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Abstract

The weighted essentially non-oscillatory (WENO) methods are a popular high-order
spatial discretization for hyperbolic partial differential equations. Typical treat-
ments of WENO methods assume a uniform mesh. In this paper we give explicit
formulas for the finite-volume, fifth-order WENO (WENO5) method on non-uniform
meshes in a way that is amenable to efficient implementation. We then compare the
performance of the non-uniform mesh approach with the classical uniform mesh
approach for the finite-volume formulation of the WENO5 method. We find that
the numerical results significantly favor the non-uniform mesh approach both in
terms of computational efficiency as well as memory usage. We expect this investi-
gation to provide a basis for future work on adaptive mesh methods coupled with
the finite-volume WENO methods.

Key words: finite-volume discretization, fifth-order WENO method, non-uniform
mesh.

1 Introduction

The essentially non-oscillatory (ENO) methods were first introduced by Harten
et al. in [1,2]. They were the first successful high-order methods for the spa-
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tial discretization of hyperbolic conservation laws that had the ENO property.
This property is considered to be very useful in the numerical solution of hy-
perbolic conservation laws because numerical methods often produce spurious
oscillations when applied to such problems, especially near shocks or other
discontinuous behavior of the solution. The finite-volume ENO spatial dis-
cretization was studied in [2], where it was shown to have uniform high-order
accuracy right up to the location of any discontinuities. Later Shu and Os-
her [3,4] developed the finite-difference ENO method. The main idea behind
ENO methods is to choose from among several candidates the stencil on which
the solution varies the most smoothly and then approximate the flux at the
cell boundaries with a high order of accuracy, thus avoiding the large spurious
oscillations caused by interpolating data across discontinuities.

Weighted ENO (WENO) methods were developed in [5,6] to address potential
numerical instabilities in choosing ENO stencils. WENO methods use a convex
combination of all the ENO candidate stencils; i.e., rather than choosing one
specific ENO stencil, each stencil is assigned a weight between 0 and 1. Given
r ENO stencils of order r, the weights for the WENO method are chosen
such that the numerical flux is approximated to order (2r − 1) in smooth
regions, while in regions near solution discontinuities WENO methods emulate
ENO methods so that the ENO property is achieved. In other words, WENO
methods achieve a higher order of accuracy than ENO methods in smooth
regions, while retaining the ENO property at discontinuities.

Explicit formulas for WENO coefficients on uniform meshes appear in, e.g.,
[7,8]. A framework for deriving WENO coefficients for non-uniform meshes
is established in [7]; explicit formulas appear for uniform meshes. Finite-
difference WENO schemes with orders from 7 to 13 are derived in [12] for
one-dimensional uniform meshes. Schemes of third and fifth order in multiple
spatial dimensions on uniform meshes are derived in [6,13]. WENO coefficients
on arbitrary triangular meshes are derived for second-order schemes in [14] and
for third- and fourth-order schemes in [15]. Computations in two dimensions
with WENO discretizations are performed in [8] on triangular and rectangular
meshes.

Given a fixed uniform mesh, the finite-difference WENO methods and the
finite-volume WENO methods produce identical spatial discretization opera-
tors for one-dimensional, linear, constant-coefficient partial differential equa-
tions (PDEs). Of course, they do differ in the quantities that they evolve; i.e.,
the finite-difference approach evolves point values whereas the finite-volume
approach evolves cell averages. For a nonlinear scalar hyperbolic PDE, the
equivalence of the finite-difference and finite-volume WENO spatial discretiza-
tion operators does not hold anymore; however, the computational costs for
the two methods are still the same.
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For multi-dimensional problems, the finite-difference WENO methods are sig-
nificantly less computationally expensive than the finite-volume WENO meth-
ods [7,8]. Specifically, the finite-difference WENO methods are about 4 times
less expensive than the finite-volume WENO methods of the same order for
two-dimensional problems. This becomes about 9 times less expensive for
three-dimensional problems. In this sense the finite-difference WENO meth-
ods are more favorable than the finite-volume methods. Furthermore, when
the finite-volume WENO methods are applied for multi-dimensional prob-
lems, negative weights may arise [8]; specialized techniques have been used to
overcome the difficulty [8].

In recent years, adaptive mesh methods have been used with great success
for parabolic problems; see, e.g., [9,10]. They have also been used to solve
hyperbolic conservation laws, e.g., [11]. We note that the finite-difference
WENO method of third order or higher can only be applied to uniform or
smoothly varying meshes [7], i.e., a mesh such that a smooth transforma-
tion ξ = ξ(x) transforms the original mesh into a uniform mesh in the new
variable ξ. This eliminates the possibility of using non-uniform or adaptive
meshes with finite-difference WENO methods. In this paper we focus only on
one-dimensional problems, where the computational costs of the finite-volume
and finite-difference WENO methods are the same, so we restrict our compar-
ison to the relative efficiency of the finite-volume WENO methods on uniform
and non-uniform meshes.

At present it is not known whether the finite-volume WENO methods on a
non-uniform (adaptive) mesh can compete with the finite-difference WENO
methods on a uniform mesh in terms of efficiency. For example, there are
many efficiencies afforded to implementations using uniform meshes in terms of
being able to pre-compute coefficients. In this paper we perform a quantitative
comparison of the relative efficiency of non-uniform mesh approach with the
uniform mesh approach for the finite-volume, fifth-order WENO (WENO5)
method. Our numerical results show that the use of non-uniform meshes can
lead to significant improvements in efficiency over the use of uniform meshes,
both in terms of computational efficiency as well as memory usage. These are
the first such quantitative comparisons to be made available of which we know.
This leads us to hypothesize that if a suitable adaptive mesh algorithm can be
derived, an adaptive finite-volume WENO approach can generally outperform
the classical finite-difference WENO approach on uniform meshes. We leave
the development of an adaptive mesh strategy as future work. We hope this
investigation will provide a basis for future work on adaptive mesh methods
coupled with the finite-volume WENO methods.

The remainder of this paper proceeds as follows. For completeness, in Section 2
we give explicit, detailed formulas for the coefficients of the finite-volume
WENO5 method on non-uniform meshes. We note that these formulas are

3



presented in a way that takes advantage of recursive patterns in the coef-
ficients, thus improving the efficiency of implementation. Moreover, we also
note that this is a different approach in computing ENO stencils from that of
the classical finite-volume WENO methods, which use the divided difference
approach [7]. The smoothness indicators, which are used for computing the
ENO stencil weights, are also derived explicitly for a non-uniform mesh. Equa-
tions (65)–(70) clearly demonstrate that the finite-volume WENO methods on
non-uniform meshes still use a convex combination of ENO stencils. In Sec-
tion 3 we give the results of two numerical experiments. The first experiment
involves the advection equation, which we use to illustrate the correctness
of our formulas on a problem with a smooth exact solution. We then solve
the advection equation with a moving shock as its exact solution. Assuming
that the shock location is known a priori, we manually construct fine meshes
where the shock is located during the simulation. The numerical results are
significantly better than the uniform mesh approach, both in terms of compu-
tational efficiency as well as memory usage. The last experiment involves the
Burgers equation, where the exact solution is a shock with a fixed location
that develops from a smooth initial condition. The results from this example
suggest some necessary properties for a successful adaptive mesh strategy.

2 The finite-volume WENO5 method on non-uniform meshes

Consider the one-dimensional, scalar hyperbolic conservation law on a nor-
malized spatial domain

ut = −fx(u), 0 < x < 1, t > 0. (1)

Given a non-uniform mesh

0 = x 1

2

< x 3

2

< · · · < xN− 1

2

< xN+ 1

2

= 1,

we define cells Ii and cell centers xi by

Ii =
[

xi− 1

2

, xi+ 1

2

]

, xi =
1

2

(

xi− 1

2

+ xi+ 1

2

)

, i = 1, 2, . . . , N.

Finite-volume methods are based on the cell averages ū (xi, t) of u(x, t); i.e.,

ū (xi, t) =
1

∆xi

∫ x
i+ 1

2

x
i−

1
2

u(ξ, t) dξ,

where ∆xi = xi+ 1

2

− xi− 1

2

is the i-th cell size, i = 1, 2, . . . , N .
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We now integrate (1) over Ii and obtain

dū (xi, t)

dt
= −

1

∆xi

[

f
(

u
(

xi+ 1

2

, t
))

− f
(

u
(

xi− 1

2

, t
))]

. (2)

We now approximate the conservative method (2) by

dūi(t)

dt
= −

1

∆xi

(

f̂i+ 1

2

− f̂i− 1

2

)

,

where ūi(t) is the numerical approximation to ū (xi, t), and the numerical flux

f̂i+ 1

2

is the approximation to f
(

u
(

xi+ 1

2

, t
))

, defined by

f̂i+ 1

2

= G
(

u−
i+ 1

2

, u+
i+ 1

2

)

, (3)

where u±
i+ 1

2

are obtained from the WENO reconstruction procedure that is

described in the remainder of this section. G(a, b) must be [16]:

• consistent with the physical flux f ; i.e., G(a, a) = f(a);
• Lipschitz continuous in both a and b; i.e., there exists a constant K ≥ 0

such that |G (a1, b) − G (a2, b)| ≤ K |a1 − a2|, ∀ a1, a2, b, and such that
|G (a, b1) − G (a, b2)| ≤ K |b1 − b2|, ∀ b1, b2, a;

• nondecreasing in a and nonincreasing in b.

There are several well-known monotone fluxes with the above properties, such
as the Godunov flux, the Engquist-Osher flux, and the Lax-Friedrichs flux
[16]. In this paper we consider only the Godunov flux,

G(a, b) =







mina≤u≤b f(u) if a ≤ b,

maxb≤u≤a f(u) if a > b.

We now describe the WENO5 reconstruction procedure for u±
i+ 1

2

.

2.1 Spatial stencils

Given a cell Ii, in order to obtain third-order accurate spatial discretizations
to use as building blocks for the WENO5 method, we can choose a stencil S(i)

r

based on r cells to the left of Ii, k cells to the right of Ii, and Ii itself. If we
require r, k ≥ 0, and r+k = 2, then there are only three possible stencils, i.e.,
S(i)

r = {Ii−r, Ii−r+1, Ii−r+2}, r = 0, 1, 2. Furthermore, given tn, there is only
one unique quadratic polynomial, denoted by P (i)

r (x), whose cell average in
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each cell of Sr is equal to ūm, m = i − r, i − r + 1, i − r + 2; i.e.,

1

∆xm

∫ x
m+ 1

2

x
m−

1
2

P (i)
r (ξ) dξ = ū (xm, tn) , m = i − r, i − r + 1, i − r + 2. (4)

It can be shown by standard analysis that in smooth regions P (i)
r (x) is a third-

order accurate approximation to the exact solution u(x, tn) inside Ii; i.e.,

P (i)
r (x) = u(x, tn) + O

(

(∆xi)
3
)

, x ∈ Ii. (5)

In particular, at the cell boundaries, we have

P (i)
r

(

xi± 1

2

)

= u
(

xi± 1

2

, tn
)

+ O
(

(∆xi)
3
)

.

There are convex combinations of Pr

(

xi± 1

2

)

, r = 0, 1, 2, that yield fifth-order

accurate approximations to u
(

xi± 1

2

, tn
)

in smooth regions; i.e.,

2
∑

r=0

w(i)
r P (i)

r

(

xi− 1

2

)

=u
(

xi− 1

2

, tn
)

+ O
(

(∆xi)
5
)

, (6)

2
∑

r=0

ŵ(i)
r P (i)

r

(

xi+ 1

2

)

=u
(

xi+ 1

2

, tn
)

+ O
(

(∆xi)
5
)

, (7)

where

w(i)
r , ŵ(i)

r ≥ 0,
2
∑

r=0

w(i)
r =

2
∑

r=0

ŵ(i)
r = 1. (8)

The key to the success of WENO methods is the choice of the weights wr,
ŵr, r = 0, 1, 2. These weights must satisfy (6) or (7) in smooth regions and
emulate the ENO property where u has discontinuous behavior; i.e., they
should emulate the first-order upwind method at a discontinuity.

The WENO reconstruction for u+
i+ 1

2

and u−
i+ 1

2

in (3) is defined as follows

u+
i+ 1

2

=
2
∑

r=0

w(i+1)
r P (i+1)

r

(

xi+ 1

2

)

, (9)

u−
i+ 1

2

=
2
∑

r=0

ŵ(i)
r P (i)

r

(

xi+ 1

2

)

. (10)

Based on (6), (7), we see that both u±
i+ 1

2

are fifth-order approximations to

u
(

xi+ 1

2

, tn
)

.
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We let i + 1 → i in (9) to obtain

u+
i− 1

2

=
2
∑

r=0

w(i)
r P (i)

r

(

xi− 1

2

)

. (11)

Now because the terms in (10), (11) depend on w(i)
r , w(i)

r , and P (i)
r

(

xi± 1

2

)

, for

simplicity, we drop the superscript (i) from the expressions. Equations (10),
(11) thus become

u+
i− 1

2

=
2
∑

r=0

wrPr

(

xi− 1

2

)

, (12)

u−
i+ 1

2

=
2
∑

r=0

ŵrPr

(

xi+ 1

2

)

. (13)

When a uniform mesh is used, detailed formulas for compute wr, wr, and
Pr

(

xi± 1

2

)

can be found in [6,7]. We now give explicit, detailed formulas for a
non-uniform mesh. For convenience, we define hm, m = 1, . . . , 5, as follows:

hm = ∆xi−3+m, m = 1, . . . , 5.

From [7], we know that

Pr(x) =
2
∑

j=0

Crj(x)ūi−r+j, (14)

where
Crj(x) = Brj(x)h3−r+j , (15)

and

Brj(x) =
3
∑

m=j+1

3
∑

l=0,l 6=m





3
∏

q=0,q 6=m,l

(

x − xi−r+q− 1

2

)





3
∏

l=0,l 6=m

(

xi−r+m− 1

2

− xi−r+l− 1

2

)

. (16)

Defining ĉrj = Crj

(

xj+ 1

2

)

and b̂rj = Brj

(

xj+ 1

2

)

, r, j = 0, 1, 2, we can compute

Pr

(

xi+ 1

2

)

in (13) as follows:

Pr

(

xi+ 1

2

)

=
2
∑

j=0

ĉrj ūi−r+j, (17)

where
ĉrj = b̂rjh3−r+j , (18)
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and

b̂rj =
3
∑

m=j+1

3
∑

l=0,l 6=m





3
∏

q=0,q 6=m,l

(

xi+ 1

2

− xi−r+q− 1

2

)





3
∏

l=0,l 6=m

(

xi−r+m− 1

2

− xi−r+l− 1

2

)

. (19)

In terms of hm, m = 1, . . . , 5, we find that explicit formulas for b̂rj , r, j = 0, 1, 2,
are

b̂22 =
1

h1 + h2 + h3
+

1

h2 + h3
+

1

h3
, (20)

b̂21 = b̂22 −
(h1 + h2 + h3) (h2 + h3)

(h1 + h2) h2h3

, (21)

b̂20 = b̂21 +
(h1 + h2 + h3)h3

h1h2 (h2 + h3)
, (22)

b̂12 =
(h2 + h3) h3

(h2 + h3 + h4) (h3 + h4) h4
, (23)

b̂11 = b̂12 +
1

h2 + h3
+

1

h3
−

1

h4
, (24)

b̂10 = b̂11 −
(h2 + h3) h4

h2h3 (h3 + h4)
, (25)

b̂02 =−
h3h4

(h3 + h4 + h5) (h4 + h5)h5
, (26)

b̂01 = b̂02 +
h3 (h4 + h5)

(h3 + h4) h4h5

, (27)

b̂00 = b̂01 +
1

h3
−

1

h4
−

1

h4 + h5
. (28)

By defining crj = Crj

(

xj− 1

2

)

and brj = Brj

(

xj− 1

2

)

, r, j = 0, 1, 2, we can

compute Pr

(

xi− 1

2

)

in (12) as follows:

Pr

(

xi− 1

2

)

=
2
∑

j=0

crj ūi−r+j, (29)

where
crj = brjh3−r+j , (30)
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and

brj =
3
∑

m=j+1

3
∑

l=0,l 6=m





3
∏

q=0,q 6=m,l

(

xi− 1

2

− xi−r+q− 1

2

)





3
∏

l=0,l 6=m

(

xi−r+m− 1

2

− xi−r+l− 1

2

)

. (31)

It is easy to verify that
brj = b̂r−1 ,j , (32)

for j = 0, 1, 2, and r = 1, 2. When r = 0, b0j , j = 0, 1, 2, can be computed as
follows:

b02 =
h3 (h3 + h4)

(h3 + h4 + h5) (h4 + h5) h5

, (33)

b01 = b02 −
h3 (h3 + h4 + h5)

(h3 + h4)h4h5
, (34)

b00 = b01 +
(h3 + h4) (h3 + h4 + h5)

h3h4 (h4 + h5)
. (35)

Equations (17)–(35) give the expressions for Pr

(

xi− 1

2

)

and Pr

(

xi+ 1

2

)

. We
note that the coefficients crj and ĉrj , r, j = 0, 1, 2, depend only on hm, m =
1, . . . , 5. That is, the coefficients only need to be computed once throughout
the computation provided the mesh is fixed.

2.2 Smoothness measure

In order to achieve high-order accuracy in regions where the solution is smooth
while emulating the first-order, upwind method in regions where the solution
has discontinuous behavior, a smoothness measure for each stencil is computed
as suggested in [6,7].

The smoothness measure ISr for the r-th stencil is defined by

ISr =
∫ x

i+ 1
2

x
i−

1
2

h3 (P ′
r(x))

2
dx +

∫ x
i+ 1

2

x
i−

1
2

(h3)
3 (P ′′

r (x))
2

dx. (36)

When the stencil Sr is smooth (i.e., Pr is a smooth polynomial in Ii), ISr

satisfies
ISr = (P ′

r(xi)h3)
2
(

1 + O
(

(h3)
2
))

, (37)

whereas for a non-smooth stencil Sr, we have

ISr = O(1). (38)
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The properties (37) and (38) are important for the construction of wr and ŵr

(for more details, see [6]).

From (14), we see that Pr(x) is a quadratic polynomial. Thus P ′
r(x) is linear,

and P ′′
r (x) is constant.

P ′′
r (x) is computed using the following formulas.

P ′′
r (x) =

2
∑

j=0

C ′′
rj(x)ūi−r+j

=
2
∑

j=0

B′′
rj(x)h3−r+j ūi−r+j. (39)

Note that because C ′′
rj(x) and B′′

rj(x) are constants, we can omit the argument
x. The expression of B′′

rj, r = 0, 1, 2, j = 0, 1, 2, can be computed as follows.

B′′
r2 =

6

(h3−r + h4−r + h5−r) (h4−r + h5−r)h5−r

, (40)

B′′
r1 = B′′

r2 −
6

(h3−r + h4−r) h4−rh5−r

, (41)

B′′
r0 = B′′

r1 +
6

h3−rh4−r (h4−r + h5−r)
, r = 0, 1, 2. (42)

The second integral in (36) becomes

∫ x
i+ 1

2

x
i−

1
2

(h3)
3 (P ′′

r (x))
2

dx = (h3)
4





2
∑

j=0

B′′
rj(x)h3−r+j ūi−r+j





2

. (43)

Because P ′
r(x) is linear in x, (P ′

r(x))2 is quadratic in x. Hence Simpson’s
quadrature rule can be used to compute the exact value for the first integral
in (36); i.e.,

∫ x
i+1

2

x
i−

1
2

h3

(

P ′
r(x)

)2
dx = (h3)

2

(

(

P ′
r

(

xi− 1

2

))2
+ 4

(

P ′
r (xi)

)2
+
(

P ′
r

(

xi+ 1

2

))2
)

.

(44)

Based on (14), P ′
r

(

xi− 1

2

)

, P ′
r (xi), and P ′

r

(

xi+ 1

2

)

can be obtained using

P ′
r(x) =

1

6

2
∑

j=0

C ′
rj(x)ūi−r+j

=
1

6

2
∑

j=0

B′
rj(x)h3−r+j ūi−r+j.
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We obtain expressions for B′
rj

(

xi− 1

2

)

, B′
rj (xi), and B′

rj

(

xi+ 1

2

)

from (16).

B′
22

(

xi− 1

2

)

=
2 (h1 + 2h2)

(h1 + h2 + h3) (h2 + h3) h3
, (45)

B′
21

(

xi− 1

2

)

= B′
22

(

xi− 1

2

)

−
2 (h1 + 2h2 − h3)

(h1 + h2) h2h3
, (46)

B′
20

(

xi− 1

2

)

= B′
21

(

xi− 1

2

)

+
2 (h1 + h2 − h3)

h1h2 (h2 + h3)
, (47)

B′
12

(

xi− 1

2

)

=
2 (h2 − h3)

(h2 + h3 + h4) (h3 + h4) h4

, (48)

B′
11

(

xi− 1

2

)

= B′
12

(

xi− 1

2

)

−
2 (h2 − h3 − h4)

(h2 + h3) h3h4
, (49)

B′
10

(

xi− 1

2

)

= B′
11

(

xi− 1

2

)

+
2 (h2 − 2h3 − h4)

h2h3 (h3 + h4)
, (50)

B′
02

(

xi− 1

2

)

=−
4 (h3 + h4)

(h3 + h4 + h5) (h4 + h5)h5
, (51)

B′
01

(

xi− 1

2

)

= B′
02

(

xi− 1

2

)

+
2 (2h3 + h4 + h5)

(h3 + h4)h4h5

, (52)

B′
00

(

xi− 1

2

)

= B′
01

(

xi− 1

2

)

−
2 (2h3 + 2h4 + h5)

h3h4 (h4 + h5)
, (53)

B′
r2 (xi)= B′

r2

(

xi− 1

2

)

+
1

2
h3B

′′
r2, (54)

B′
r1 (xi)= B′

r1

(

xi− 1

2

)

+
1

2
h3B

′′
r1, (55)

B′
r0 (xi)= B′

r0

(

xi− 1

2

)

+
1

2
h3B

′′
r0, (56)

B′
r2

(

xi+ 1

2

)

=B′
r2

(

xi− 1

2

)

+ h3B
′′
r2, (57)

B′
r1

(

xi+ 1

2

)

=B′
r1

(

xi− 1

2

)

+ h3B
′′
r1, (58)

B′
r0

(

xi+ 1

2

)

=B′
r0

(

xi− 1

2

)

+ h3B
′′
r0. (59)

Again we note that all the coefficients in (45)–(59) and (40)–(42) depend
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only on hm, m = 1, . . . , 5. Therefore they need to be computed only once
throughout the computation provided the mesh is fixed.

2.3 Computation of the weights

Before we describe the computation of the weights for the WENO5 method,
we now derive two convex combinations of Pr

(

xi± 1

2

)

that are fifth-order ap-

proximations to u
(

xi± 1

2

, tn
)

respectively. In other words, they satisfy

2
∑

r=0

drPr

(

xi− 1

2

)

= u
(

xi− 1

2

, tn
)

+ O
(

(h3)
5
)

, (60)

2
∑

r=0

d̂rPr

(

xi+ 1

2

)

= u
(

xi+ 1

2

, tn
)

+ O
(

(h3)
5
)

, (61)

where dr, d̂r are positive constants, r = 0, 1, 2. It is easily verified that there
is a unique solution for dr and d̂r if fifth-order accuracy is required.

Note that one of the stencils for the fifth-order ENO (or ninth-order WENO)
methods depends on {Ii−2, . . . , Ii+2} and has the following form:

P̃ (x) =
4
∑

j=0

C̃j(x)ūi−2+j , (62)

where
C̃j(x) = B̃j(x)h3−r+j,

and

B̃j(x) =
5
∑

m=j+1

5
∑

l=0,l 6=m





5
∏

q=0,q 6=m,l

(

x − xi+q− 5

2

)





5
∏

l=0,l 6=m

(

xi+m− 5

2

− xi+l− 5

2

)

.

We know that P̃ (x) is a fifth-order approximation to u(x, tn). Because of the
uniqueness of the fifth-order approximation, dr and d̂r can be obtained by
solving

P̃
(

xi− 1

2

)

=
2
∑

r=0

drPr

(

xi− 1

2

)

, (63)

P̃
(

xi+ 1

2

)

=
2
∑

r=0

d̂rPr

(

xi+ 1

2

)

. (64)

12



The solution is

d2 =
(h3 + h4) (h3 + h4 + h5)

(h1 + h2 + h3 + h4) (h1 + h2 + h3 + h4 + h5)
, (65)

d1 =
(h1 + h2) (h3 + h4 + h5) (h1 + 2h2 + 2h3 + 2h4 + h5)

(h1 + h2 + h3 + h4) (h2 + h3 + h4 + h5) (h1 + h2 + h3 + h4 + h5)
, (66)

d0 =
h2 (h1 + h2)

(h2 + h3 + h4 + h5) (h1 + h2 + h3 + h4 + h5)
, (67)

d̂2 =
h4 (h4 + h5)

(h1 + h2 + h3 + h4) (h1 + h2 + h3 + h4 + h5)
, (68)

d̂1 =
(h1 + h2 + h3) (h4 + h5) (h1 + 2h2 + 2h3 + 2h4 + h5)

(h1 + h2 + h3 + h4) (h2 + h3 + h4 + h5) (h1 + h2 + h3 + h4 + h5)
, (69)

d̂0 =
(h2 + h3) (h1 + h2 + h3)

(h2 + h3 + h4 + h5) (h1 + h2 + h3 + h4 + h5)
. (70)

We now define wr and ŵr as

wr =
αr

α0 + α1 + α2

, (71)

ŵr =
α̂r

α̂0 + α̂1 + α̂2

, (72)

where

αr =
dr

(ǫ + ISr)
2 , (73)

α̂r =
d̂r

(ǫ + ISr)
2 , r = 0, 1, 2, (74)

where ǫ is a positive number that is introduced to avoid the denominator
becoming zero. As suggested in [6], we take ǫ = 10−6 for the numerical exper-
iments in this paper.

We see that the properties in (8) are satisfied. Furthermore, (71)–(74) and
(37) suggest that

wr = dr + O
(

(h3)
2
)

, (75)

ŵr = d̂r + O
(

(h3)
2
)

, (76)

in regions where the solution is smooth. Equations (75), (76), and (5) guar-
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antee the fifth-order accuracy of the WENO5 method in smooth regions; i.e.,
(6), (7) are satisfied. On the other hand, (71)–(74) and (38) guarantee that
the WENO5 method emulates the first-order, upwind method in regions where
the solution exhibits discontinuous behavior.

2.4 Interpolation of point values from cell averages

When finite-volume WENO methods are used, the quantities that are evolved
are the cell averages of the solution values. If we need point values at mesh
points, we can use either (12) or (13) to approximate them. However, because
a non-uniform mesh is used, point values for the solution inside cells may
be required. For example, to plot the numerical solution requires an accurate
interpolatation from cell averages to point values.

Assume xi < x̃ < xi+1. There are three possible interpolants; i.e., Pr(x̃),
r = 0, 1, 2, where Pr(x) is the quadratic polynomial defined in (4) (we omit
the superscript (i) without loss of clarity). We can perform a similar pro-
cedure as is performed at the cell boundary in the WENO5 reconstruction;
i.e., form a linear combination of the Pr(x̃) with weights wr(x̃). Each Pr(x̃)
is computed from (14)–(16), and the wr(x̃) are obtained in a manner similar
to what is described in Section 2.3. However, we note that, unlike the weights
in the cell boundary calculation, the wr(x̃) are not guaranteed to be positive
numbers. In other words, this procedure does not necessarily produce a convex
combination.

3 Numerical results

In this section, we study two classical scalar conservation laws: the advection
equation and the Burgers equation. In both cases, the finite-volume WENO5
method is employed as the spatial discretization. Also we always use the three-
stage, order-3, strong-stability-preserving (SSP) explicit Runge-Kutta method
(which we call SSP(3,3) [17,18]) for the time discretization. We illustrate the
efficiency of the non-uniform mesh approach by comparing the results with
those obtained by using a uniform mesh. We compare the results by computing
the solution at a given time Tout with a specified Courant number,

σ =

(

max
∂f

∂u

)

∆t

minN
i=1 ∆xi

. (77)

Accuracy is measured by means of the L1-norm error,
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‖Error‖1 =
1

xN+ 1

2

− x 1

2

(

∣

∣

∣ũ
(

x 1

2

, Tout

)

− u
(

x 1

2

, Tout

)∣

∣

∣

∆x1

2

+
N−1
∑

i=1

∣

∣

∣ũ
(

xi+ 1

2

, Tout

)

− u
(

xi+ 1

2

, Tout

)∣

∣

∣

∆xi + ∆xi+1

2

+
∣

∣

∣ũ
(

xN+ 1

2

, Tout

)

− u
(

xN+ 1

2

, Tout

)∣

∣

∣

∆xN

2

)

, (78)

where, respectively, ũ
(

xi+ 1

2

, Tout

)

is the numerical solution and u
(

xi+ 1

2

, Tout

)

is the exact solution at x = xi+ 1

2

and t = Tout. The point values ũ
(

xi+ 1

2

, Tout

)

are obtained using the interpolation described in Section 2.4. More precisely,
we use (13) for the interpolation of ũ

(

xi+ 1

2

, Tout

)

, i = 1, . . . , N , and (12) for

the interpolation of ũ
(

x 1

2

, Tout

)

.

Example 1 The first example is the linear advection equation

ut + ux = 0, 0 ≤ x ≤ 2, t > 0,

with periodic boundary conditions. We consider two different initial conditions.
The first is the smooth initial condition u(x, 0) = sin(πx). This well-behaved
problem is used to illustrate the fifth-order accuracy of the method. We set the
mesh to be

xi+ 1

2

=







3 i
N

, if 0 ≤ i < N
3
,

3 i
2 N

, if N
3
≤ x ≤ N.

That is, the mesh points are uniformly located in 0 ≤ x ≤ 1 and in 1 ≤ x ≤ 2
but with different spacings. The CFL number, σ, is chosen to be 0.1, so that
the temporal error does not dominate the spatial error. Table 1 demonstrates
that the observed convergence rate agrees with that predicted by theory.

N ‖Error‖1 order

30 4.6570E-4 —

60 1.6403E-5 4.8274

120 5.3608E-7 4.9354

240 1.7447E-8 4.9414
Table 1
L1-norm errors and convergence rates.

The second initial condition is the step function

u(x, 0) =







1, if 0 < x < 0.5 or 1.5 < x < 2,

0, if 0.5 ≤ x ≤ 1.5.
(79)

There are two shocks present in the exact solution. We compute the solution
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at Tout = 0.1. Therefore, the location of the first shock moves from x = 0.5 to
x = 0.6, and the location of the second one moves from x = 1.5 to x = 1.6. The
mesh is carefully chosen with this in mind. We partition the domain into three
types of regions; i.e., coarse-mesh regions, fine-mesh regions, and intermediate-
mesh regions. Every intermediate-mesh region is located between a coarse-
mesh region and a fine-mesh region. The cell sizes are gradually increased
from the the fine-mesh region to the coarse-mesh region in the intermediate-
mesh regions. We first place fine uniform meshes in the intervals [0.5, 0.6] and
[1.5, 1, 6] with cell width 10−3; i.e., there are 100 points in each interval. We
place coarse meshes in the intervals [0, 0.428], [0.672, 1.428], and [1.672, 2].
We place 25 uniform intervals in [0, 0.428] and [1.672, 2] (i.e., the cell width
is 0.0171) and 50 uniform intervals in [0.672, 1.428] (i.e., the cell width is
0.0151). The four remaining regions are intermediate-mesh regions. In each
intermediate-mesh region, we place 15 intervals in such a way that the cell
widths are increased by 20% from one cell to the next in the direction from the
fine-mesh region to the coarse-mesh region. In summary, the mesh is defined
in terms of ∆xi as follows.

∆xi =



















































































0.0171, if 1 ≤ i ≤ 25; i.e., xi+ 1

2

∈ [0, 0.428];

0.001 × (1.2)40−i, if 26 ≤ i ≤ 40; i.e., xi+ 1

2

∈ (0.428, 0.5];

0.001, if 41 ≤ i ≤ 140; i.e., xi+ 1

2

∈ (0.5, 0.6];

0.001 × (1.2)i−141, if 141 ≤ i ≤ 155; i.e., xi+ 1

2

∈ (0.6, 0.672];

0.0151, if 151 ≤ i ≤ 205; i.e., xi+ 1

2

∈ (0.672, 1.428];

0.001 × (1.2)220−i, if 206 ≤ i ≤ 220; i.e., xi+ 1

2

∈ (1.428, 1.5];

0.001, if 221 ≤ i ≤ 320; i.e., xi+ 1

2

∈ (1.5, 1.6];

0.001 × (1.2)i−321, if 321 ≤ i ≤ 335; i.e., xi+ 1

2

∈ (1.6, 1.672];

0.0171, if 336 ≤ i ≤ 360; i.e., xi+ 1

2

∈ (1.672, 2].

Figure 1 shows the solutions at Tout = 0.1. The solid line is the exact solution.
The crosses represent the values of the numerical solution at the mesh points
of the above non-uniform mesh for σ = 0.5.

In order to compare the results from using a non-uniform mesh versus a uni-
form one, we compute the L1-norm error as in (78) and the corresponding
CPU time in seconds at Tout = 0.1. Different CFL numbers, σ, are chosen as
well as different values of N for the uniform mesh. Table 2 shows the L1-norm
error and the CPU time in the form of A/B, where A is the L1-norm error,
and B is the CPU time.

From Table 2 we conclude that the use of the WENO5 method with a non-
uniform mesh is more efficient than with a uniform mesh. For example, in
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Fig. 1. The discontinuous solution at Tout = 0.1.

non-uniform uniform

σ N = 360 N = 500 N = 1000 N = 2000

1.0 0.0045/3.82 0.0099/0.75 0.0066/2.65 0.0045/15.46

0.5 0.0016/6.24 0.0050/1.28 0.0028/5.21 0.0016/30.77

0.25 0.0016/11.19 0.0050/2.47 0.0028/10.27 0.0016/60.82
Table 2
L1-norm errors and CPU times for non-uniform and uniform meshes.

order to achieve an L1-norm error of 0.0016, a non-uniform mesh with only
360 intervals is needed compared with 2000 intervals for a uniform mesh. Fur-
thermore, in this example the solution is generated about five times faster using
a non-uniform mesh versus using a uniform one.

We have performed extensive tests on problems where shocks are present
throughout the entire simulation. We have found that if it is possible to place
a fine mesh that captures the location of the shock throughout the entire
simulation, using a non-uniform mesh is much more efficient, both in terms
of computational efficiency as well as in terms of storage requirements, than
using a uniform mesh.

Example 2 The second example is the Burgers equation

ut +

(

u2

2

)

x

= 0, 0 < x < 2, t > 0,

subject to the initial condition u(x, 0) = sin(πx) and periodic boundary con-
ditions. This is a nonlinear problem of the form (1) with f(u) = u2/2. Thus
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∂f/∂u = u. For a given σ, ∆t is chosen as ∆t = σ minN
i=1

∆xi

|ui|
. The exact

solution of this problem does not have a closed form. A reference solution is
generated using WENO5 with a fixed uniform mesh of size N = 10000 and a
CFL number σ = 0.1.

The solution of this problem evolves from a smooth initial condition to having
a shock at x = 1. After the shock is formed, its location is fixed, and its height
decreases. The non-uniform mesh is now chosen carefully using N = 150
intervals. Because the location of the shock does not change, we describe the
construction of the non-uniform mesh starting from xN+1

2

= 1. To the right of

xN+1

2

, 15 intervals are located in such a way that the first cell size is 1.d − 3,

and the cell sizes are increased by 20% as we proceed to the right, terminating
with xN+31

2

= 1.0720. We then put 60 uniform mesh cells between [1.0720, 2];

i.e., the cell size is 0.0155. The mesh to the left of xN+1

2

is defined similarly.

In summary, the mesh is defined in terms of ∆xi as follows.

∆xi =































0.0155, if 1 ≤ i ≤ 60; i.e., xi+ 1

2

∈ [0, 0.9280];

0.001 × (1.2)75−i, if 61 ≤ i ≤ 75; i.e., xi+ 1

2

∈ (0.9280, 1];

0.001 × (1.2)i−76, if 76 ≤ i ≤ 90; i.e., xi+ 1

2
∈ (1, 1.0720];

0.0155, if 91 ≤ i ≤ 150; i.e., xi+ 1

2

∈ (1.0720, 2].

Figure 2 shows the solutions at Tout = 1. The solid line is the reference solu-
tion. The crosses represent the numerical solution at the mesh points with the
above non-uniform mesh using σ = 0.5.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.8
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0.6

0.8

x

u

Fig. 2. The solution for the Burgers equation at Tout = 1.

In this example, we also use non-uniform meshes with different values of N .
For example, the non-uniform mesh with N = 300 is generated by halving each
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interval of the non-uniform mesh with N = 150; similarly the non-uniform
mesh with N = 450 is generated by dividing each interval of the non-uniform
mesh with N = 150 into three equally spaced intervals. In order to compare
the results from using the non-uniform mesh versus using the uniform one,
we compute the L1-norm error as in (78) and the corresponding CPU time
in seconds at Tout = 1. Different CFL numbers, σ, are chosen, and different
values of N for both the uniform mesh and non-uniform mesh are used. Table 3
and Table 4 show the L1-norm error and the CPU time in the form of A/B,
where A is the L1-norm error, and B is the CPU time.

σ N = 150 N = 300 N = 450

1.0 1.4584E − 9/11.7 5.6991E − 11/45.5 1.2151E − 11/100.1

0.5 1.3498E − 9/22.6 4.3537E − 11/91.5 5.9872E − 12/199.7

0.25 1.3364E − 9/45.3 4.1860E − 11/181.1 5.4909E − 12/401.6
Table 3
L1-norm errors and corresponding CPU times with non-uniform meshes.

σ N = 500 N = 1000 N = 2000

1.0 1.9656E − 8/5.9 2.4311E − 9/25.5 3.0224E − 10/148.9

0.5 2.4297E − 9/11.5 3.0213E − 10/50.3 3.7670E − 11/305.9

0.25 3.0702E − 10/23.2 3.7975E − 11/100.6 4.7196E − 12/584.4

0.125 5.3284E − 11/46.0 5.6795E − 12/200.6 6.4675E − 13/1207.1
Table 4
L1-norm errors vs CPU with uniform meshes.

Based on these results, we make the following observations.

• When a non-uniform mesh is used, the error does not decrease significantly
for all σ studied. In other words, when this happens the spatial error domi-
nates the temporal error. This can be attributed to the fact that ∆t is very
small; we recall that it is equal to the product of σ and the smallest value of
∆xi

|ui|
, which is achieved at the location of the shock; in fact, it has the smallest

∆xi and the largest |ui|. On the other hand, when a uniform mesh is used,
the error decreases steadily for the range of σ shown. In other words, the
spatial error is significantly smaller than the temporal error. This is because
∆t = ∆x

maxN

i=1
|ui|

is considerably larger than it is for the non-uniform meshes.

• It is not apparent that there is much advantage in terms of computational
efficiency for using a non-uniform mesh with this problem. For example,
the error is 5.99 × 10−12 when using the non-uniform mesh with N = 450
and σ = 0.5; the corresponding CPU time is 199.7 seconds. This result
is comparable with that when using a uniform mesh with N = 1000 and
σ = 0.125; i.e., the error is 5.68×10−12, and the CPU time is 200.6 seconds.
If the shock location does not change (significantly), using a non-uniform
mesh may not necessarily be superior to using a uniform one in terms of
CPU time. However, if the shock location does change, it is clear that an
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adaptive mesh strategy that could place a fine mesh only in the immediate
area of the shock location would have significant computational advantages
over a strategy where a fine uniform mesh would have to be used everywhere
in the spatial domain. Moreover, it is noteworthy that, despite the lack of
clear computational efficiency advantages for this simple example, there are
nonetheless distinct advantages in terms of reduced storage requirements
when a non-uniform mesh is used.

In this example, the solution starts from a smooth function and ends with a
shock whose location is fixed. This means that in order to maintain a very
small error, e.g., 10−10, throughout the computation, many mesh points must
be used at the beginning. That is, if the computation does not begin with a
sufficiently fine mesh, the errors generated at early times adversely affect the
accuracy of the solution at later times. When the shock begins to form, the
overall number of mesh points may be reduced without adversely affecting the
overall error provided that a sufficiently fine mesh is placed in the vicinity of
the shock. This is the reason why the use of non-uniform meshes does not
outperform the use of uniform meshes for this example. This example also
suggests that if an adaptive mesh strategy is to be effectively used with the
finite-volume WENO5 method, it must have the ability to adaptively change
the number of mesh points used in order to maintain a certain spatial error.

4 Conclusions and future work

In this paper we give explicit formulas for the implementation of the finite-
volume WENO5 method on an arbitrary (non-uniform) one-dimensional mesh.
We compare the performance of using non-uniform meshes with that of the
classical finite-difference version of the WENO5 method using uniform meshes
for one-dimensional, scalar hyperbolic conservation laws in terms of computa-
tional efficiency. By means of numerical experiments on linear and non-linear
problems with shock-like solutions, we find that using non-uniform meshes
can be significantly more efficient than using uniform meshes both in terms
of computation time and memory required. However, we also conclude that in
order for an adaptive mesh strategy for the WENO5 spatial discretization to
succeed, it is critical for it to have the ability to add or remove mesh points
at different time steps. We hope that these formulas and observations can be
used as a starting point for the future development of an adaptive strategy
for the finite-volume WENO5 method.
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