scientists also find the transition to higher education
difficult.

3.3 University vs. High-school
There are significant differences between the secondary

and post-secondary learning experience. At the university
level, there is some degree of absolute standard for evaluat-
ing students – particularly in those disciplines with active
certification bodies. In general, students are required to
show (communicate) that they have progressed (to varying
degrees) through all levels of Bloom’s taxonomy (knowledge,
comprehension, application, analysis, synthesis, evaluation)
[4] within a given course.

Unlike high school, failure is an option and assignments
and examinations can be deliberately tricky. There is a very
real power imbalance between the students and the faculty; a



student generally can’t call upon their parents to “fix things”
with a simple phone call. Students must also learn that not
all evaluation is over a continuum, sometimes evaluation can
be binary: either they get it or they don’t and there are
consequences if they don’t keep up.

A typical student, living on their own for the first time,
must also learn to take personal responsibility for (almost)
everything in their lives. Not only must they care for all
aspects of their personal well-being, they must also manage
their time and ensure that they attend classes without any
form of supervision (or even any indication that anybody
cares). They must learn that effective teamwork is very
important and that, while authority is not always right, it
must be treated with respect. These are significant attitu-
dinal changes that must occur, changes that appear to be
ignored in current university structures.

University pedagogy focuses on content and intellectual
maturation; emotional maturation is expected as a byprod-
uct of ‘time’ and ‘growing up’. However, is it reasonable
to set goals for students that require specific levels of intel-
lectual and emotional maturity while only providing formal
instruction of the intellect?

Note the “byproduct” term in the prior paragraph. In
general, there are many implied lessons and learning events
in post-secondary education. Should they be made explicit?
Do the students ever receive formal instruction the tasks and
skills critical to success? At university? Anywhere?

Is this a problem with all students? With their high school
education? With their families, or the way they were raised?
We take the position that the underlying cause (or causes)
are irrelevant; we can only deal with what we are presented
and address those issues within our control. We apply a
manpower model: we have new employees (first year stu-
dents) and we need to apply some on-the-job training. What
are the students missing, or what do they need to increase
their probability of success, and how do we deliver the solu-
tion to them?

3.4 Another Perspective
If what we have written so far is true, then we need to

decide whether to address this new reality or continue to
teach in the manner we have always taught. We are intelli-
gent individuals, we specialize in recognizing problems and
solving them – why aren’t we addressing this problem in a
more proactive and visible manner?

We asked this question of numerous individuals at the
SIGCSE 2006 conference. Typical responses were of the
form:

• It isn’t our job, we teach Computer Science, Engineer-
ing, Philosophy, etc.

• I don’t have the training to do this, especially in an
environment where active learning is as essential as
this appears to be.

• We aren’t their parents.

• I am afraid of the student response, feedback, or retali-
ation. . . Did you do this before or after you got tenure?
I couldn’t do it. . .

We believe that we must address these issues for it appears
that the mandate of universities is changing. Once a bastion
of free-thought and abstract knowledge, society now seems

to expect that universities shall also provide career training,
not just in the professional colleges but in all disciplines.

We can ignore this change at our peril, allowing the role of
the university to be marginalized as funding cuts are applied
and another institution rises to provide this career training.
Or, we can embrace change, and determine how best to ed-
ucate both the masters and the masses.

3.5 Where and When to Begin?
While a presentation of the details is beyond the scope

of this work, we identified the materials for our proposed
course by employing two analysis techniques. The first was a
dependency analysis that investigated the prerequisite con-
ditions for enabling success: If I want to teach topic X in 4th

year, then what do the students have to know before they
start? What skills do I expect them to have? More gener-
ally, what are my assumptions about the students? The sec-
ond analysis was holistic in nature, performing a top-down
analysis of the field of computer science (and to some de-
gree, engineering) in an attempt to identify the fundamental
skills and techniques required for success.

Both of these analyses lead to approximately the same
conclusions. We have captured the common materials, added
connective material as necessary, and we present the result
as the contents of our proposed first year course in the fol-
lowing sections.

4. PEDAGOGY
Our proposed class introduces creative, yet structured,

problem solving techniques with special emphasis on tech-
niques for ensuring comprehension of the problem state-
ment. The course covers four principal topics:

1. Introduction to university education

2. Analyzing and understanding problems

3. Solving problems

4. Representing data and information

Material within these topic areas is applicable to the stu-
dent body at large and is also addressed, in whole or in part,
by many departments outside of the sciences.

We expect the class to be compulsory for science majors
but accessible to students of all majors – there should be
no content that requires specific domain knowledge beyond
that required to set the context of the investigated problems,
no technical sophistication that precludes non-science ma-
jors from participating. This exposure to other disciplines
should expand student’s appreciation of other topic areas
and help them to make a more informed choice for their
major. We also hope that this focus on cross-disciplinary
problem contexts will motivate members of other depart-
ments to participate in the development and instruction of
this class.

4.1 Motivation
This course provides formal instruction in those skills iden-

tified as critical for success at university. The critical analy-
sis of problem statements, identification of assumptions, and
techniques for obtaining missing information are all key skills.
Communication skills, particularly as applied to communi-
cating about reasoning and decision making, are necessary



if the student is going to convince their educator that they
have some degree of mastery over course content. Problem
solving techniques, like iteration and ‘divide-and-conquer’,
can be presented as generally applicable solution patterns
– independent of the syntax of a programming language.
Finally, enabling the students to understand the difference
between data and information and how to store and repre-
sent data to facilitate it’s conversion to information provides
them with a solid foundation for tackling large-scale prob-
lems or automating problem solving strategies via program-
ming languages.

This may appear to be a ‘retro’ approach [13], reinstating
general practices from the early days of computing. How-
ever, these practices remain part of many general engineer-
ing curricula to this day. While some of these techniques are
covered in 2nd year (and later) computer science courses,
particularly those dealing with Software Engineering, by
that time many students have adopted a much different ap-
proach to problem solving for their individual assignments.
For some students, this may be too late and ‘bad habits’
are already developed which preclude the necessary analysis
for the student to have a confident and holistic view of the
problem. To these students, using good problem-solving ap-
proaches only seems relevant to ‘Programming in the Large’
as opposed to being an integral part of program development
activity, no matter how small.

4.2 Teaching Methods
Active learning is essential in an introductory problem-

solving course. Students learn by first observing experts
apply the techniques then by applying the techniques them-
selves. A highly interactive learning environment is essential
and the faculty must use appropriate classroom techniques
to keep the students interested and motivated.

Teaching strategies must consider multi-modal student
performance distributions – in maturity, ability and pre-
paredness. For the course to be meaningful to all students,
there must be varied levels of exercises and activities. Given
that part of the course material is about abstraction, and
the division of tasks into manageable units, certain exercises
emphasize abstraction and planning without detailed execu-
tion of the plans. Other exercises begin with basic plans and
the students are required to add detail to the plans to the
level of fundamental operations.

The following list contains typical exercises that could be
used within this course.

1. Introductory exploratory lectures to set the context
for the students. Promote interaction with faculty as
a necessity.

2. Active learning group exercises to familiarize the stu-
dents with active learning techniques.

3. Written problem strategies and solutions exercises

4. Oral presentation of strategies. For example, one of
the lessons could be to teach someone how to make a
peanut butter sandwich.

5. Execution of other student’s strategies. Closes the
loop on the need to effectively communicate the so-
lution strategy.

6. Introduction and reinforcement of the methods of crit-
ical thinking.

7. Analysis and Reasoning. Example solution methods
used in multiple disciplines such as philosophy, music,
humanities, and engineering.

8. Scientific method. The scientific method (observing
and exploring phenomena, developing and testing a hy-
pothesis, and generating conclusions) is a fundamental
structure for experimental work. Iterative application
to a problem will always yield results for even negative
results provide new insight into the problem domain,

9. Engineering method. Art and science become engi-
neering when a domain is sufficiently well understood
that we can reliably solve it’s problems. Engineering is
about solving a problem within a constrained domain;
for example, use only this given set of components to
craft your solution. While the engineering method ex-
cels at crafting solutions within constraints, there are
times when solving problems in this manner can lead to
duplicating solutions from other domains. Therefore,
the greater the set of components known and available,
the less likely it is for re-invention to occur.

4.3 Student Activities
We must be very careful to create activities that are rel-

evant and appropriate to students at all levels. While it is
inevitable that the top students may find some of the mater-
ial to be self-evident, they should learn that mastery of these
techniques comes only with practice and that the ability to
apply these techniques as a matter of reflex rather than of
conscious deliberation provides them with distinct advan-
tages. We must be careful to ensure that the top students
remain interested and must continue to motivate them with
challenges appropriate to their skill level.

Context is very important. While the sciences may be
the obvious domains, critical thinking is used in all disci-
plines. By drawing upon other domains, we can construct
individual contexts with direct relevance to the students.
Motivating commerce students with business plans, biology
students with ecological scenarios, and computer science stu-
dents with video game analogies should be much more effec-
tive than a discourse on modus ponens and modus tonens –
even though the same lessons are being taught.

5. CRITICAL ANALYSIS, PROBLEM SOLV-
ING, AND COMMUNICATION

We now present further commentary on the four main
topic areas identified in Section 4. We describe explicit ori-
entation topics, problem and solution types, mapping be-
tween the problem domain and the solution domain, and fi-
nally, data representation issues. Many of these topics must
be covered in parallel, so that students can be actively in-
volved in solving problems, not just sitting and absorbing
problem statement after problem statement.

5.1 Orientation and Context
The issues faced by incoming students were discussed at

some length in Section 3. Many of the implicit ‘keys to suc-
cess’ at university are made explicit during the first week of
the course (see Table 2). One of the most obviously neces-
sary (yet poorly achieved) skills is that of examination writ-
ing. Some students require as many as two to three years
to figure out the pragmatic methods to use when writing



examinations. Rather than leave such an important topic
to chance, we provide explicit instruction on heuristics for
maximizing their examination scores; heuristics such as how
to select which questions to answer and how to determine
the order in which to attempt the questions.

Table 2: Orientation topics

Main topic Subtopics
Introduction to university What your professors expect of

you
What you can expect of your pro-
fessors

Assignments, projects,
examinations

Plagiarism and Group Work

The mathematics of
marking

Who marks what? How much time
do they have?

Doing assignments Time management
Estimating effort

Writing examinations Value heuristics
What is important? Rules for course content
What is not? Will this be on the examination?
Decorum Interacting with other students

Interacting with faculty
Classroom behavior
Student code of conduct

5.2 Problem Solving
Students often feel overwhelmed by the sheer magnitude

of the requirements represented within an average assign-
ment. At times they don’t even know where to begin. One of
our goals is to show the students that, using well-structured
techniques, problems can be decomposed as far as neces-
sary, until they reach a problem that they can solve. Then,
by integrating the solutions to the sub-problems they can
compose the final solution. In this manner, we hope to pro-
vide students with the confidence and skills necessary for
addressing problems at the university level.

Motivating the students in a Socratic manner, the evo-
lution of their learning process is guided by the following
questions. These aspects of problem-solving provide the ba-
sis for intellectual exploration and for student engagement
in the problem solving process.

1. What kind of problems exist?

2. Are there patterns for solutions?

3. What problems can be solved precisely and accurately?
What problems can be solved in a heuristic and/or
pragmatic manner?

4. What parts of the solution are controllable? What
parts of the problem are stochastic and what parts are
unpredictable?

5. How can we restrict the problem domain so that the
problem is solvable? Is this restriction reasonable or
acceptable?

At a more specific level, the following list illustrates the
components of a problem and each component’s scope:

1. Recognizing the problem

2. Scoping the problem

3. Internal factors

4. External factors

5. Ability to restate the problem

(a) In context

(b) In plain language

(c) Formally (conceptually), introducing the logical
operators (implication, quantification, and/or, while)

(d) Syntactic analysis, argument forms (from Philos-
ophy)

(e) Introduction to control structures

The first of these topics is by far the most difficult: Is
thise a problem that can be solved, or is this something
that is beyond the comprehension or ability of the students
(or anyone else)? This distinction is difficult to convey, but
the students must learn that there may be parts of other-
wise intractable problems that are tractable. The problem
solver must determine the resources that constrain the solu-
tion space, what is beyond their control, and what they can
influence or control within the problem domain. In many
cases, the constraints are both implicit and explicit (e.g.
you must use binary trees and recursion to solve this search
problem), but the implicit external factors can be difficult
to recognize. One must then decide if sufficient resources
are available and whether it is worthwhile to deploy them
in solving the tractable subproblem(s).

Learning to identify tractable elements requires that the
instructor clearly model numerous systems with significant
student participation. Students can then be given indepen-
dent exercises that give them practice in modeling, evalu-
ating the relative complexity and cost of solving problems,
and stress the students’ ability to communicate what they
have learned.

However, many students find it difficult to analyze and
interpret word problems, particularly when attempting to
symbolically represent the problem domain. We will show
them simple mappings from English language constructs to
symbolic representations using the following heuristics.

1. Nouns, clauses as objects

2. Verbs as actions or operators

3. Representation using elementary predicate calculus

Perhaps the ultimate expression of problem comprehen-
sion is the ability to state the problem in a formal, math-
ematical framework, complete with logical formalisms and
provable characteristics. While this is a worthy goal, it is
unrealistic for entering students (particularly students from
the career mode, or other disciplines) to be able to accom-
plish in the early stages. By the end of the course, we expect
that all students will be able to generate formal representa-
tions of problems. While these formalisms may be simple,
they are a significant step toward more advanced techniques.

When problem solving, one or more elements of the follow-
ing (partial) list of solution components is often employed.
We explicitly identify these components, and their motiva-
tion, to the students.

1. Identify the domain. Once you know what domain you
are working in, you can take advantage of prior work
identifying its underlying principles.



2. Identify the goal. If you don’t have a clear under-
standing of the goal, then you can’t reach the goal in
a deliberate manner.

3. Identify assumptions. Making assumptions explicit
helps clarify the scope of the problem. It may also
identify assumptions that invalidate the problem. As-
sumptions can exist in the mind of the problem presen-
ter, in the problem statement, and in the mind of the
problem solver. Unfortunately, clarifying the nature
and existence of assumptions can be difficult.

4. Estimation. The scope of a problem can usually be
further clarified by rough approximations. Fermi prob-
lems [8] are an example of this solution strategy. Es-
timates can be used to validate progress: if the es-
timated values are significantly different from those
created by the problem solution, something may be
wrong. Estimation is also useful to bound the effort
required to solve the problem.

5. Asking questions. Asking appropriate questions is an
indicator of maturity. Changing student attitudes from
‘to ask questions is to fail’ to ‘to fail to ask questions
is to fail’ is critical.

6. Order of operations matters. Due care and attention
to the process is important. Errors introduced early
into the process can propagate and even compound.
For example, when making a toasted peanut butter
sandwich, it is important to toast the bread before
spreading the peanut butter on it. If these steps are
reversed, one could always make a grilled sandwich out
of the toast, but that is solving a different problem.

7. Actions and consequences. Selecting among alterna-
tives is often necessary. Identifying choices that are
irreversible can be very important: exploring a po-
tential solution that destroys the data is a high-risk
decision. Are there alternatives that should be inves-
tigated first?

8. Iteration and step-wise refinement. Many problems
can be shown solvable by a proof-of-concept that would
not be acceptable as a final solution. Developing a
prototype solution shows that critical issues have been
addressed and that the remaining work is an issue of
step-wise refinement. A convincing presentation that
has a few details to work out shows that an appropriate
methodology has been followed and is far better than
presenting no solution at all.

9. Atomic elements, abstraction, and emergent behavior.
Atomic elements are the fundamental building blocks
within the solution domain. Abstraction hides their
details and allows the student to generalize. Emergent
behavior occurs when the atomic elements are con-
nected as required by the solution. Together, these
concepts embody the knowledge and processes nec-
essary for the development of larger problem-solving
constructs. As students learn to abstract and general-
ize, they begin to identify that there are patterns in the
problems, the solutions, and in the emergent behavior.

10. Communication skills. If no-one learns of, or under-
stands, your solution then the quality of your solution

is irrelevant. Similarly, if you did not extract a clear
problem definition from the individual with the prob-
lem, it is unlikely that your solution is relevant. When
presenting a solution, success or failure can be highly
dependent on the way the solution is presented. Care-
ful selection of argument strategies and how to present
trade offs often determines how well the solution is per-
ceived, independent of its eventual implementation.

5.3 Patterns
There are recognizable patterns in both problems and

their solutions. The problem-solving process requires some
degree of creativity, but not as much as many students be-
lieve – it is a process that can be taught. However, students
must accept that solving problems is more than just pattern
recognition and watching other people do it. It involves
practice, getting their ‘hands dirty’ and making mistakes.
Then, when they see what works and what doesn’t, they
gain the ability to recognize, generalize, and address prob-
lems at a meta-level.

5.3.1 Problems
The following list of problem types is typical of nearly all

of first and second year computer science. Unfortunately, in
introductory computer science, the problem type is generally
obscured by the overwhelming syntax of the programming
language used to express a solution. We envision an explicit
consideration of these problem types without resort to pro-
gramming languages of any form: if a student can’t solve the
problem in their native language, then how can they learn
a new language and solve it there? Again, active problem
solving during in-class exercises is used to expose the stu-
dents to the patterns within the problems so that they can
learn to independently recognize the patterns.

1. Read-eval-print

2. Stimulus-process-response. This involves the iterative
execution of the following operations: observe, collect
data, process data, effect change, create artifacts

3. Cause-effect; causality

4. Linear problems; strict progression

5. Branching linear; directed acyclic graphs

6. Looping - subproblems with repetition

7. Recursion as a special alternative to looping

5.3.2 Solutions
The previous section described components of problem

patterns that could also be considered solution patterns.
We choose to keep the solution patterns separate because
the solution patterns often involve recognizing the primitive
control structures implicit within the problem. The separa-
tion also lays the foundation for the concept of a computer
as a solution execution engine, an engine that solves types
of problems, independent of the actual problem domain.

There are several methods introduced in computer science
education to guide the solver to a maintainable and effective
solution that can be communicated to another person. For
example, solutions can be expressed in a system design doc-
ument, or using UML diagrams, or even in the source code of



a programming language. In each case, the problem is con-
sidered solved but the solution is stated with ever-increasing
precision.

We introduce solutions at a more abstract level than a sys-
tem design document; we introduce them as patterns. The
following list of solution patterns could be taken from any
software engineering textbook. However, we believe that we
must make these techniques fundamental tools that first year
students learn as early as possible then employ throughout
their careers.

1. Top-down

(a) divide and conquer

(b) iterative decomposition

(c) recursive decomposition

2. Bottom-up

(a) (very) constrained set of building blocks for the
solution

(b) incremental skill development. For example, learn-
ing to play a musical instrument or how to play
golf.

3. Meeting in the middle: (practical) implementation leads
to integration

4. Design patterns

(a) do always

(b) test and do (while)

(c) iterate over known range (for)

(d) iterate until test (do while)

(e) recurse: this looks like what I just did, only smaller.
Base case and recursive step. What are the data
storage consequences?

5.4 Data and Information
Freshman and junior university students have only a weak

understanding of the relationship between data and infor-
mation. Many tasks that they face require the management
and analysis of significantly greater amounts of data than
they have ever before encountered. Table 3 summarizes the
points we must make.

Table 3: Organizing principles

Principle Implementation
Like near like Databases, spreadsheets
Most important first Caching, to-do lists
By purpose or need Object-oriented design
Maintainability Filing cabinet, binary trees
Fast retrieval Indexing, hashing

When actually solving a problem, the data must be stored
somewhere. Storage is also required for ongoing calcula-
tions, and for final results. We introduce elementary data
structures to the students as models they can employ when
solving their problems.

1. Lists, sets, manipulation operators

2. Boolean operators including union, difference, inter-
section

3. Order and equality

4. Survey of other elementary data structures

A motivating context could be the exchange problem –
one consequence of performing an exchange is the need for
temporary storage. A real-world example is “moving day in
Montreal” [11]. Every year, almost everyone who is going
to move that year, moves on July 1. So, where is the tem-
porary space if people are exchanging residences? It is on
the roadways, in the backs of the moving trucks. A series of
interesting derivative problems can also be expressed: Can
you estimate how many moving trucks are needed? If all
moving must be completed in 8 hours, does the number of
trucks change? If there were only 2 moving trucks in the
entire city, how big would they have to be? How fast would
they have to drive?

6. CONCLUSIONS
In this paper, we present the position that many current

undergraduates are not prepared for traditional university
education paradigms, particularly in computer science. This
position is consistent with the views expressed by educa-
tors in other disciplines, such as education and engineering,
about their own students. We have identified a need to ex-
plicitly teach problem-solving skills to the students, in an
engaging and interactive manner, to improve their probabil-
ity of success in university and in their careers.

We have designed a course for first-year students with
emphasis on identifying problems, developing strategies for
solving these problems, and communicating with others about
the entire process. The course does not require previous ex-
posure to computer programming and only a modicum of
mathematical background. The problem-solving domains
are those of every-day life and domains of specific student
interest. While the methodologies presented to the students
may be appropriate for software engineering courses, they
are presented without the syntactic baggage of a program-
ming language. Therefore, the class is accessible to students
of all disciplines, not just those in computer science.
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