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Mathematical models for the electrical activity in cardiaccells are normally formulated as systems of ordinary
differential equations (ODEs). The equations are nonlinear and describe processes occurring on a wide range of
time scales. Under normal accuracy requirements, this makes the systems stiff and therefore challenging to solve
numerically. Because standard implicit solvers are difficult to implement, explicit solvers such as the forward Euler
method are commonly used, despite their poor efficiency. Non-standard formulations of the forward Euler method,
derived from the analytical solution of linear ODEs, can give significantly improved performance while maintaining
simplicity of implementation. In this paper we study the performance of three non-standard methods on two different
cell models with comparable complexity but very different stiffness characteristics.
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1 Introduction

Since the first Purkinje cell model was introduced in 1962 by Noble et al. [1], a large
number of models have been developed for different types of cardiac cells. Impor-
tant contributions include [1, 2] describing Purkinje cells, [3–5] describing ventric-
ular cells, and [6, 7] describing atrial cells. The models are typically formulated as
systems of nonlinear ordinary differential equations (ODEs). These models are be-
ing continually developed to give an increasingly detailedand accurate description of
cellular physiology. However, this development also tendsto increase the complexity
of the models. The newer models attempt to capture processeson a wider range of
time scales. This range of time scales is normally a source ofstiffness, and hence the
equations become more challenging to solve numerically. Explicit numerical meth-
ods are forced to take steps on the fastest time scale due to stability restrictions.
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These small steps then translate into inefficient simulations and yield solutions that
are much more accurate than normal accuracy requirements would necessitate.

The fact that most advanced models for cardiac cells are stiff is one of the consider-
able challenges when attempting to solve these equations efficiently. A wide range of
solvers have been developed for stiff ODE systems, see e.g.,Hairer and Wanner [8],
but these are normally implicit methods that are difficult toimplement in a robust
manner. When simulating the behaviour of a single cell, i.e., a single ODE system,
over short time intervals, the efficiency of the numerical method is hardly notice-
able. Both simple explicit methods and various available libraries of solvers for stiff
problems may be suitable solutions. However, both the poor efficiency of explicit
solvers and the complexity of implicit solvers become important issues when the cell
models are used in simulations of heart tissue or the complete heart muscle. In this
case the cell model ODEs are coupled to partial differentialequations (PDEs), e.g.,
the bidomain model [9, 10], that describes the variations inthe electrical potentials
throughout the tissue. The bidomain model is a system of two partial differential
equations, and the coupling of the cell model ODEs to this model typically makes it
more difficult to utilize standard explicit solvers or available libraries for solving the
ODEs. Furthermore, when the PDEs of the bidomain model are discretized in space,
we typically need to solve one cell model system for each nodein the computational
grid, which for simulations of a complete heart may easily exceed 10 million [11].
In this case the efficiency of the ODE solver becomes a very important issue.

Because of the complexity involved in utilizing implicit ODE solvers in simula-
tions based on the bidomain model, the simple forward Euler method is a popular
choice among researchers in this field [12, 13]. However, this explicit method is
known to behave poorly for stiff problems, and for some recent cell models, such
as the 1999 canine model by Winslow et al. [5], its poor performance renders it in-
feasible for use in practice, even for single cell simulations. A clever alternative to
the forward Euler method was derived in the 1970s by Rush and Larsen [14]; it has
gained a wide popularity in the heart cell simulation research community [15–17].
The method utilizes the fact that although the cell model ODEsystems are nonlinear,
most of the ODEs are linear when some variables are assumed tobe constant. For
these equations it is therefore possible to derive an updateformula based on the ana-
lytical solution of linear ODEs. The remaining equations inthe system are nonlinear
even when all other variables are assumed constant, and in the original method these
are treated with the forward Euler method.

Although formally only first-order accurate, the non-standard finite-difference
(NSFD) ODE solver introduced by Rush and Larsen has proved tobe a signifi-
cant improvement over the standard forward Euler method. Numerical studies have
shown that for a wide range of cell models both stability and accuracy properties
are substantially improved. Although the method may not be as efficient or robust
as general-purpose stiff ODE solvers such as BDF methods or implicit Runge-Kutta
methods, see e.g., [18], the method is effectively as easy toimplement as the forward
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Euler method, and this is probably the main reason for its popularity.
The efficiency of the Rush–Larsen NSFD solver for the Luo-Rudy [3] cell model

ODE system was investigated in [19]. The purpose of the present paper is to evalu-
ate the performance of NSFD methods for a pair of fairly recent cell models. One is
an atrial model by Courtemanche et al. [7], and the other is a ventricular model by
Winslow et al. [5]. These models are ODE systems consisting of 21 and 31 equations,
respectively, and the models are of comparable complexity.However, the characteris-
tics of the two models in terms of stiffness are very different, and we investigate how
this affects the efficiency of the NSFD solvers. The numerical experiments presented
here are for single cell simulations only, but the results regarding computational effi-
ciency are directly transferable to the case of full-scale simulations of the bidomain
model based on operator splitting [20].

The organization of this paper is as follows. Section 2 introduces the two ODE sys-
tems considered. Section 3 describes different versions ofthe NSFD solvers. Section
4 describes numerical experiments with the different solvers and compares their ef-
ficiency for solving the two model systems. Finally, Section5 summarizes our work
and gives recommendations on the applicability of the various solvers.

2 Mathematical models

2.1 The atrial cell model

The atrial cell model of Courtemanche et al. includes 15 ionic and pump currents,
including the handling of intracellular calcium by the sarcoplasmic reticulum (SR).
The intracellular concentrations of calcium, sodium, and potassium are also included
in the model. The transmembrane potential,V , satisfies

dV

dt
= −

1

Cm
Iion,

whereIion is defined as

Iion = INa + IK1 + Ito + IKur + IKr + IKs

+ ICa,L + Ip,Ca + INaK + INaCa + Ib,Na + Ib,Ca.

Twelve of the 15 currents included in the model are ionic currents, 7 of which are
controlled by the action of gating variables described by ODEs of the form

dy

dt
=

y∞ − y

τy
, (1)



January 28, 2007 21:7 Computer Methods in Biomechanics and Biomedical Engineering NSodes

4

wherey is the gating variable in question, and the termsy∞ andτy are defined as

y∞ =
αy

αy + βy
,

τy =
1

αy + βy
,

with bothαy andβy being functions ofV . Complete expressions for theαy andβy

can be found in [7]. There are a total of 15 gating variables inthe model. For the fast
sodium current there are 3 gates,m, h, andj. Five potassium currents are included
in the model, four of which are time dependent: the transientoutward potassium
current, with gatesoa andoi, the ultrarapid delayed rectifier potassium current, with
gatesua andui, the rapid delayed outward rectifier potassium current, with gatexr,
and the slow delayed outward rectifier potassium current, with gatexs. The L-type
calcium current is controlled by three gates,d, f , andfCa, and the calcium release
from the junctional sarcoplasmic reticulum (JSR) is also controlled by three gates,u,
v, andw. All 15 gates satisfy equation (1), withy = m,h, j, etc.

In addition to the ODEs for the gating parameters, the Courtemanche et al. model
includes ODEs for the intracellular sodium, potassium, andcalcium concentra-
tions ([Na+]i, [K+]i, [Ca2+]i), including the calcium uptake and release by the SR
([Ca2+]up, [Ca2+]rel),

d[Na+]i
dt

=
−3INa,K − 3INaCa − Ib,Na − INa

FVi
,

d[K+]i
dt

=
2INa,K − IK1 − Ito − IKur − IKr − IKs − Ib,K

FVi
,

d[Ca2+]i
dt

=
B1

B2
,

B1 =
2INaCa − Ip,Ca − ICa,L − Ib,Ca

2FVi

+
Vup(Iup,leak − Iup) + IrelVrel

Vi
,

B2 = 1 +
[Trpn]maxKm,Trpn

([Ca2+
i ] + Km,Trpn)2

+
[Cmdn]maxKm,Cmdn

([Ca2+]i + Km,Cmdn)2
,

d[Ca2+]up

dt
= Iup − Iup,leak − Itr

Vrel

Vup
,

d[Ca2+]rel
dt

= (Itr − Irel)

{

1 +
[Csqn]maxKm,Csqn

([Ca2+]rel + Km,Csqn)2

}−1

.
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In total, there are 21 ODEs in the Courtemanche et al. atrial cell model. A more
complete description can be found in [7].

2.2 The ventricular cell model

We here list the ODEs of the 1999 canine model by Winslow et al.We only present
the structure of the equations; for a full specification of ionic currents and coefficient
functions we refer to the original presentation in [5].

The transmembrane potential is governed by a sum of 13 ionic currents;

dV

dt
= −(INa + ICa + ICa,K + IKr + IKs + Ito + IK1 + IKp

+INaCa + INaK + Ip(Ca) + ICa,b + INa,b).

The ionic currents, specified in [5] are in general nonlinearfunctions ofV .
Membrane currents of sodium and potassium are governed by 7 gating variables,

which are described by

dm

dt
= αm(1 − m) − βmm,

dh

dt
= αh(1 − h) − βhh,

dj

dt
= αj(1 − j) − βjj,

dXKr

dt
=

(X∞
Kr − XKr)

τXKr

,

dXKs

dt
=

(X∞
Ks − XKs)

τXKs

,

dXto

dt
= αXto

(1 − Xto) − βXto
Xto,

dYto

dt
= αYto

(1 − Yto) − βYto
Yto.

All coefficients are functions of the transmembrane potential V only.
A characteristic of this model is its advanced handling of calcium dynamics. This
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includes the following system to describe release of calcium from the SR.

dPC1

dt
= −k+

a [Ca2+]4ssPC1
+ k−

a PO1
,

dPO1

dt
= k+

a [Ca2+]4ssPC1
− k−

a PO1
,−k+

b [Ca2+]3ssPO1

+k−
b PO2

− k+
c PO1

+ k−
c PC2

,

dPO2

dt
= k+

b [Ca2+]3ssPO1
− k−

b PO2
,

dPC2

dt
= k+

c PO1
− k−

c PC2
.

All the k-coefficients are given constants.
The following system describes the membrane current of calcium through the so-

called L-type channels.

dC0

dt
= βC1 + ωCCa0 − (4α + γ)C0,

dC1

dt
= 4αC0 + 2βC2 +

ω

b
CCa1 − (β + 3α + γa)C1,

dC2

dt
= 3αC1 + 3βC3 +

ω

b2
CCa2 − (2β + 2α + γa2)C2,

dC3

dt
= 2αC2 + 4βC4 +

ω

b3
CCa3 − (3β + α + γa3)C3,

dC4

dt
= αC3 + gO +

ω

b4
CCa4 − (4β + f + γa4)C4,

dO

dt
= fC4 − gO,

dCCa0

dt
= β′CCa1 + γC0 − (4α′ + ω)CCa0,

dCCa1

dt
= aα′CCa0 + 2β′CCa2 + γaC1 −

(

β′ + 3α′ +
ω

b

)

CCa1,

dCCa2

dt
= 3α′CCa1 + 3β′CCa3 + γa2C2 −

(

2β′ + 2α′ +
ω

b2

)

CCa2,

dCCa3

dt
= 2α′CCa2 + 4β′CCa4 + γa3C3 −

(

3β′ + α′ +
ω

b3

)

CCa3,

dCCa4

dt
= α′CCa3 + γa4C4 −

(

4β′ + f ′ +
ω

b4

)

CCa4,
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dy

dt
=

y∞ − y

τy
.

The coefficientsα, β, α′, andβ′ are functions of the transmembrane potentialV . The
parameterγ, describing the transition from state normal to stateCa, is a function of
the subspaceCa2+ concentration[Ca2+]ss. The gating variables of the closing vari-
abley are functions ofV , and the rest of the coefficients are constants. A detailed de-
scription of the channel is given in [21]. Intracellular calcium buffering is described
by

d[HTRPNCa]

dt
= k+

htrpn[Ca2+]i([HTRPN]tot − [HTRPNCa])

−k−
htrpn[HTRPNCa],

d[LTRPNCa]

dt
= k+

ltrpn[Ca2+]i([LTRPN]tot − [LTRPNCa])

−k−
ltrpn[LTRPNCa],

where thek-coefficients are constants.
Finally, the model describes the dynamics of five different intracellular ionic con-

centrations by the equations

d[K+]i
dt

= −[IKr + IKs + Ito + IK1,

+IKp + ICa,K − 2INaK)
AcapCsc

VmyoF
,

d[Ca2+]i
dt

= βi

[

Jxfer − Jup − Jtrpn,

−(ICa,b − 2INaCa + Ip(Ca))
AcapCsc

2VmyoF

]

,

d[Ca2+]ss
dt

= βss

(

Jrel
VJSR

Vss
− Jxfer

Vmyo

Vss
− ICa

AcapCsc

2VmyoF

)

,

d[Ca2+]JSR

dt
= βJSR(Jtr − Jrel),

d[Ca2+]NSR

dt
= Jup

Vmyo

VNSR
− Jtr

VJSR

VNSR
.

The ionic currents and the coefficient functionsβi, βss, andβNSR are nonlinear func-
tions of their respective variables, making all these equations nonlinear.
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As noted above, the reader is referred to [5] for a full specification of the system.

3 Numerical methods

The models described in the previous section can be written as general initial-value
problems of the form

dy

dt
= f(y, t), y(0) = y0. (2)

Many standard solvers for such initial-value problems can be derived from the for-
mula

y(tn+1) = y(tn) +

∫ tn+1

tn

f(τ, y(τ))dτ, (3)

wherey(tn) is assumed to be known. The right-hand side functionf is generally
nonlinear, andy is unknown, so it is normally not possible to compute the inte-
gral exactly. Different approximations of the integral give rise to different numerical
methods. The forward and backward Euler methods are derivedby viewing the in-
tegrandf(t, y) as constant, evaluated either at the left (t = tn) or right (t = tn+1)
endpoint of the integral, respectively. Both of these methods are formulated in vector
form, and in principle all components of the vector functionf are integrated simul-
taneously and in the same manner.

The solvers considered in this paper differ from this normalstructure in that the
components off are integrated separately, i.e., by

yi(t
n+1) = yi(t

n) +

∫ tn+1

tn

fi(τ, y(τ))dτ, (4)

and different approximation rules may be applied to the different components. In
component form, all the equations in the models considered can be written in the
form

dyi

dt
= fi(y), (5)

wherefi(y) is componenti of the nonlinear vector functionf(y). However, a signif-
icant portion of the equations can be written in the form

dyi

dt
= A(y∗)yi + B(y∗), (6)
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whereA andB are nonlinear functions, andy∗ is a vector of components ofy that
does not include componenti. For a system ofm equations,y∗ is a vector of at most
lengthm− 1, containing various componentsyj for j 6= i. An example of equations
that can be put on this form is the gating variable equations (1), for whichA andB
depend only on the transmembrane potentialV ; i.e., in this casey∗ = V . We see that
in a sequential solution algorithm, where each equation is stepped forward holding
all other variables constant, (6) reduces to a linear ODE with constant coefficients.

The NSFD solvers are based on special treatment of the equations of the form (6).
More precisely, the integral in (4) is approximated differently for these equations.
The ODEs associated with the two models considered here are therefore divided into
two parts, one part consisting of equations that can be written as (6), and one part
consisting of the equations that must be kept in the fully nonlinear form (5). With a
slight abuse of nomenclature, we refer to the group of equations of the form (6) as
the linear part of the system, and the group of the form (5) as the nonlinear part. For
the model by Courtemanche et al., the linear part consists ofthe variablesm, h, j, oa,
oi, ua, ui, xr, xs, d, f , fCa, u, v, andw, while the nonlinear part containsV , [Na+]i,
[K+]i, [Ca2+]i, [Ca2+]rel, and[Ca2+]up. Similarly, for the model by Winslow et al.
the variablesm, h, j, XKr, XKs, Xto, Yto, PC1

, PO1
, PO2

, PC2
, C0, C1, C2, C3,

C4, O, CCa0, CCa1, CCa2, CCa3, CCa4, [HTRPNCa], and[LTRPNCa] form the
linear part, andV , [K+]i, [Ca2+]i, [Ca2+]ss, [Ca2+]JSR, and[Ca2+]NSR form the
nonlinear part.

It will be useful to compare the performance of the NSFD solvers to that of the
forward Euler method. Forward Euler is a standard solver in the sense that all com-
ponents of the integral are approximated in the same manner,and the method can
be derived from (3). However, because of its simple, explicit structure, the method
can also be derived from the component-based version (4). Asdescribed above, the
integral in (4) is approximated by inserting the valuestn, yn in f and treating the
integrand as constant. The linear components are stepped forward by

yn+1
i = yn

i + ∆tA(yn)yn
i + B(yn), (7)

and the nonlinear components are updated from

yn+1
i = yn

i + ∆tf(yn). (8)

The NSFD solver derived by Rush and Larsen [14] is based on a special treatment
of the linear part of the equations. Inserting the valuestn, yn in the expressions for
A andB and using (4) and (6), we get

yi(t
n+1) = yi(t

n) +

∫ tn+1

tn

(Ayi + B) dτ. (9)
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SinceA andB are treated as constant, the integral can be evaluated analytically, and
we obtain

yn+1
i =

(

yn
i +

B

A

)

eA∆t −
B

A
. (10)

In the original formulation of the Rush–Larsen method, thisupdate formula is used
for all components of the linear part of the system, and the forward Euler method is
used for the nonlinear components.

One can suggest a variety of modifications of the original Rush–Larsen method.
A possible weakness of the method is that the forward Euler method is used for
the nonlinear part of the system. In the case that this part ofthe system is stiff, this
will lead to severe restrictions on the time step. An improvement of the method may
therefore be to solve some or all of these equations implicitly with for instance the
backward Euler method. Although this discretization leadsto nonlinear algebraic
equations that must be solved with an iterative technique such as Newton’s method,
this process is fairly simple because only scalar versions of the Newton iteration must
be applied. Using the backward Euler method, (4) becomes

yn+1
i = yn

i + ∆tfi(y
n
∗ , yn+1

i ), (11)

where againy∗ is a vector containing components ofy, but notyi itself. This equation
is solved by Newton’s method. Combining this formula for thenonlinear equations
with (10) for the linear parts, we get a first-order algorithmthat is slightly more
computationally expensive than the original Rush–Larsen method, but it may have
improved stability properties and hence be ultimately moreefficient. We also test a
component-wise version of backward Euler, where (11) is applied to both the linear
and nonlinear parts of the system.

Another weakness of the Rush–Larsen method is that althoughthe accuracy
is improved compared to the forward Euler method, the overall accuracy is still
only first order. Although this is hard to avoid for a sequential treatment of the
equations like the one we consider here, second-order accuracy may be obtained by
performing each step as a series of two steps. First, we use the Rush–Larsen method
with implicit treatment of the nonlinear part (given in (11)) to compute the value of
all variables at timet = tn + ∆t/2; i.e., all components ofyn+1/2

i . These midpoint
values may then be used to compute the constants in the update(10). If we also use
an implicit midpoint discretization of the equations in thenonlinear part, we obtain
an algorithm that is second-order accurate. The two steps ofthe algorithm can be
summarized as follows.
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(i) Compute a midpoint-approximation of all variables using

y
n+1/2
i =

(

yn
i +

B

A

)

eA∆t/2 −
B

A

for the linear equations and

y
n+1/2
i = yn

i +
∆t

2

(

fi(y
n
∗ ,

1

2
(yn

i + y
n+1/2
i ))

)

.

for the nonlinear ones.
(ii) Use the midpoint values to compute new values ofA andB, and integrate the

linear part of the system for a full time step with (10). The nonlinear equations
are then updated with the implicit midpoint formula,

yn+1
i = yn

i + ∆t

(

fi(y
n+1/2
∗ ,

1

2
(yn

i + yn+1
i ))

)

.

Because it consists of two normal steps, this step is almost exactly twice as ex-
pensive as the NSFD method based on a single step of (10) and the backward Euler
method. Numerical experiments must be performed to determine whether this extra
cost is outweighed by the increased accuracy or stability ofthe method.

As an alternative second-order NSFD method, we discretize the equations in the
nonlinear part using the following singly diagonally implicit Runge–Kutta (SDIRK)
method,

γ γ 0
1 1-γ γ

1-γ γ
,

whereγ = 2−
√

2
2 . As with the backward Euler method, this SDIRK method isL-

stable and has the property of stiff decay [18].

4 Numerical experiments

The cell model ODE systems are known to be stiff. In general itis difficult to give a
precise, quantitative definition of stiffness; see e.g. [8,18, 22] for discussions. Stiff-
ness is often better defined in qualitative terms, relating the performance of explicit
ODE solvers to that of implicit ODE solvers. We will say that aproblem is stiff if the
step size required for stability of a given numerical methodis much smaller than the
step size dictated by accuracy requirements. This definition illustrates the important
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Cell model λmin

Beeler-Reuter -82.15
Luo-Rudy phase 1 -174
Luo-Rudy phase 2 -365
Winslow et al. -19167
Courtemanche et al. -106

Table 1. Largest negative eigenvalues occurring in some popular electrophysiology models for cardiac cells.

fact that stiffness is not only a property of the ODE system, but also depends on the
requested accuracy.

Stiffness is often related to the existence of a wide range oftime scales in a prob-
lem. For a linear homogeneous problem of the form

dy

dt
= Ay,

the time scales of the solution are characterized by the eigenvalues ofA. A more
quantitative measure of stiffness can sometimes be obtained from the distribution of
the eigenvalues ofA. In order to have a stable solution all eigenvalues ofA must
have negative real part, and a stiff problem can sometimes becharacterized by the
eigenvalues being distributed over a large interval of the negative real axis.

For nonlinear problems it is even harder to give a meaningfulquantitative defini-
tion of stiffness. However, (local) stiffness of these problems will often be related to
the eigenvalues of the Jacobian of the right-hand side function f . Similar to the linear
case, a wide distribution of eigenvalues corresponds to theexistence of multiple time
scales, and thereby usually a stiff system. By this definition, because the Jacobian is
not constant, a nonlinear problem may be stiff in some intervals and non-stiff in oth-
ers. In an attempt to characterize the stiffness of various cell model ODE systems,
we have evaluated the largest negative Jacobian eigenvalueoccurring in a typical
simulation. We have only considered the real part of the eigenvalues, and the results
are given in Table 1. For the Courtemanche and Winslow cell models, the maximum
(largest positive) and minimum (largest negative) eigenvalues are plotted versus time
(for the course of one action potential) in Figure 1.

We see that among these models the canine model by Winslow et al. stands out as
having extremely stiff regions. Based on the eigenvalues itis possible to estimate the
step size required for stability of various methods. The step size∆t must be chosen so
that the complex numberλ∆t is inside the absolute stability domain of the method
for all eigenvaluesλ. For a definition of the absolute stability domain we refer to
e.g., [8, 18]. Using the forward Euler method as an example, the stability domain of
this method is a circle in the complex plane with center in(−1, 0) and radius one.
From the eigenvalues in Table 1 we see that forλ∆t to be inside this region, we must
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Figure 1. Maximum and minimum eigenvalues for the Courtemanche and Winslow cell models.

have∆t ≈ 0.0189msec for the Courtemanche et al. model and∆t ≈ 0.000104msec
for the model by Winslow et al. Therefore, although these models are comparable in
terms of physiological accuracy, they are markedly different in terms of stiffness,
resulting in much stricter step size requirements for a constant step-size solution of
the model by Winslow et al.

In our experiments, we determine the largest allowable timestep based on accu-
racy. To determine the error in a numerical solution, we compute a reference solution,
V , generated using the Matlab solverode15s, to serve as the exact solution. Mat-
lab’sode15s is a variable step size stiff solver based on a family of linear multistep
methods known asnumerical differentiation formulas[23]. The absolute and relative
tolerances were set to 1e–10 (atol=rtol=1e–10) in generating the reference solution.
To check convergence of the reference solution, it was compared to solutions gen-
erated byode15s with atol=rtol=1e–11, andode45 (a Matlab solver based on the
Dormand-Prince pair) with atol=rtol=1e–10 and atol=rtol=1e–11; we found the solu-
tions to be identical up to 7 digits. The approximate solutions for the transmembrane
potentialV̂ obtained with the numerical methods under investigation were compared
to the reference solution using the following measures: a relative root-mean-square
(RRMS) error [24] given by

RRMS =

√

∑N
i=1(V̂i − Vi)2
∑N

i=1 V 2
i

, (12)

and a measure of the global error

eglobal = max(|V̂− V|). (13)

The allowable error was determined in terms of the RRMS error. Specifically, for all
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methods the step size was increased until the RRMS error firstexceeded 5%. This
level of accuracy is chosen to reflect typical accuracies required in biomedical engi-
neering applications. We note that allowable step size doesnot completely determine
the efficiency of a given method because each method has a different computational
cost per step.

Table 2 gives the results for the forward Euler method, the NSFD method using for-
ward Euler on the nonlinear components (Rush–Larsen method), and the component-
wise version of backward Euler. Table 3 gives the results forthree NSFD methods
using backward Euler, implicit midpoint, and SDIRK, respectively, on the nonlinear
components. In Tables 4 and 5 we verify that the NSFD methods with implicit mid-
point and SDIRK solvers are indeed second order; i.e., as∆t is halved, the (asymp-
totic) error decreases by a factor of 4. (Therateof convergence is calculated aslog2

of this factor.) The CPU times for all six methods are given inTable 6. Figures 2 and 3
compare the solutions for the transmembrane potential using the various numerical
methods discussed here with the step sizes∆t given in Tables 2 and 3.

Forward Euler NSFD w/ FE Component-wise BE
Courtemanche ∆ t 0.0194 0.345 0.408

RMS 0.0023 0.0497 0.0498
eglobal 1.9396 37.4717 46.3757

Winslow ∆ t 0.000107 0.00028 0.000125
RMS 0.000776 0.0486 0.0405
eglobal 0.0991 6.0760 5.0574

Table 2. Maximum step sizes (in msec) for various methods.

NSFD w/ BE NSFD w/ Impl Midpt NSFD w/ SDIRK
Courtemanche ∆ t 0.541 0.80 0.89

RMS 0.0499 0.0490 0.0493
eglobal 55.5594 26.1142 26.9269

Winslow ∆ t 0.00014 0.00028 0.00123
RMS 0.0474 0.0478 0.0497
eglobal 5.9119 5.9667 6.2596

Table 3. Maximum step sizes (in msec) for various methods.
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Step size RRMS error Rate Global error Rate
0.0025 0.2453 29.3822
0.00125 0.0494 2.3120 6.2208 2.2398
0.000625 0.0123 2.0059 1.5483 2.0064
0.0003125 0.0032 1.9425 0.4050 1.9347
0.00015625 0.0008414 1.9272 0.1060 1.9339

Table 4. Error values for the Winslow model illustrating that the NSFD with the Implicit Midpoint method is second order.

Step size RRMS error Rate Global error Rate
0.001 0.0321 4.0449
0.0005 0.0081 1.9866 1.0149 1.9948
0.00025 0.0021 1.9475 0.2645 1.9400
0.000125 0.00054621 1.9429 0.0688 1.9428

Table 5. Error values for the Winslow model illustrating that the NSFD with the SDIRK method is second order.

Method Courtemanche Winslow
FE 3.11 48.37
NSFD w/ FE 0.20 27.37
Component-wise BE 0.16 100.05
NSFD w/ BE 0.14 58.61
NSFD w/ Implicit Midpoint 0.14 25.77
NSFD w/ SDIRK 0.15 38.98
Table 6. CPU times (in seconds) for the various methods

5 Discussion

Cellular reactions in the heart are commonly modelled by systems of ODEs. Al-
though these models share many common goals and features, their stiffness proper-
ties may be very different. This dramatically affects the choice of the most efficient
numerical method for their solution.

We have investigated the performance of 4 NSFD methods as well as standard
forward and backward Euler methods. Performance was measured in terms of CPU
time required to achieve a given accuracy. In this study an RRMS error (12) of no
greater than 5% was deemed acceptable.

Using this error criterion, all the NSFD methods perform much better than the
standard forward Euler method for the Courtemanche et al. atrial cell model. All the
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NSFD methods require about 15–20 times less CPU time than theforward Euler
method. In general we find that the errors produced by the forward Euler method
aretoo small; i.e., larger step sizes with the method are impossible without inducing
instability. This is one telltale sign of stiffness. The performances of the NSFD meth-
ods and the component-wise backward Euler method are comparable. In this case,
the NSFD method with forward Euler (Rush–Larsen method) maybe preferable be-
cause this method can be implemented in an explicit fashion.

For the Winslow et al. ventricular cell model, the conclusions are less straightfor-
ward. The forward Euler method is outperformed by all the NSFD methods except for
NSFD with backward Euler. The NSFD method using forward Euler (Rush–Larsen)
and the NSFD method using implicit midpoint show the best performance, requiring
about 2 times less CPU time than the forward Euler method. However, the actual
RRMS and global errors for forward Euler are significantly smaller than all other
methods. Hence in some sense much better results can be obtained with not much
more cost; this may be an acceptable tradeoff in some situations. It also appears
clear from this model that the properties ofL-stability and stiff decay (shared by the
backward Euler and SDIRK method) do not appear to enhance performance. The
A-stability of the implicit midpoint method seems to suffice.

Although not shown explicitly, the Winslow et al. model has more dynamic (or
transient) behaviour than the Courtemanche et al. model; i.e., the solutions of the
ODEs have relatively more regions of rapid variation. This dynamic behaviour neces-
sitates smaller step sizes for its resolution independent of other considerations. Hence
the Winslow et al. model generally requires smaller time steps than the Courte-
manche et al. In such cases, explicit methods generally outperform implicit methods
because they incur less cost per step. We can see the effects of this in Tables 2, 3,
and 6, where the smaller step sizes lead to smaller global errors and less discrepancy
in CPU time between forward Euler and the rest of the methods.The importance
of higher order for the NSFD methods is also less clear in thiscase, at least when
comparing orders 1 and 2.

It is important to note that these conclusions are based on a specific (although gen-
erally accepted) definition of what constitutes “acceptable error” for these types of
simulations. However, changes to this definition may resultin different conclusions.
In particular, the error in the different simulations may betoo large by other measures
of error, such as the global error (13), despite the efficiency gains.

We also note that we have not contemplated integration with variable step sizes.
Such a possibility could again change the conclusions. Variable step sizes are not
generally used for such models because in a realistic simulation of the heart, the
cell model ODEs must be coupled to PDEs that describe the macroscopic electrical
properties of the tissue. The models are often integrated using fixed step sizes in an
operator splitting formulation; hence results from a studywith variable step sizes
would have limited generalizability to such situations.
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(e) NSFD w/ Implicit Midpoint
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Figure 2. Comparison of computed transmembrane potential for various numerical methods; model of
Courtemanche et al.
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(e) NSFD w/ Implicit Midpoint
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Figure 3. Comparison of computed transmembrane potential for various numerical methods; model of Winslow et
al.


