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Motivating Observations

Many uses of computational models involving
human health and behavior require copious data

Effective selection, throttling, fusion, filtering,
interpretation of sensor data is aided by models

Rich sensor platforms are increasingly embedded in
commodity consumer electronic devices

— These sensors are predominantly designed for usability
(e.g. to change screen orientation, adjusting volume,
transferring data), but can often be repurposed

— Cross-linking of sensor data is readily accomplished
We are immersed in a growing cacophony of
wireless communication signals

— WiFi, Bluetooth, GPS, GPRS/GSM, Infrared, RFID, etc.
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Smartphones are Amazing Devices

Seamlessly connect/failover to whatever network is
available

Track path of morning run or in car

Take pictures

Record a lecture

Reorient when orientation changed
Interact with printers, computers, TVs, etc.
Slow down when battery is getting low

Alert you to nearby attractions
Detect & deactivate when battery is too hot



Smartphones are Amazing Devices
(Key Enabling Technology: Sensors)

Seamlessly connect/failover to whatever network is
available (WiFi/GPRS/GSM receivers)

Track path of morning run or in car (GPS)

Take pictures (Camera)

Record a lecture (Microphone)

Reorient when orientation changed (Accelerometers)
Interact with printers, computers, TVs, etc. (Bluetooth)

Slow down when battery is getting low (battery
voltage)

Alert you to nearby attractions (GPS & Internet access)

Detect & deactivate when battery is too hot (battery
temperature)



Generation 2 Platform: iEpi
Google Android Smartphone
— Customized version of |l OGGER IS
Android 2.1 RECORDING

— Commodity hardware
(HTC) => Lower price OUR DATA!

Multiple sensor modalities “
(including surveys)

Episodic bursts of data
collection optimize battery

life
Richly functional smartphone

— external incentives to carry &
chart device




Key Health Considerations

_ocation (access to care, access to resources,
oarriers to activity, environmental risks)

Physical activity (obesity, T2DM & GDM, risk of falls)

Spatial proximity (transmission of pathogens,
interpersonal communication)

Social context (norms, imitative behavior,
communication, perception of safety)

Communication: Person & mass media (risk
perception, norms, beliefs, social cues)



Potential of Convergence

e Sensors on the iPhone
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IEpi: Multi-Purposed Multi-Sensor
GPS Data Collection WiFi

— Indoor location estimation

— Outdoor location (&uncertainty est)

L = r
— Distinguishing indoors & outdoors Data transport to serve

e Accelerometer

Bluetooth
— Proximity to participants or other — Physical activity
‘discoverable’ bluetooth devices — Compliance
(including device class) * Battery
— Indoor location — Monitor/Regulate power
Accompanying: Network (TCP) consumption
use: Browsing, movie viewing,&c — Compliance
Future: Audio, Camera/light, — Temperature
Compass, phone calls, context * Surveys (time & context
specific monitoring, federated specific)
sensors, p2p transmission, Next

webservice data collections
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Bluetooth Contacts by Hour of Day
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Participants (Red) contacts with All
Bluetooth Contacts (Blue) over 1 day




All Bluetooth Contacts over 1 Week




Close Proximity Bluetooth Contacts
over 1 Week




Participant Contacts with Stationary
Bluetooth Devices over 1 Week




Participant Contacts with Mobile
Bluetooth Devices over 1 Week




Participant Contacts with Viobile
Bluetooth Devices over Entire Study
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Daily Contact with Distinct WiFi Routers
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WiFi/Bluetooth As a Location Marker

* Presence & strength of one or more WiFi or
bluetooth signal can indicate location (cf Skyhook)

— “Trilateration” can identify location from these signal
strengths

e Participants in a study will commonly pass through
signals of hundreds of WiFi routers and discoverable

Bluetooth devices e.g. in 1 month study in
Saskatoon, participants saw approximately

— 19,000 distinct routers (range 554-4393/participant)
— 9700 distinct BT devices (range 242-1129/participant)



Indoor Localization

* Where am | (inside)?
— GPS unreliable

— Data exists from WiFi
and BT devices

e How do we use it?

* Sensor fusion
techniques for
managing error

Back
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Back Surveys

The Survey Tool
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Cross-Linking of Sensor Data: Metcalf’s Law

* Opportunities for cross-linking of sensor data =>
values rises as square of number of sensors

 Example cross linking (BT=Bluetooth):

— Accelerometer/GPS (with GIS)/BT (how does physical
activity level change near parks? In high crime areas?
How do these change around other people? weather?)

— BT/GPS/Wifi (estimates of contact location,
understanding of social context/capacity of contacts)

— BT/Wifi/GPS (indoor & outdoor positioning)

— GPS & Accelerometer: Triggering more rapid
measurement of accelerometer if moving quickly

— Triggered surveys and any sensor: Disambiguation



Potential of Convergence
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Example: Importance of Place

* |ncorporating place can lend understanding of
— Transmission of norms (cf Madan et al 2009/2010)
— Mobility patterns giving rise to contacts
— Resources that may be exploited by visitors

— Impact of environment
* On Risks (surface accumulation of pathogens)
* On behavior

— Character/capacity of interaction
— Status of users
— External parties



Density of Contact Durations Between Study
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Finer Spatial Resolution
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Example Questions that Can be

Investigated Now: Epidemiology

How do physical activity levels vary by proximity to
parks? By social context? By neighborhood safety index?

Which grocery stores do participants visit? And how
often? How do they get there? With whom?

How much time do particular family members spend
together? Where do they spend this time?

How (quickly) does a change in physical activity by
parents affect kids” activity levels?

How (long) do socialization, mobility and eating patterns
of newcomers differ from established residents?

How often do participants visit restaurants? Which
restaurants? With others, or alone?

Where do participants get info
(browsing/voutubine/skvoing)




Example Questions that Can be
Investigated Now: Health Services Delivery

* How much time are nurses able to spend with
patients? How does this vary by shift?

* |s proper time being taken for handwashing?
 Where are nurses kept waiting in a facility?

* What sets of staff need to meet most frequently?
* Are patients being visited according to schedule?

 What areas are requiring most of the time of nurses
& doctors?



Short-Term Extensions
Surveys triggered based on current & past context

Calling behavior
More flexible interface
Data from peered bluetooth devices

— Weight, respiration & pulse sensors, galvanic skin
response, etc.

Proximity to an ‘on’ TV
Barcode scanning
Third-party opt-in



Back Example (Remembered) Triggered
Survey Information

e Activity * Relationship (to participants/
— “What are you doing right now?”  other recurrently contacted
— “Have you come outside to non-participants)
smoke?” — “What is the relationship of the
— “For what sort of purpose have people currently around you?”
you just left home?” — “What is the relationship of the
— “In what sort of physical activity people who have just arrived?”
are you engaged?” * “What TV channel are you
* Location: “Give a brief name to  watching?”
your |ocation” e “Describe your mood”

* In kitchen:“Are you currently or , “Why are you up so early?”

about to eat? If so, let me seel” . .
’  “Areyouinataxi? Inabus? In

o . ”
* “Who just called you? 3 car?”

Once answered, much information can be applied automatically for future disambiguation



Long Term Possibilities

Detailed stochastic mobility, activity, interaction models
Affect detection (voice/touch/keyboard)

Greater flexibility in query rates
— Contingent data collection
— Model-informed adaptive sensor sample rate adjustment

Monitoring environmental risk (cough/sneeze, mosquito frequency classification
detection)

Link to point-of-sale data
Bar code scanning (e.g. food ingredient information)

Automatic cross-device overdetermined trilaterialization & from arbitrarily placed
WiFi/BT locations

Measurement from federated devices (BT scales, respiration & heart rate sensors,
galvanic skin response, etc.)

Convenient food photodiarying

Automatic activity classification

Study of risk perception via controlled experiments ‘health games’ w/info feedback
Richer “self-calibrating” predictive models

Closer integration of communication monitoring

Environmental risk inference
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Limitations of Sensor Data

 Taken in isolation, sensor data offers limited
insight
— Limited generalizability

— Unclear implications for decision making or future
behavior

— Unclear what “happens between” the sensor
measurements

— Noise data obscure analyses



Limitations of Models

* For certain questions, gluttonous need for data
* Fragility due to assumptions

— Dependence on assumptions regarding exogenous
factors

— Systematic errors

— In even best models, risk of rapid obsolescence &
divergence from actual situation

* Overconfidence in anticipated state



Modelers as Buzzards:
Lofty Goals




Modelers as Buzzards

Lowly Meals of Data




Ubiquitous Sensors and Dynamic
Models: A Natural Synergy

Sensor Data

* Rich grounding in
observations

* Providing databases for

model parameterization &
calibration

e Stimulating dynamic
hypotheses

Dynamic Models

“Filling the gaps” between sensor
data

Capturing regularities that
underlie sensor data

“Filtering” of noisy sensor data

— Arriving at “consensus” estimates
combining measured data & model
predictions

Generalizing observed behavioral
patterns

Understanding proximal & distal
implications of observed behavior
Determining adaptive sampling
rates



Motivation
Replacing... Or...




Relevant Modeling Types

* Agent-based models

— Generalizing
individual behavior (e.g. mobility)

— Replay observed patterns y s\

— Simulating implications of individual \//‘/“’ /‘
level patterns e =

— Generating probability distributions —

* System Dynamics models

— “Self-correcting” models: Online
“filtering” identifies “consensus”
understanding of situation

— Hybrid continuous models of agent dynamics
e Social Network Analysis |

: , ?| T
— Inferencing models (e.g. Reconstructing |, e
transmission chains)
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Flunet Study

* Small scale study

— People: 36 participants

— Places: 9 “beacons” at fixed locations
* Information collected

— Proximity

* Each sensor recorded every 30 seconds

e 3 RSSI proximity categories: Close (<5m), Medium (5-15m), far
(>15m)

* Proximity resolution 1-2 minutes
— Cross-linked health survey data
 Time: 13 weeks during 2009 pandemic influenza season
— Study duration: November 9, 2009 — February 9, 2010
— Approximately 262K 30-second timeslot samples



Contacts by Time of Day
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Aggregated Contact Graph
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Video: Aggregated Hourly Contact Data
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Integration of Model & Data Sources

Flunet microcontact
dataset (Hashemian
et al. 2010)

HIN1 Disease
Model (Tuite
et al. 2010)

Weekly Population
Clinical Data
(FluWatch 2010)

Exogenous Infection Disease Endogenous Participant
Pressure State Infection ,-=1 Contact History Immunization
Durations Probability { History
.l' L) Fd 'l' 3
e R T e 3
T .. Joort
S T,
Stable Agent
States

Disease
Progression




Dealing with Stochastics

* Uncertainties = many “Groundhog Day” like
realizations required

e Ensemble size
— Baseline scenarios: 100,000 realizations

— Alternative scenarios for different parameter
values: 2,500 realization

e Sensitivity analyses: Different ensembles
carried out for
— With and without considering vaccination
— Closeness of proximity required to transmit
— With and without behavioral removal
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No of Infections (x 1000)
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Results

_ é Correlation between centrality measures
& model-derived likelihood of infection
- | Without With
' Vaccination Vaccination
T A o P p P
Betweenness 0.172 0.316 0.110 0.522
Degree 0.415 0.012 0.296 0.080
Time Degree 0.514 0.001 0.344 0.040
Log Time Degree | 0.740 | <0.001 0.503 0.002
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Reflection on Models

Ongoing measurements
Pros

— Glimpse of elements of recent
situation

— Confidence in actual trends

Cons

— Delays

— Noisy

— Unclear Implications for

* Decision making
* Underlying situation

Models
* Pros

— All models are approximations, but
some are useful for short-term
anticipation

— Interpretation of current underlying
situation

— Linkage to decision making:
Understanding consequences of
choices

* Cons

— Absent correction

* Even the most detailed model is
almost certain to eventually diverge
from reality

— Systematic errors
— Omissions
— Particular uncertainties

* Models start to become “stale”



Benefits of Synergizing Models & Ongoing
Measurement via “Closed Loop Models”

Benefits to Data

Interpreting for implications to
other areas of the system not
directly measured

Understanding implications for
decision making

Separating signal from noise:
Avoiding overconfidence in
measurements

Generalization/abstraction to
broader dynamic patterns of
behavior

Benefits to Models

Preventing model state
divergence from actual
situation

Maintaining model “freshness”
by repeated re-grounding in
measured data

Better understanding of current
situation

More reliable prospective
simulation with the model

Avoiding overconfidence in
model output



The Kalman Filter (R. E. Kalman 1960)

N

Time Update Measurement Update
(“Predict™) (“Correct™)

N

The ongoing discrete Kalman filter cycle. The time
update projects the current state estimate ahead
in time. The measurement update adjusts the
projected estimate by an actual measurement at
that time. (Welch, G. and Bishop, G. 2006)

Slide courtesy of Weicheng Qian

Rudolf Emil Kalman
(1930-)



The Dissected Kalman Filter

Filtered Estimation
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Higher level view of Kalman Filter

7

Estimation (t=t;)

Kalman >
= Filter

Measurement (t=t;)

Fixed P, Measurement
Parameter Values Covariance Matrix

(Constant) (Constant)

System Noise (t=t;)
Slide courtesy of Weicheng Qian



Kalman Filter Equations
X(t) = f(X(t),t) + w(t) System
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Evaluating Using a Synthetic Population

* Analytic approaches (and study designs) are often
challenging and costly to test in the real world

— Expensive to establish study
— Time consuming
— Ethical barriers

— Lack of definitive knowledge of how conclusions
compare to some “ground truth”

* We can often evaluate such approaches using
“synthetic populations” drawn from simulation
models

— Here, the simulation model helps to identify potential
weaknesses of study designs & analysis approaches



Synthetic Population Studies

— Establish a “synthetic population” for a “virtual study”
— Perform simulation, simulating study design of interest

e Actual underlying situation is blinded from researcher

* Collect data from the synthetic population similar to what would
collect in the external world

* Optionally, may actually simulate roll out and dynamic decision
protocols

— Analysis procedures being evaluated are applied to the data
from the synthetic population

— We compare the findings from those analysis procedures to
the underlying “ground truth” in the simulation model



Performing the Filtering

Aggregate System
Dynamics SIR Model

Agent-Based Model
Using Sensor Data

Updated
System Dynamics

Model

Kalman Filterin

Simulation
Measured Data
(Estimates
of count of
Susceptibles,
Infectives
Recovereds)




The Underlying Transmission Model

Flunet microcontact
dataset (Hashemian
et al. 2010)

H1N1 Disease
Model (Tuite
et al. 2010)

Disease Endogenous Participant
State Infection ,-=1 Contact History Immunization
Durations Probability ! History
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Aggregate System Dynamics SIR Model

Likelihood of Infection
Transmission Given

Exposure Beta  prevalence of

Simpification & Infection
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“Open Loop” Model
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Simplest Case: Only State Updates
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Simplest Case: Only State Updates
Daily Measurement Updates
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Projecting Forward from Updates
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Why Aggregate Models?

Typically the state in dynamic models involve both
observable & non-observable elements

We can make limited inference on non-observable
components from observable

Many observations are often required to
“triangulate” non-observables

Inferring non-observables is far easier if there are
fewer of them => more aggregate models

— Almost always required for aggregate measurement

Ubiquitous sensing does raise the intriguing
potential for inferring state at the individual level



Not Shown Here

Updating parameters
Updating estimates of non-observables

~iner-grained data updates



Outline

v’ Motivations
v’ Sensor Platforms

v’ “Greater than the sum of its parts”: Synergizing models
& sensor data

* Vignettes

v’ The role of contact characteristics in the spread of pandemic
influenza (ABM & sensor data)

v’ “Self-correcting” models: Synergizing models & ongoing
measurement data (SD & sensor data)

— Inferring pathways of infection spread over contact networks
(SNA & sensor data)

* Conclusions



Contact Data can Permit Static or
Dynamic Network Reconstruction




Inferential Models

* Can use mathematical formulation of dynamics
to express distributions on regarding events

* These formulations can then be used to estimate
likelihood of given underlying factor (e.g. A
transmitted to B) in light of available data

— Available data might include molecular

epidemiological data
Known — Sought

Bayesian Inference
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Sensing and Feedback for
Epidemiological Modeling to help
Evaluate Analysis Strategies
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A Simple Contact Network
(e.g.Gathered via Sensed proximity)
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Presentation time: day 3

Presentation time: day 3

Presentation time: day 5

Presentation time: day 2



A Hypothesis for Pathways of Infection
Spread




Determination of Expression for Likelihood
of Hypothesized Infection Spread Pathway
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Inferring of Complete Infection Pathways
(Assessed via Synthetic Data from ABM)
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Conclusions

Sensors are increasingly ubiquitous

Commodity sensor-bearing devices can serve a dual
use as versatile sensor platforms

Diverse communication signals permit creative
repurposing

Coupled with models, sensor data can offer
significant and complementary health insights

Each systems science modeling type presented at
ISSH can support compelling — and often unique —
insights when coupled with sensed data



Thank You!

Questions?



