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Abstract

Many enzymes catalyze the heterolytic abstraction of the α-proton from a carbon acid substrate.

Gerlt and Gassman have applied Marcus formalism to such proton transfer reactions to argue that

transition states for concerted general acid-general base catalyzed enolization at enzyme active sites occur

late on the reaction coordinate [Gerlt, J.A., Gassman, P.G. (1993) J. Am. Chem. Soc. 115, 11552-11568].

We postulate that as an enzyme evolves, it may decrease ∆G‡ for a proton transfer step associated with

substrate enolization by following the path of steepest descent on the two-dimensional surface

corresponding to ∆G‡, as defined by Marcus formalism.  We show that for an enzyme that has decreased

∆G‡ following the path of steepest descent, the values of the intrinsic kinetic (∆G‡
int,E) and thermodynamic

(∆G°E) barriers for proton transfer reactions on the enzyme may be predicted from the known values of

∆G‡
int,N and ∆G°N for the corresponding nonenzymatic reaction and the free energy of activation on the

enzyme (∆G‡
E).  In addition, the enzymatic transition state will occur later on the reaction coordinate than

the corresponding nonenzymatic transition state (i.e., x‡
E > x‡

N) if the condition 6 2 8−( )  < x‡
N < 6 2 8+( )

is satisfied.  For enzyme-catalyzed abstraction of the α-proton from carbon acid substrates with high pKa

values (e.g., pKa ~ 29), the free energy of activation for the nonenzymatic reaction (∆G‡
N) is dominated by

∆G°N.  Reduction of ∆G‡, via the path of steepest descent, will reduce ∆G° to a greater extent (i.e.,

differential binding) than ∆G‡
int if ∆G°N > 2 ∆G‡

int,N.
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1. Introduction

Many enzymes catalyze the heterolytic abstraction of the α-proton from a carbon acid substrate to

initiate 1,1-, 1,2-, and 1,3-migrations of protons, aldol and Claisen condensations, and β-elimination

reactions (Richard and Amyes, 2001; Kluger, 1990; Gerlt, 1998).  According to Marcus formalism (Albery,

1980; Cohen and Marcus, 1968; Marcus, 1969; Kresge and Silverman, 1999; Silverman, 2000), the free

energy of activation (∆G‡) for such a unimolecular proton transfer reaction may be partitioned into two

parts: (1) the thermodynamic barrier (∆G°), and (2) the intrinsic kinetic barrier (∆G‡
int) as shown in

equation 1 (where |∆G°| ≤ 4∆G‡
int) (Maskill, 1985).FOOTNOTE 1  ∆G‡

int is the hypothetical activation barrier in

the absence of a thermodynamic barrier (i.e., when ∆G° = 0).  The Marcus formalism employed here

describes the reaction coordinate as an inverted parabola and the free energy (G) at any point x on the

reaction coordinate from substrate (x = 0) to product (x = 1) is related to ∆G° and ∆G‡
int as shown in

equation 2.  The position of the transition state on the reaction coordinate, x‡, corresponds to the maximum

of the function given in equation 2 and is described by equation 3.

(1)

(2)

(3)

Enzymes that catalyze the heterolytic abstraction of a proton adjacent to a carbonyl or carboxylic

acid group (α-proton of a carbon acid substrate as shown in scheme 1) face two problems.  First, the enol

or enolate intermediate formed is unstable and poses a thermodynamic problem for the enzyme (Amyes

and Richard, 1996; Chiang et al., 2000; Richard et al., 2002; Thibblin and Jencks, 1979).  This problem

may be overcome by stabilization of the intermediate (i.e., decreased ∆G°) through electrostatic stabilization

and H-bonding interactions (Richard et al., 2002; Guthrie and Kluger, 1993).  Second, the rate of

nonenzymatic abstraction of the α-proton from a carbon acid is slower than the rate of abstraction of a

proton from a heteroatom or normal acid (HX, where X = N, O, or S) of equal acidity because ∆G‡
int for

proton abstraction from a carbon acid (~12 kcal/mol) is larger than that of a normal acid (≤ 3 kcal/mol)

(Albery, 1982; Chiang et al., 1988; Eigen, 1964; Bernasconi, 1992).  This difference is thought to arise

from changes in the orientations of solvent dipoles as the negative charge develops on the carbonyl oxygen
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as the α-proton is abstracted (Bernasconi, 1992) and changes in the geometry of the carbon atom (Guthrie,

1998).  Gerlt and Gassman (Gerlt and Gassman, 1993, 1993) pointed out that such solvent reorganization

need not occur within an enzyme active site and that the judicious placement of an electrophilic catalyst

adjacent to the carbonyl oxygen can stabilize the developing negative charge on the carbonyl oxygen

thereby reducing the intrinsic kinetic barrier (i.e., ∆G‡
int).  In addition, the intrinsic kinetic barrier may also

be reduced through concerted general acid catalysis (Gerlt and Gassman, 1993, 1993; Gerlt and Gassman,

1992; Gerlt et al., 1997).

INSERT: scheme 1 & Figure 1

As an enzyme evolves to become a more proficient catalyst, how does it alter ∆G° and ∆G‡
int,

relative to each other, to achieve a significant reduction in ∆G‡?  Two proposals have been put forward to

address this question (Figure 1).  First, Albery, Knowles, and co-workers developed a general theory that

relates the energetics of individual steps of an enzyme-catalyzed reaction to the catalytic efficiency of the

enzyme (Albery and Knowles, 1977; Burbaum et al., 1989).  According to their proposal, the catalytic

efficiency of an enzyme may be improved during evolution in three stages in order of increasing difficulty:

(1) “uniform binding”, (2) “differential binding”, and (3) “catalysis of an elementary step” (Burbaum et

al., 1989; Albery and Knowles, 1976).  Differential binding relates to the enzyme’s ability to selectively

bind a reactive intermediate relative to the substrate in the ground state, thereby decreasing the energy

difference between the substrate and the intermediate (i.e., reduction of ∆G° as shown in Figures 1C and

1D).  Such differential binding would equalize the relative energies of internal states (i.e., bound substrate

and intermediate) giving an internal equilibrium constant (Kint) of approximately unity for enzymes that

operate under reversible conditions (i.e., ∆G° ≈ 0, see Figure 1D).  (For irreversible enzymes, bound

intermediate will be favored over bound substrate and Kint >1 (Burbaum et al., 1989; Chin, 1983;

Stackhouse et al., 1985).)  Once differential binding has been optimized, an enzyme can only improve

catalysis of an elementary step through selective stabilization of the transition state relative to the ground

state (i.e., reduction of ∆G‡
int).

In an alternative proposal, Gerlt, Gassman, and co-workers used Marcus formalism to argue that the

transition state for concerted general acid-general base-catalyzed enzymatic proton transfers to and from

carbon atoms adjacent to carbonyl or carboxyl groups (enolizations) occurs late on the reaction coordinate

(Gerlt and Gassman, 1993, 1993; Gerlt and Gassman, 1992; Gerlt et al., 1991).  Consequently, the
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predicted value of Kint for the formation of the enolic(ate) intermediate from the substrate at the enzyme

active site should be substantially less than unity (i.e., ∆G° > 0, see Figure 1B).  Although Gerlt and

Gassman pointed out that the observed activation barriers for enzyme-catalyzed reactions could be achieved

by lowering both ∆G° and ∆G‡
int, they did not specify in what ratio these parameters might be altered.

Herein, we use the activation free energy surface for a proton transfer reaction, as defined by Marcus

formalism, to develop a quantitative theoretical description of how both ∆G° and ∆G‡
int might vary as the

activation barrier on an enzyme is decreased along the path of steepest descent during evolution.  In

addition, we define conditions under which the enzymatic transition state will occur later on the reaction

coordinate relative to the location of the corresponding nonenzymatic transition state.

2. Results and Discussion

Path of Steepest Descent.  In terms of Marcus formalism, two possible extremes of enzyme evolution

may be envisioned.  First, an enzyme might improve its efficiency by reducing only ∆G‡
int (i.e., enhancing

transition state stabilization) while having no effect on the thermodynamic barrier.  For extremely

endergonic reactions such as proton transfers from carbon acids, ∆G‡ is dominated by ∆G°, and reduction

in ∆G‡
int alone cannot account for the observed rates of enzyme-catalyzed reactions (Gerlt, 1998).  Second,

an enzyme might improve its efficiency by reducing only ∆G° (i.e., enhancing differential binding) while

having no effect on the intrinsic kinetic barrier.  Certainly, it is unlikely that these two extreme mechanisms

would operate in isolation since ∆G° and ∆G‡
int are not expected to be completely independent in an

enzyme’s active site.  Structural features that reduce ∆G° may also produce reductions in ∆G‡
int and vice

versa, especially if natural selection leads to the parsimonious use of catalytic groups at enzyme active sites

(Gerlt and Gassman, 1993; Hanson and Rose, 1975).  For example, the electrostatic interactions within a

polar active site that stabilize the reactive intermediate (i.e., lower ∆G°) may also serve to stabilize the

transition state (Hammond, 1955) and to "solvate" the reactant so that solvent reorganization energies are

reduced relative to those of the corresponding nonenzymatic reaction (i.e., lowering ∆G‡
int) (Yadav et al.,

1991).

Figure 2 shows the level curves of a contour plot for the two-dimensional activation free energy

(∆G‡) surface for a proton transfer reaction as defined by ∆G‡
int and ∆G° according to equation 1.

Assuming that proton transfer is rate-determining and that there is not a drastic change in mechanism, this
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surface represents the values of ∆G‡ that could be sampled as an enzyme evolves and catalysis of the

proton transfer step is improved.FOOTNOTE 2  A plausible evolutionary strategy for lowering ∆G‡ is to follow

the path of steepest descent from its value in the absence of enzyme (∆G‡
N) to its value on the enzyme

(∆G‡
E).  This path lowers both ∆G‡

int and ∆G° by the smallest amount each to yield the final value of ∆G‡
E.

Initially, mutations would generate enzymes with different values of ∆G‡
E that correspond to points on the

activation free energy surface (i.e., (∆G‡
int,E, ∆G°E, ∆G‡

E)) that vary about the point (∆G‡
int,N, ∆G°N, ∆G‡

N)

in a stochastic fashion.  Those enzymes with combinations of ∆G‡
int,E and ∆G°E that lie on or close to the

path of steepest descent would have lower values of ∆G‡
E and therefore be favored by natural selection.

INSERT:  Figure 2

Starting at the point (∆G‡
int,N, ∆G°N) on the contour plot, the path of steepest descent can be

calculated exactly using the implicit function given in equation 4 or approximately by following the path

corresponding to the maximum directional derivative at small discrete intervals.  (Equation 4 is the solution

to differential equation 6.)  The intersection of this path with the level curve corresponding to the value of

∆G‡
E gives the values of ∆G‡

int,E and ∆G°E as shown in Figure 2.

(4)

where
(5)

Changes in Transition State Location.  We now delimit regions on the ∆G‡ surface where lowering the

value of ∆G‡ from ∆G‡
N to ∆G‡

E along the path of steepest descent yields an enzymatic transition state that

occurs either later or earlier on the reaction coordinate than the corresponding nonenzymatic transition

state.  Figure 3 shows examples of lines that intersect the level curves at values of ∆G‡
int and ∆G° that yield

constant values of x‡.  Setting the slope of such lines (i.e., ∆G°/∆G‡
int) equal to the gradient of the

maximum directional derivative (equation 6) gives equation 7 (with L = 0).  The two lines defined by

equation 7 (with L = 0) partition the ∆G‡ surface into three regions as indicated by the yellow and blue

shading in Figures 2 and 3.  Substitution of the roots of equation 7 with L = 0 (i.e., equation 8) into

equation 3 gives the values of x‡ that correspond to this criterion (equation 9).  In the regions shaded blue

where L > 0 (i.e., x‡ <  6 2 8−( )  and x‡ > 6 2 8+( ) ), the path of steepest descent yields values of ∆G‡
int,E

and ∆G°E such that the location of the transition state for enzyme-catalyzed proton abstraction occurs
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earlier on the reaction coordinate than does the corresponding transition state of the nonenzymatic reaction

(i.e., x‡
E < x‡

N).  However, in the region shaded yellow where L < 0 and x‡ satisfies condition 10, the path of

steepest descent will yield values of ∆G‡
int,E and ∆G°E that give x‡

E > x‡
N.  This difference is more evident in

Figure 3, which shows the gradient vectors at any given initial combination of ∆G‡
int and ∆G°, and their

relation to lines defined by specific ∆G°/∆G‡
int ratios (i.e., constant values of x‡).  Hence, in the yellow

region of the ∆G‡ surface (Figure 2) where x‡ is confined between the values given in condition 10,

simultaneous lowering of ∆G‡
int and ∆G° by the path of steepest descent will result in a late transition state

relative to that observed for the corresponding nonenzymatic reaction.

INSERT: Figure 3

(6)

(7)

(8)

(9)

(10)

Ketosteroid Isomerase and Mandelate Racemase.  As examples, we consider the proton abstraction

reactions catalyzed by ketosteroid isomerase (KSI) and mandelate racemase (MR) (scheme 2).  Both

enzymes have been studied as paradigms for enzymes that catalyze rapid C–H bond cleavage of carbon

acids with relatively high pKa values (Gerlt, 1998; Ha et al., 2001; Pollack et al., 1999).  However, the

burden borne by these enzymes is quite different.  The relative reactivity of the carbon acid substrates 5-

androstene-3,17-dione  (pKa = 13) (Hawkinson et al., 1991) and mandelate (pKa ≈ 29) (Gerlt et al., 1991)

toward nonenzymatic proton transfer is determined primarily by their pKa values.  The ~16 unit difference

between these two pKa values corresponds to ~22 kcal/mol difference in the thermodynamic barriers to

nonenzymatic deprotonation of these substrates (i.e., ∆∆G° = –2.303RT∆pKa).  However, the values of the
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nonenzymatic deprotonation of these substrates (i.e., ∆∆G° = –2.303RT∆pKa).  However, the values of the

catalytic efficiency (kcat/Km) for KSI and MR are 3.0 × 108 M–1s–1 and 6 × 105 M–1s–1, respectively,

corresponding to a 3.7 kcal/mol difference in the activation barriers for the enzyme-catalyzed reactions.

Hence, KSI and MR are representative of a general trend: rather large variation of the thermodynamic

barriers for proton transfers may be exhibited by nonenzymatic reactions with only limited variation of the

efficiencies (kcat/Km) of the corresponding enzyme-catalyzed reactions (Richard and Amyes, 2001;

Radzicka and Wolfenden, 1995).

The values of ∆G‡
int,N (13 kcal/mol) and ∆G°N (11 kcal/mol) for the nonenzymatic, acetate-catalyzed

abstraction of a proton from 5-androstene-3,17-dione were estimated by Hawkinson et al. (Hawkinson et

al., 1994).  For MR, the values of ∆G‡
int,N and ∆G°N may be estimated as follows.  The observed second-

order rate constant (k2 = 13.4 ± 0.7 × 10–5 M–1s–1) for the imidazole-catalyzed exchange of the α-

hydrogen of (R)-mandelate has been measured at 170 °C (pD 7.5) (Bearne and Wolfenden, 1997).

Extrapolation of this value to 25 °C using the enthalpy of activation (∆H‡ = 29 kcal/mol) measured by

Bearne and Wolfenden (Bearne and Wolfenden, 1997) gives k2 = 1.6 × 10–11 M–1s–1.  Further

extrapolation of this rate constant to pK = 29 (pKa value of the α-proton of the mandelate anion has been

estimated as ~29 (Gerlt et al., 1991)) using βe ≈ 0.7 (e.g., βe = 0.68 and 0.88 for base-catalyzed enolization

of acetophenone (Chiang et al., 1988) and acetone (Venimadhavan et al., 1989), respectively), gives an

intrinsic rate constant of ko = 3.7 × 104 M–1s–1.  Since we are not considering work termsFOOTNOTE 1 in our

analysis, we must now adjust the intrinsic rate constant to reflect reaction from an encounter complex,

analogous to the enzyme-substrate complex.  The equilibrium constant for formation of an encounter

complex with the nucleus of a basic atom located either above or below the acidic carbon has been

estimated to be approximately 0.017 M–1 (Hine, 1971), and adjusting the intrinsic rate constant by this

factor (i.e., ko/0.017 M–1) gives a value of 2.2 × 106 s–1 corresponding to an intrinsic kinetic barrier of 9

kcal/mol.  This value is in agreement with the value of 10.7 kcal/mol calculated for the intrinsic kinetic

barrier for hydroxide-catalyzed proton transfers from the α-carbons of carbonyl compounds (Guthrie and

Kluger, 1993; Guthrie, 1991).  From the estimated pKa value of the α-proton of mandelate and the pKa of

imidazole (pKa = 7.05, (Jencks and Regenstein, 1968)), the value of ∆G° is approximately 30 kcal/mol

(Gerlt, 1998).  Thus, for nonenzymatic imidazole-catalyzed racemization of mandelate at 25 °C, the values

of ∆G‡
int,N and ∆G°N are approximately 9 kcal/mol and 30 kcal/mol, corresponding to ∆G‡ = 30.3 kcal/mol.
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INSERT:  scheme 2

Figure 2 shows the path of steepest descent (calculated using equation 4) for lowering ∆G‡ for both

KSI and MR from the points (∆G‡
int,N, ∆G°N, ∆G‡

N) to ∆G‡
E.

FOOTNOTE 3  The curve for MR lies at the top of

the yellow region because the thermodynamic barrier for formation of an enolate from the conjugate base

of a carboxylic acid is greater than that for an aldehyde, ketone, or ester.  Since many carboxylate, aldehyde,

ketone, or ester substrates have pKa values between 13–30 (i.e., ∆G° = 18-41 kcal/mol) (Gerlt et al., 1991),

and ∆G‡
int for proton abstraction from carbon acids is usually ~12 kcal/mol, most points corresponding to

the nonenzymatic Marcus parameters (∆G‡
int,N, ∆G°N, ∆G‡

N) should lie within the yellow region shown in

Figure 2 and, consequently, so will the curves corresponding the steepest descent paths between the

nonenzymatic and enzymatic Marcus parameters.  In addition, the position of the enzymatic transition state

on the reaction coordinate will occur slightly later than that of the corresponding nonenzymatic reaction in

this region.  This result agrees with the “late transition state rule” proposed by Gerlt and Gassman (Gerlt

and Gassman, 1993).  For KSI and MR, the estimated values of x‡
N are 0.605 and 0.917 while the values of

x‡
E, determined using the path of steepest descent are 0.630 and 0.927, respectively.

Because of the high propensity of a reactive intermediate to form product, it is difficult to

experimentally determine the concentrations of enzyme-bound intermediates relative to the bound substrate.

To our knowledge, only one study has been conducted that compares the values of ∆G‡
int and ∆G° for an

enzyme-catalyzed enolization reaction to the values of ∆G‡
int and ∆G° for its corresponding nonenzymatic

reaction.  Using an estimate of the dissociation constant for the wild-type KSI-intermediate complex

(calculated from the dissociation constant for the D38N KSI-intermediate complex determined

experimentally), Pollack and co-workers determined that Kint = 0.3 ± 0.2 for interconversion of bound

substrate and bound intermediate (Hawkinson et al., 1994).  These findings are indicated by the arrow

shown in Figure 2 and support the Albery/Knowles proposal (i.e., Kint ≈ 1).  Whether reduction in the

activation free energy barrier for a proton transfer reaction during evolution follows the path of steepest

descent, or follows another path because of additional pressures of natural selection is not yet clear.FOOTNOTE

2  Although the value of Kint = 0.3 for KSI is in agreement with expectations predicted from the results of

previous studies (Hawkinson et al., 1991; Brooks and Benisek, 1994), the authors do caution that

differences between their calculated and experimentally determined dissociation constant for the D38N

KSI-equilenin (an intermediate analogue) complex suggest that the value of Kint might be corrected to 0.01.
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(This corresponds to ∆G° = 2.73 kcal/mol, and using equations 1 and 3 this gives ∆G‡
int,E = 8.88 kcal/mol

and x‡ = 0.538.)  Interestingly, Holman and Benisek (Holman and Benisek, 1994) concluded from their

studies on KSI bearing an alanine-3-sulfinate at position 38 that Brønsted β ≈ 0.75.  Although this

estimate of β is based on kinetics measured for only two forms of the enzyme, it does suggest a relatively

late transition state consistent with the Gerlt/Gassman proposal (i.e., Kint << 1).  Recent studies on the

formation and stability of enolates of acetamide and acetate anions by Richard et al. (Richard et al., 2002)

also suggest that enzymes can effect an increase in both the thermodynamic and kinetic stability of a bound

carbanion.  Certainly more experimental studies are required to clearly describe how enzymes generally

alter intrinsic kinetic and thermodynamic barriers to achieve catalysis.

The evolutionary strategy discussed in the present work assumes that enzymes display no special

features that selectively discriminate between the thermodynamic driving force and the intrinsic kinetic

barrier for proton transfers from carbon acid substrates during the course of evolution.  Because there are

many examples of enzymes stabilizing bound intermediates and transition states, relative to bound

reactants, as demonstrated by the potent inhibition of enzymes by intermediate and transition state

analogues (Wolfenden and Frick, 1987; Radzicka and Wolfenden, 1995), one could argue that as enzymes

evolve, they selectively lower ∆G°E relative to ∆G‡
int,E.  In fact, much of the proficiency of an enzyme that

catalyzes the reaction of a carbon acid substrate arises from the reduction of ∆G° because such enzymes

often face a formidable thermodynamic barrier (i.e., large ∆G°) and little advantage is to be gained by

lowering the relatively small intrinsic kinetic barrier.  This accounts for the tight binding of intermediate

and transition state analogues.  In the yellow region of Figure 2, the ratios (∆G°/∆G‡
int) describing the

reduction in ∆G°, relative to ∆G‡
int, range between 0.59 and 3.41 (equation 8).  For values of ∆G‡

N that fall

within the yellow region shown in Figures 2 and 3 but close to the lower boundary, the path of steepest

descent does not favor reduction of the thermodynamic barrier relative to the intrinsic kinetic barrier (e.g.,

for KSI (i.e., KSIa), ∆∆G°/∆∆G‡
int ≈ 0.65).  However, for ∆G‡

N values that lie close to the upper boundary

of the yellow region on the contour plot where the contour lines have more curvature, reduction of the

thermodynamic barrier is favored relative to the intrinsic kinetic barrier (e.g., for MR, ∆∆G°/∆∆G‡
int ≈

3.27).  Interestingly, this degree of discrimination is similar to that found experimentally for KSI (slope of

arrow shown in Figure 2 (i.e., KSIb), ∆∆G°/∆∆G‡
int ≈ 3.43).  For those enzymes that catalyze abstraction

of the α-proton from a carbon acid substrate with a high pKa value (i.e., when ∆G‡
N is dominated by ∆G°N
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as is the case with MR), preferential reduction in ∆G° is most advantageous.  Indeed, for values of ∆G‡
N

where ∆G°N > 2∆G‡
int,N, the path of steepest descent will result in enhanced differential binding such that

∆G° will be reduced to a greater extent than ∆G‡
int (i.e., d∆G°/d∆G‡

int > 1; see equation 6).  Although the

results of the single study using KSI do not appear to support the path of steepest descent as a course of

evolution, it may be that for more proficient enzymes such as MR, the reduction of both ∆G° and ∆G‡
int

more closely follows the path of steepest descent during evolution.

At present, it is not possible to describe a general trend for the reduction of ∆G° relative to ∆G‡
int

over the course of evolution because of the paucity of experimental studies that specifically measure the

intrinsic kinetic barriers of enzyme-catalyzed reactions.  However, the present analysis does provide an

alternative framework for thinking about the application of Marcus formalism to enzymatic reactions.

3. Conclusions

The free energy of activation for the nonenzymatic formation of an enolate ion is dominated by a

large thermodynamic barrier (∆G°) and consequently, x‡ occurs late on the reaction coordinate.  For an

enzyme that has evolved by decreasing ∆G‡ for an enolization reaction by following the path of steepest

descent on the ∆G‡ two-dimensional surface, as defined by Marcus formalism, the values of the intrinsic

kinetic (∆G‡
int,E) and thermodynamic (∆G°E) barriers for proton transfer reactions on the enzyme may be

predicted using the known values from the corresponding nonenzymatic reaction (∆G‡
int,N and ∆G°N) and

the free energy of activation on the enzyme (∆G‡
E).  The values of ∆G‡

int,E and ∆G°E, determined in such a

manner, correspond to a position for the enzymatic transition state on the reaction coordinate that is later

than that for the corresponding nonenzymatic transition state if condition 10 is satisfied.  Since the values

of ∆G‡
int,N and ∆G°N for most nonenzymatic enolization reactions are expected to satisfy condition 10,

enzymes catalyzing the corresponding reactions will also have late transition states if ∆G‡ for the proton

transfer step associated with substrate enolization has been decreased following the path of steepest

descent.  The path of steepest descent favors reduction of ∆G° relative to ∆G‡
int when ∆G°N dominates (i.e.,

∆G°N > 2∆G‡
int,N) the activation free energy for the nonenzymatic reaction (∆G‡

N).
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Footnotes

Footnote 1:  For higher-order reactions such as bimolecular and termolecular reactions involving general

acidic or general basic catalysts, Marcus formalism can only be applied to the encounter complex of the

reacting species, unless the free energy change associated with formation of the encounter complex, known

as the work term (wr), is also included in the analysis (i.e., ∆G‡
obs = ∆G‡ + wr).  For this reason, the present

analysis is restricted to comparisons between enzyme-bound species and an encounter complex between

the general acidic or general basic catalyst and the substrate for the corresponding nonenzymatic reaction.

We recognize that Marcus theory does have a major limitation because the reaction coordinate is

assumed to depend on just one variable.  Most molecular reactions involve two or more reaction events

whose relative progress along the reaction coordinate varies for different members of a reaction series

(Grunwald, 1985).  Marcus theory has been expanded upon by the introduction of additional progress

variables for each independently variable reaction event; however, such multidimensional Marcus

formalisms are not discussed in the present work and the analysis is presented in terms of one-dimensional

Marcus theory (Grunwald, 1985; Guthrie, 1996).

Footnote 2:  There are many factors that affect enzyme evolution including local substrate concentrations,

levels of enzyme expression, enzyme concentration, flux of the metabolic pathway that contains the enzyme,

barriers to enzyme flexibility, as well as the activation barriers associated with chemical steps (Keleti and

Welch, 1984; Pettersson, 1989).  The present argument applies only to evolutionary pressure to lower a

rate-limiting proton transfer reaction on an enzyme.

Footnote 3:  No single step of the catalytic cycle of KSI or MR appears to be solely rate-limiting.  For

KSI, enolization, ketonization, and product dissociation are each partially rate-limiting (Hawkinson et al.,

1991; Brooks and Benisek, 1994; Holman and Benisek, 1994; Xue et al., 1990).  The rate of MR catalysis

is partially limited by diffusion (St. Maurice and Bearne, 2002).  Hence, the values of ∆G‡
E used in our

analysis are the free energies of activation associated with deprotonation of the bound substrate (i.e., 10.3

kcal/mol for 5-androstene-3,17-dione (Hawkinson et al., 1991) and 13.4 kcal/mol for (R)-mandelate (St.

Maurice and Bearne, 2002); see Figure 2).
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Figure Legends

Figure 1.  Dependence of G on the position of the reaction coordinate, x, for the nonenzymatic and

enzyme-catalyzed enolization of a carbon acid.  The free energy difference between the enolic(ate)

intermediate (at x = 1) and the substrate carbon acid (at x = 0) is ∆G°.  Curve A is for the nonenzymatic

(imidazole-catalyzed) racemization of mandelate and was calculated using equation 2 with values of ∆G‡
int

= 9 kcal/mol and ∆G° = 30 kcal/mol (see text).  Curve B corresponds to the scenario in which the overall

activation barrier ∆G‡ is lowered on MR (to 13.4 kcal/mol) by simultaneous lowering of ∆G° (to 13.3

kcal/mol) and ∆G‡
int (to 3.91 kcal/mol) by the path of steepest descent (see Figure 2).  This scenario is

similar to that proposed by Gerlt and Gassman (Gerlt and Gassman, 1993) in which the enzymatic

transition state occurs late on the reaction coordinate.  Curves C and D show different degrees of

differential binding as proposed by Albery and Knowles (Albery and Knowles, 1976).  For curve C, the

enzyme has reduced the overall activation barrier ∆G‡ by only lowering ∆G° (to 8.0 kcal/mol).  Curve D

illustrates the case where ∆G° = 0 and ∆G‡ = ∆G‡
int. For all curves, the values of G have been normalized

so that G = 0 when x = 0 (i.e., (∆G‡
int + ∆G°/2) is added to each value of G calculated using equation 2).

Figure 2.  Level curves for the activation free energy surface described by equation 1 and paths of steepest

descent for reduction of ∆G‡.  Values graphed are for endergonic proton transfer reactions (i.e., ∆G° > 0)

with |∆G°| ≤ 4∆G‡
int.  For the enzyme-catalyzed reactions, the values of ∆G‡

E are 10.3 kcal/mol and 13.4

kcal/mol for KSI (Hawkinson et al., 1994) and MR (St. Maurice and Bearne, 2002), respectively.  The

estimated values of (∆G‡
int,N, ∆G°N, ∆G‡

N) (in kcal/mol) for the corresponding nonenzymatic reactions, are

(13, 11, 19.1) (Hawkinson et al., 1994) and (9, 30, 30.3), respectively (see text).  The curves between the

filled circles, calculated using equation 4, show the paths of steepest descent from ∆G‡
N (labeled N) to

∆G‡
E (labeled E); their intersection with the level curves at the observed ∆G‡

E values gives the values (in

kcal/mol) of (∆G‡
int,E, ∆G°E) as (6.48, 6.76) and (3.91, 13.35) for KSI (labeled KSIa) and MR,

respectively.  In the region shaded yellow, the path of steepest descent yields x‡
E > x‡

N, whereas in the blue

region it yields x‡
E < x‡

N.  The arrow (labeled KSIb) shows experimental results obtained for KSI by

Hawkinson et al. (Hawkinson et al., 1994) where the observed values (in kcal/mol) of ∆G‡
int,E and ∆G°E are

10 and 0.7, respectively.  (Note that this activation free energy surface differs from the traditional standard

molar free energy reaction maps which plot different reaction coordinates on the x-axis and y-axis with the
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free energy (G) being plotted on the z-axis (Maskill, 1985).  Only the saddle point on these maps is the

free energy of activation (∆G‡).)

Figure 3.  Gradient vector field graph for ∆G‡ (equation 1).  The red lines extending from the origin have

slopes equal to specific ratios of ∆G‡
int/∆G° (i.e., corresponding to constant values of x‡ shown in red).

The vectors are normalized to unit length.
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Scheme 1. General base-catalyzed enolate formation.
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Scheme 2. Reactions catalyzed by KSI (A) and MR (B).
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