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Abstract

This paper introduces the concept of a Web server access hierarchy—a three-tier
hierarchy that describes the traffic to a Web server in three levels: as aggregate traffic
from multiple clients, as traffic from individual clients, and as traffic within sessions
of individual clients. A detailed workload characterization study was undertaken of
the Web server access hierarchy of a busy commercial server using an access log
of 80 million requests captured over seven days of observation. The behavioural
characteristics that emerge from this study show different features at each level and
suggest effective strategies for managing resources at busy Internet Web servers.
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1 Introduction

The phenomenal growth of the World Wide Web continues to challenge net-
work infrastructure and systems. Web servers are over-loaded with requests,
networks become congested with Web traffic, and end-users experience poor
response times. This continuing growth in the demand for Web-based services
has motivated a great deal of research on how to improve the performance and
scalability of the Web. Various research studies have been conducted from the
client perspective [7,9,11] and the proxy perspective [13,15] to achieve these
goals, but a common theme is to manage the resources of the Web server ef-
fectively [4-6,8,16]. Under proper management, request throughput and data
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throughput at the server can be increased and network bandwidth can be
conserved.

The focus of this paper is the consideration of the different levels through which
Web servers can receive requests from prospective clients: as requests from
multiple clients, as requests from individual clients, and as requests within
sessions from single clients. Our research seeks to shed light on two important
questions: how do the characteristics of Web server workload change over the
levels of the access hierarchy, and what are the implications of these character-
istics for Web server resource management. We believe that the contributions
from this study will enable Web server designers to gain insight into the design
and provisioning of Web services and suggest ways of improving the effective-
ness of Web protocols (HTTP/1.1). Important conclusions of this paper are:

e While the behavioural characteristics of aggregate server workload are gen-
erally consistent with other studies [5,6], there are a few important changes.
We found that these changes are due not to the effect of upstream caching
(as we anticipated), but rather to some specific features of the server work-
load studied.

e Two distinct types of clients, “human” clients and “non-human” clients,
were identified at the server, and the behavioural characteristics of their
reference patterns are dramatically different. This has significant implica-
tions for performance.

e A client-based resource management policy could be effective at the Web
server if the reference pattern of “non-human” clients can be managed sep-
arately from the reference pattern of “human” clients.

The remainder of the paper is organized as follows. Section 2 presents the
background and related work for the study. Section 3 describes the Web server
workload characterized. Section 4 summarizes the characteristics of the Web
server workload as it relates to the access hierarchy. Section 5 concludes the

paper.

2 Background and Related Work

The performance and scalability of the World Wide Web depend on the com-
bined effectiveness of resource management strategies at the client, in the
network and at the server. Workload characterization is important to the un-
derstanding of the behavioural characteristics of Web traffic. Many workload
characterization studies have been carried out at both the client side and the
server side. These studies focused primarily on aggregate workloads from mul-
tiple users, and are useful in designing non-differentiated client policies for
the provisioning of document services or to determine the effectiveness of Web



protocols. Several of these related studies are briefly discussed to illustrate the
work that has been done in this area.

Catledge and Pitkow [9] first characterized the Web traffic of user sessions
at the client side. Three categories of user reference patterns were identified—
serendipitous (random), browsing (looking for items of interest) and searching
(investigating specific topics). In a much larger study of Web user sessions,
Cunha et al. [11] identified two types of reference patterns, described as mostly
surfing and mostly working. Hine et al. [12] observed three user reference pat-
terns referred to as wanderer, resident and sojourner. Barford et al. [7] ex-
amined whether or not the user reference patterns identified in [11] change
over time and the implications of these changes with regards to Web resource
management at the client side.

At the server side, Arlitt and Williamson [5] identified ten invariant character-
istics of Web server workloads for effective resource management. Arlitt and
Jin [6] subsequently analyzed the server workload of the 1998 World Cup Web
site to explore the extent to which these ten invariant characteristics change
over time. Although some of the invariant characteristics were found to have
changed over time, the results supported the continued use of the resource
management strategies suggested in [5]. Arlitt [4] further characterized an ag-
gregate server workload by grouping it into Web user sessions at the server
with a view to understanding the impact of the newly introduced HTTP/1.1
protocol on the resource management of Web servers. A hierarchical approach
for characterization of Web server workloads collected at e-business sites and
information provider sites was introduced in [2,3,16]. Menasce et al. [16] used a
hierarchical approach to understand whether or not the characteristics and in-
variants identified in [5] are still valid for e-business workloads and Almeida et
al. [2,3] applied this approach to identify, characterize and distinguish two ma-
jor categories of search agents found in Web server workloads, namely crawlers
and shopbots, and further assessed the impact of their reference patterns on
caching performance.

In many respects, our work is similar to these related studies, but it differs in
our motivation to understand how the characteristics of Web server workloads
change as one moves through three levels of access aggregation. This hierarchi-
cal characterization enables Web server designers to gain clearer insight into
resource management implications of the decisions they must make.
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Fig. 1. Seven Days Traffic Profile of Web Server Workload Trace

3 The Collection, Description and Analysis of a Web Server Work-
load

For this study, we obtained Web server access logs from a busy (anonymous)
commercial Web site. The Web site has a cluster of servers that appear to the
users as a single machine. Each server has HP K-class multiprocessor HP-UX
boxes running the Open-Market-Secure-Web Server/2.0.5.RCO. Server access
logs were collected over a period of seven days from Sunday June 14, 1998 to
Saturday June 20, 1998. The logs were preprocessed to preserve the anonymity
of users and URLs. There are 644,187 clients ? in the workload, and these are
responsible for 328 GB of data transferred over the network within the period
of observation. The daily server activity represents two orders of magnitude
more workload than the busiest server activity characterized in [5] (tens of
million of requests per day, compared to hundreds of thousands of requests per
day). As Figure 1 illustrates, the original (or raw) workload shows a weekend
effect with many fewer requests from clients during the weekend days than on
work days.

After reducing the raw server access logs by eliminating unsuccessful requests
(as was done in [5,6]), there are more than 56 million requests from 620 thou-
sand unique clients over the period of observation. Table 1 gives summary
statistics of the reduced access logs. In total, the server transferred more than
100 thousand unique documents over the seven-day period. The fact that the
median requests per day is greater than the mean requests per day implies
that the s weekend effect in the original workload is preserved in the reduced
logs. There is evidence that the presence of a few large documents transferred
by the server might be responsible for the skewness of the document size distri-
bution since the median document size (9 kB) is less than the mean document

2 The term client refers to a host with a distinct Internet Protocol (IP) address in
the access log. A client can be a single user host, a timesharing cluster, or a relay
host.



Summary of Workload Statistics (reduced Workload)

Access Log Duration 7 days
Access Log Starting Date June 14, 1998
Access Log End Date June 20, 1998
Total Requests 56,458,479
Mean Requests/ Day 8,065,497
Median Requests/ Day 9,517,399
Coeflicient of Variation 0.35
Total Bytes Transferred (GB) 323
Mean Transfer Size (Bytes) 5,722
Median Transfer Size (Bytes) 1,227
Coeflicient of Variation 5.50
Total Unique Clients 620,041
Total Unique Documents 101,008
Total Storage Size (MB) 2,819
Mean Document Size (Bytes) 27,918
Median Document Size (Bytes) 8,506
Coeflicient of Variation 9.74

size (28 kB). The mean transfer size (5.7 kB) and the median transfer size (1.2
kB) are consistent with results reported in [5,8]. One of our goals was to dif-
ferentiate between documents that are heavily demanded and documents that
are rarely or lightly demanded. By grouping the document types as reported
in [5,6,15], some important differences are evident. In this workload, 9.51%
of the requests were for HTML documents and 86.09% were for Image docu-
ments, in contrast with previous studies [5] which found these to be nearly the
same. The volume of bytes transferred as HTML documents in our workload
accounts for 23.66% of the traffic and the volume of bytes transferred as Im-
age documents account for 63.28%. This indicates that Image documents have
greater impact than HTML documents on this server, whereas the reverse was
the case in [5]. The increasing popularity of Image documents over other types
of Web documents could be responsible for this difference.

An important phenomenon is “one-timer” referencing with respect to docu-
ments and clients. One-timer documents are distinct documents transferred
only once by the server during the period of observation. These are important
because they adversely impact caching performance. In the reduced server



workload, there were 12,357 one-timer documents that represented 12.23%
of the overall unique documents and 8.78% of total disk storage. One-timer
clients are distinct users that successfully requested a document once from the
Web server within the period of observation. These are also important because
of their adverse impact on the effectiveness of persistent connections as imple-
mented in HTTP/1.1. There were 33,205 one-timer clients in this workload,
accounting for 5.35% of the number of clients. The large proportion of one-
timer documents and one-timer clients in this workload suggests that caching
strategies and the HTTP /1.1 protocol might not perform as hoped.

4 Hierarchical Workload Characterization

In characterizing the Web server workload a number of important character-
istics were examined, including document size and transfer size distributions,
temporal locality, document concentration, document inter-reference times
and phase transition behaviour. These were studied at each of the aggregation
levels described earlier.

4.1 Characteristics of the Aggregate Workload

The aggregate workload is simply the raw data presented to the server, with
no attempt to isolate its component parts. Requests from the entire user com-
munity arrive at the server in an interleaved fashion.

4.1.1 Document and Transfer Size Distributions

The nature of documents either stored or transferred by the Web server is
an important consideration for resource management. Figure 2(a) shows the
cumulative frequency distribution of document references, document sizes and
transfer sizes, and weighted transfer sizes 3. Documents smaller than 10 kB
account for 80.49% of the total requests and 28% of the total bytes transferred,
documents between 10-100 kB account for 19.55% of the total requests and
65% of bytes transferred, and documents larger than 100 kB account for only
0.14% of the total requests and 7% of the bytes transferred. This indicates
that Web users prefer smaller documents, probably less than 10 kB, while
much of the data traffic on the network is due to a few requests for large doc-
uments. Caching should be an effective approach to resource management at

3 Weighted transfer size is calculated by multiplying the number of references to
a document by the maximum transfer size of the document within the period of
observation.
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Fig. 2. Document Size Distribution: (a) Cumulative Distribution Frequency by Doc-
ument Sizes; (b) Log-log Complementary Distribution Plot for Unique Documents;
(c) Log-log Complementary Distribution Plot for Transfer Sizes; (d) Comparison of
Document Size Distribution and a Hybrid Lognormal-Pareto model

the Web server, even though a tradeoff may exist between caching for improv-
ing the server’s request throughput and caching for improving the server’s data
throughput, if cache policies are based on the frequency of user references to
documents. The difference between the weighted transfer sizes and the actual
transfer sizes for documents larger than 100 kB suggests that large documents
are not fully downloaded before users abort the transfer. Thus, caching may
be less effective for this category of large documents.

Figures 2(b) and (c) suggest that the distributions of document and trans-
fer sizes are heavy-tailed or Pareto, respectively. For document sizes this
means that a small set of large documents occupy most of the disk space,
while for transfer sizes, a heavy tail means a small set of documents is re-
sponsible for most of the bytes transferred. Applying least-squares estimation
(LSE) [5,6,10], the tail index of the document size distribution is o = —1.08
(infinite variance) and the tail index of the transfer size distribution is a =
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Fig. 3. Concentration of Document References: (a) Cumulative Distribution by Ref-
erences and Bytes Transferred; (b) Zipf Distribution: Reference Count versus Rank

—0.71 (infinite mean). These differ from earlier results [5,10,11] because of the
clustering of the medium-sized image and text documents between 10 and 40
kB, that account for most of the bytes transferred. We also found that a hy-
brid lognormal-Pareto distribution as suggested by Barford et al. [7] captures
the body and tail of the document distribution at the server well. Details are
provided in [20].

4.1.2  Concentration of Document References

Several studies [5,6,11,15] have found that References to Web documents ex-
hibit a non-uniform reference pattern. A small percentage of documents are
extremely popular, while a significant number of documents are rarely refer-
enced. Our server workload also exhibits this property as shown in Figure 3.
Plotting distinct documents found in the server workload in decreasing order
of reference (from the most popular to the least popular) against the fraction
of total documents referenced shows that 10% of the most frequently accessed
documents account for 96% of total requests and 5% of the most frequently
referenced documents account for 93% of the overall requests received by the
server (Figure 3(a)). Similar results are observed for bytes transferred by the
server. The first 10% of distinct documents (representing the most heavily
transferred documents) are responsible for 93% of bytes transferred over the
network. Our results show the presence of strong document concentration in
the aggregate workload and suggest that server caching strategies that take
into account both the frequency of references and the volume of bytes con-
tributed by documents can be effective.

Figure 3(b) demonstrates the use of Zipf’s Law [23] to illustrate the presence
of document concentration by plotting a log-log transformation of distinct
documents, sorted in decreasing order of popularity, as a function of the doc-
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ument rank. Although the slope of the popularity line is not -1.0, there is
evidence of the document concentration property in this workload since the
slope of the popularity curve is -1.59. The steeper the slope of the popular-
ity line, the stronger the concentration or frequency of requests to a smaller
set of documents. A similar observation was reported in [6] and suggests that
caching holds promise as an approach to managing the Web server resources
over time.

4.1.8  Temporal Locality

Temporal locality is essential for the success of caching strategies and is a
significant factor in the choice of cache management policy. The least recently
used (LRU) stack reference model [1,5,21] is used to characterize temporal
locality since it reflects the tendency of references to certain documents to
persist over time—the probability of users re-referencing documents that have
been requested in the past. Figure 4(a) shows that temporal locality is present
in this workload. The x-axis represents the first 3000 stack positions, from the
most recently referenced document position to the least recently referenced
document position, and the y-axis represents the frequency of reference to
documents occupying each of the stack positions. The hyperbolic shape of
the LRU stack distance histogram demonstrates that most documents occupy
positions closer to the top of the stack, reflecting the presence of temporal
locality in this aggregate workload.
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4.1.4  Re-referencing Behaviour: Document Inter-Reference Times

The degree of document re-referencing by users as exhibited by temporal lo-
cality is shown by the probability density function (PDF) of document inter-
reference times (the time interval between successive requests to the same
documents [13]). The intuition is that stronger (weaker) temporal locality
reflects higher (lower) probability of smaller document inter-reference times.
After computing and combining the inter-reference times of individual distinct
documents in the workload, the PDF of overall document inter-reference times
is shown in Figure 4(b). Since the probability of a user re-referencing the same
documents decreases rapidly with time, the presence of temporal locality is
concluded. This result is likely due to the presence of popular documents,
which tend to be requested frequently, thus exhibiting shorter inter-reference
times, while less popular documents exhibit longer inter-reference times. The
break in the PDF of document inter-reference times at roughly 24 hour (1440
minute) intervals may be due to the impact of time zone differences in user ref-
erencing patterns, and the spike may be due to the presence of “non-human”
references, such as might result from search agents or crawlers [2,3].

4.1.5  Resource Management Implications

There are two approaches to caching at a Web server: one is to cache docu-
ments that are frequently requested by users in order to improve the request
throughput, the other is to cache documents that contribute to a large vol-
ume of bytes transferred in order to conserve network bandwidth or improve
the data throughput. Figure 5 shows the implications of using cache poli-
cies based on the number of references to documents or on the volume of
bytes contributed by documents on both the request throughput and the data
throughput. The y-axis represents the cumulative percentage and the x-axis
represents percentage of documents. Arlitt and Williamson [5] first used these

10



graphs in understanding the performance implications of Web servers.

Figure 5(a) depicts the performance results of using caching policies based on
the number of references to documents. The top line represents the percentage
of total requests serviced from the cache, the next two lines report the percent-
age of total bytes transferred (in terms of transfer sizes and weighted transfer
sizes) for servicing requests from the cache, and the last line represents the
cache size available at the server. The results show that there is a tradeoff in
caching performance between request throughput and data throughput when
the cache size increases. In particular, the cache policies perform better in
terms of request throughput than data throughput. This implies that cache
management strategies that are based on the frequency of requests to docu-
ments are likely to be effective for managing Web server resources when CPU
cycles are the bottleneck.

Figure 5(b) shows the performance of cache management strategies based on
the volume of bytes contributed by documents. The labeling of this graph is
similar to Figure 5(a). In this case we observed no performance tradeoff be-
tween request throughput and data throughput as the cache size increases.
This implies that cache management strategies based on volume of bytes con-
tributed by documents are likely to be more effective when both CPU cycles
and disk I/Os as are bottlenecks.

Frequency-based cache management strategies appear to be the most cost
effective way of managing the resources at the Web server since the cost of a
cache is always proportional to its size. Figures 5(a) and (b) show that in order
to achieve comparable performance results, cache management strategies that
use the number of references to documents require about 129 MB to store the
top 10% of the most frequently requested documents, while cache management
strategies that use the volume of bytes contributed by documents require about
1,564 MB to store the top 10% of documents that account for most volume of
bytes transferred over the network.

4.2 Characteristics of Individual Client Workloads

For this part of our investigation, we decomposed the aggregate workload into
separate streams comprising the requests from individual clients, and analyzed
each of these client streams separately. In the design of resource management
strategies, Web server designers assume (implicitly or explicitly) that client
request patterns are similar. We found some dramatic differences that could
have profound impact on performance. These are illustrated in this section by
focusing on four specific clients that were identified.

11



Table 2
Summary of Server Client Access Log Statistics (Reduced Data)

Item Description Client Number
A B C D

Total Requests 109,385 | 97,859 | 21,122 | 9,594
Mean Requests/Day 15,626 | 13,980 | 3,017 | 1,371
Median Requests/Day 12,139 | 19,140 | 4,671 677
Unique Documents 12,235 | 16,834 | 10,116 | 7035
Total Storage Size (MB) 196 333 173 146
Mean Document Size (Bytes) 15,977 | 19,765 | 17,061 | 20,691
Coefficient of Variation 0.71 8.80 6.60 3.27
Total Bytes Transferred (MB) | 1,750 919 272 158
Mean Transfer Size (Bytes) 15,997 | 9,393 | 12,883 | 16,499
Median Transfer Size (Bytes) | 14,339 | 1,967 | 3,089 | 9,691
Coefficient of Variation 0.73 9.33 7.35 3.55

4.2.1 The Analysis of Client Workloads

The total requests and total bytes transferred by individual clients are char-
acterized using a log-log complementary distribution of the sort used in [10].
We observed that the distribution of bytes transferred by individual clients is
heavier-tailed (o = —1.24) than the distribution of total requests generated
by individual clients (o = —1.44). The fact that both distributions are heavy-
tailed indicates that a few clients are responsible for both the disk I/O and
the CPU cycle bottlenecks. Therefore, understanding the reference patterns
of these few clients may be particularly important to effective Web server
resource management.

Table 2 gives statistical information of four selected client workloads that
belong to the group of these few clients extracted from the aggregate server
workload. These are identified as A, B, C, and D. Client A has the most
requests per day and moves the most data. Client D references the fewest
unique documents, but the documents tend to be larger. A weekend effect is
observed in the workloads of clients B and C since their median requests per
day is greater than their mean requests per day. More extensive information
on these clients, including how they were selected, is given in [20].

12



4.2.2  The Reference Patterns of the Selected Clients

The reference patterns of the four selected client workloads is characterized in
Figure 6 by plotting, on the y-axis, a sequence of numbers assigned to distinct
documents found in each of the client workloads and, on the x-axis, the time
since the start of the individual client requests. The terms “mostly working”
and “mostly surfing” (as coined in [11]) are used in explaining each of the
client reference patterns. A mostly working pattern implies that the client
keeps re-referencing previously accessed documents most of the time, while
a mostly surfing pattern implies that the client rarely keeps re-referencing
previously accessed documents. Clients B and C display a mostly working
pattern while clients A and D display a mostly surfing pattern. The dense
reference pattern of client B indicates a strong working pattern while that of
client C is weak. Since the rate of accessing new documents decreases as each
day passes, temporal locality seems to be present in the reference patterns of
clients B and C. It is speculated that client B is a firewall or relay, while client
C is a time-sharing system. More specifically, client B is believed to access
the server on behalf of human users with similar document reference patterns,
while client C does the same for human users but with dissimilar document
reference patterns. At any rate, their characteristics are quite different.

Similarly, the surfing reference pattern of client A reveals a crawling pattern
that shows that the client accesses the same number of documents at the server
each of the possible nine or ten times it visits the server during the period of
observation. This is quite different from the surfing reference pattern of client
D in which the first day appears to be spent accessing distinct documents
and the subsequent days making scanty re-references to documents accessed
during the first day. The crawling-surfing reference pattern of client A suggests
that it is a non-human user, perhaps a search agent or crawler [2,3], while the
pattern of client D, by contrast, suggests that it might be a caching proxy *.

Clearly, these individual clients display quite different request characteristics.
In the following, some of these characteristics are examined in more detail
with consideration of the potential resource management implications of their
differences.

* The caching proxy is empty on the setup day and the first document misses of
7,000 requests can be due to cold-start behaviour of an empty cache. The subsequent
scanty reference pattern after the first day can be due to capacity misses resulting
from a finite-sized cache at the proxy and coherent misses resulting from stale
documents in the proxy cache.

13
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Fig. 6. Reference Patterns of Four Selected Clients

4.2.3  Concentration of Client Document References

The document referencing patterns of the selected clients are characterized
in Figure 7 using Zipf’s Law [23] as discussed in Section 4.1.2. We observed
that client A has a uniform referencing behaviour, which alludes to a cyclic
or crawling referencing pattern—the client visits all distinct documents at the
server the first time and all subsequent referencing is to traverse this set of
previously accessed documents [2,3]. The other clients B, C and D, however,
reveal a non-uniform referencing pattern. The result is consistent with the
hypothesis that client A is likely to be a non-human user such as a search
agent or Web crawler, while the other clients are not. The implications of
Figure 7 are that the reference pattern of client A is not amenable to caching,
while the reference patterns of client B, C and D could be—because of the
document concentration property reflected by their non-uniform referencing
patterns.

14
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4.2.4  Temporal Locality in the Selected Client Workloads

For caching the request streams of clients, temporal locality is an important
consideration. The respective histograms of stack distances 5 (Figure 8) imply
that client A has very poor temporal locality and clients B, C and D have weak
temporal locality. For client A, most documents referenced occur at the same
stack position, which is closer to the bottom of the stack. This further reflects
the cyclic or crawling referencing pattern of a fixed set of documents by this
client, leading to an inference of a non-human referencing pattern [2,3,5,6].
Caching the reference pattern of client A would require the cache to preserve
some space ahead of time, or continuously free some space to accommodate
the fixed set of documents accessed [2]. The reference patterns of the other
three clients seem amenable to caching, despite the long tail observed in their
stack distance distributions.

® A maximum stack length of 1000 yields a satisfactory measure of temporal local-

ity for clients B, C and D. Client A requires an infinite stack due to its crawling
document reference pattern.

15
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Fig. 8. Distribution of LRU Stack Depths

A relative measure of temporal locality was applied to the document reference
pattern of the selected clients using the mean stack distance as reported in [7].
The results show that client B has the strongest temporal locality, followed
by clients D, C, and A, respectively. In addition, the assumption of a “perfect
cache”, as discussed in [7,18], was used to verify the effectiveness of caching the
reference patterns of these clients. The results indicate that only the reference
patterns of client B and C are likely to be cacheable. The cacheability of client
D’s reference pattern cannot be ascertained because of the limited number of
requests in its workload, but the reference pattern of client A is clearly not
amenable to effective caching. Our findings are consistent with [2] which
suggests that non-human clients such as crawlers have a referencing pattern
that completely disrupts locality assumptions while human clients do not.

4.2.5 Inter-Arrival Times of Client-Requested Documents

The cumulative distributions of inter-request arrival times, time intervals be-
tween successive requests to documents from single clients, are shown in Fig-
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ure 9 for the four selected client workloads. Client A generates 95% of its
requests to documents within one second, while the other clients (B, C and
D) generate 80% and almost 100% of their requests within 10 and 100 seconds,
respectively. This implies that a threshold of inter-request arrival time between
10 and 100 seconds would provide an effective timeout value for HTTP/1.1
persistent connections ® for these clients. The impossibility that a human
user can consistently generate requests within a second for a period of seven
days adds weight to the conclusion that client A is a non-human client, while
the others are likely to be human clients. In terms of usage of the HTTP /1.1
protocol, the reference pattern of client A is more closely aligned with the
philosophy of persistent connections than other clients because of a smaller
inter-request arrival time. This implies that non-human clients are more likely
to benefit from persistent connections than are human clients.

4.2.6  Resource Management Implications

From the analysis of these four selected client workloads, two dramatically
different reference patterns are apparent. These can be characterized as human
and non-human. The reference pattern of human clients exhibits behaviour
that is amenable to caching, but that of non-human clients does not. We
speculate that these two referencing patterns represent the general referencing
patterns of clients at the Web server, and see a need for resource management
strategies that treat the request streams of human clients differently from
those of non-human clients. Almeida et al. [2] suggested Web caching strategies
that treat the request streams of non-human clients differently from that of
human clients. We believe that caching the request streams of human clients
and ignoring the request streams of non-human clients could be an effective

6 This means that the number of TCP connections for the client-server commu-
nication on the Web has been reduced substantially by allowing a few clients to
maintain the state of their open TCP connections at the server.
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approach to Web server resource management. In general, we contend that
resource management strategies at the Web server should be designed to use
information about the characteristics of the clients being served.

4.8  Characteristics of Sessions within Individual Client Workloads

For this part of our investigation, we consider the requests comprising indi-
vidual sessions within client workloads. Since a user’s Web request behaviour
can differ from one session to another, strategies for managing the reference
pattern of clients and the HTTP/1.1 persistent connections at the Web server
might be ineffective. Our objective is to characterize sessions within individual
client workloads, focusing on the effectiveness of HTTP /1.1 persistent connec-
tions and the change in document working set 7 over sequences of sessions.

4.3.1 Web Session Analysis

We define a Web session (following the lead of [4]) as a stream of requests from
a single client with an inter-request time less than a given threshold window
time, or timeout value. If request r;; from a given client arrives at the server
At seconds after request r; from the same client, and At < 7T (where T is the
timeout value), then requests r; and r;;; are both considered to be part of the
same client session. If At > T, then request r; is the last request in the client
session and indicates the end of a client session, while request r;,; initiates
the next client session.

In selecting a range of timeout values for characterzing sessions within client
request streams, we examined the impact of fixed timeout values on the dis-
tribution of the number of sessions per client in the server workload (as shown

" The document working set is defined as the distinct documents referenced within
a client session.
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in Figure 10). Our observation suggests that as the timeout values increases,
the number of sessions per client drops rapidly: for a timeout value of one sec-
ond, about 10% of the clients have a single session; while about 50% of clients
have at least 10 sessions. With a timeout value of 100 seconds, about 42% of
the clients have a single session; while about 70% or more of the clients have
a single session when the timeout value exceeds 100 seconds. The significant
increase in the percentage of clients having a single session implies that most
clients send few requests, and a few clients send most requests to the server.
Since timeout values beyond 600 seconds have little or no impact on the dis-
tribution of the number of sessions per client, a maximum timeout value of
600 seconds is chosen for characterizing sessions within the request stream of
clients.

4.3.2  Distribution of Requests and Bytes Transferred within Web Sessions

The effectivess of HTTP/1.1 persistent connections for the reference patterns
of clients is evaluated by characterizing the number of requests and the volume
of bytes transferred within sessions of individual client request streams in the
server workload. Fixed timeout values between 1 second and 600 seconds were
used. We observed (as shown in Figure 11) that a timeout value from 100
seconds and above is effective for HT'TP/1.1 persistent connections because
the distribution of either average requests or average bytes transferred within
sessions of client request streams does not change significantly. For example,
fewer than 10% of clients have an average of one request per session of their
individual workloads for all timeout values considered, and 50% of clients
transferred an average of 100-1000 kB per session for a timeout value of 100
seconds.

Since the statistical mean can lead to an unreliable measurement if the data is
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skewed, the full distributions for total requests and volume of bytes transferred
over sequences of sessions within individual clients at the server were analyzed
(see [20] for details). We found a high variation in the total number of requests
and the volume of bytes transferred across individual client sessions for timeout
values of 1 and 10 seconds. Roughly 70% of the clients were observed to have
a coefficient of variation that is close to 1.0. The variation decreases as the
timeout value exceeds 100 seconds. Since a smaller timeout value is usually
preferable owing to memory performance problems [4], a timeout value of 100
seconds offers good utilization of HTTP/1.1 persistent connections.

Applying the same method to the workloads of selected clients A, B, C and D,
we observed that 95% of sessions within the request stream of client A account
for at least 10 requests and more than 10 kB of documents transferred for all
timeout values used. For a timeout value of 100 seconds, 60% and 85% of
sessions within the request streams of clients B, C and D account for at least
10 requests and more than 10 kB of documents transferred from the server,
respectively. Figure 12 shows the distributions for clients A and C (see [20)]
for detailed explanations). Overall result reveals that client A has the best
utilization of HTTP/1.1 persistent connections for a fixed timeout value of
1 second compared to other clients with a fixed higher timeout value of 100
seconds. This implies that the reference pattern of non-human clients such as
A can more effectively utilize HTTP /1.1 persistent connections at a fixed, but
smaller timeout value than human clients such as B, C and D as alluded to
in Section 4.2.5. We speculate that the timeout value of 100 seconds which
yielded the best utilization of HTTP /1.1 persistent connections for all clients
in this server workload is likely due to the dominant effect of client reference
patterns which is human over that of non-human.

4.3.83 Phase Transition Behaviour within Web Sessions

The sequence of document working sets across sessions ® of individual client

workloads was characterized in an attempt to understand phases of client
document referencing behaviour. The characterization shows the presence of
phase transitions if there is a significant change in document reference pat-
terns across sessions. Adapting Kienzle et al.’s [14] method for characterizing
memory reference patterns to Web client reference patterns yields the cumu-
lative frequency distributions of the percentage changes in document working
sets across consecutive sessions shown in Figure 13. The percentage change
in document working sets between consecutive sessions can be greater than
100% because the document working set of the current session can be larger
than that of the previous session. The x-axis represents the percentage change

8 The identification of sessions was based on the timeout values that provided the
best utilization of persistent connections for these clients.
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in document working sets of consecutive sessions and the y-axis represents
the percentage of consecutive sessions that exceeds a given percentage on the
x-axis. Percentage changes that exceed 500% at the tail of the distributions
are cut off for visualization purposes.

We observed that for client A, over 80% of consecutive sessions show a change
in document working sets greater than 100%. For clients B, C and D, about
50% of their consecutive sessions have a change in document working sets
exceeding 75%, 100% and 100%, respectively, after which a slowly declining
pattern evolves. This pattern indicates a clear shift in the activity of clients B,
C and D over their sessions. Since most consecutive sessions within the selected
client workloads have a change in document working sets greater than 100%,
phase transition behaviour is concluded to be present. This implies that the
document reference patterns of sequences of sessions within individual client
workloads may present problems for caching at the server.
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4.8.4  Resource Management Implications

Arlitt [4] presents an extensive discussion of how the activity of clients using
persistent connections [17,22] can affect the management of Web server re-
sources such as memory. The explanation, however, hinges on how the Web
server must reserve the memory resource in order to implement HTTP/1.1
persistent connections effectively. For this workload, the use of a fixed but
short timeout value less than 100 seconds is found to under-utilize HT'TP
persistent connections. This in turn wastes the reserved memory resource at
the Web server because there is no substantial reduction in the number of
TCP connections. On the other hand, a fixed but high timeout value of 100
seconds is found to provide the best utilization of HTTP/1.1 persistent con-
nections. But this fixed and higher timeout value can be effective for resource
management only if the memory resource at the Web server is bottleneck-free.
Since memory is not bottleneck-free, the current implementation of persistent
connections in HTTP/1.1 is not likely to be effective at the server.
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For effective resource management, our suggestion is that specific client in-
formation be made available to the Web server. This would assist in develop-
ing policies that use a fixed but short timeout value of 1 second to manage
HTTP/1.1 persistent connections of non-human clients, while a dynamic but
short timeout value (as suggested in [4,17]) can manage persistent connections
of human clients. The presence of phase transition behaviour suggests that the
implementation of caching strategies during HTTP /1.1 persistent connections
is not likely to be effective at the Web server.

5 Conclusions

A hierarchical workload characterization was undertaken for a busy Web
server. This adds to the growing body of knowledge on Web workload char-
acteristics. The specific results presented can assist Web server designers in

the provisioning of Web services as well as improving the effectiveness of new
HTTP protocols.

Client differences can significantly impact performance. In particular, the iden-
tification of the reference patterns of human and non-human clients further
helps in understanding the impact of these differences on performance. An im-
portant observation from this study is that information about clients visiting
the Web server (whether human or non-human) can be beneficial to the ef-
fective management of server resources. We contend that Web servers should
use information based on the reference patterns of isolated clients (such as
human and non-human) to provide more effective resource management, and
our future research is aimed at the development of such strategies.
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