
A Self-tuning Page Cleaner for DB2�

Wenguang Wang Rick Bunt
Department of Computer Science

University of Saskatchewan
Saskatoon, Canada

Email: �wang, bunt�@cs.usask.ca

Abstract

The buffer pool in a DBMS is used to cache the disk
pages of the database. Because typical database workloads
are I/O-bound, the effectiveness of the buffer pool manage-
ment algorithm is a crucial factor in the performance of
the DBMS. In IBM’s DB2 buffer pool, the page cleaning
algorithm is used to write changed pages to disks before
they are selected for replacement. We conducted a detailed
study of page cleaning in DB2 version 7.1.0 for Windows
by both trace-driven simulation and measurements. Our re-
sults show that system throughput can be increased by 19%
when the page cleaning algorithm is carefully tuned. In
practice, however, the manual tuning of this algorithm is
difficult. A self-tuning algorithm for page cleaning is pro-
posed in this paper to automate this tuning task. Simulation
results show that the self-tuning algorithm can achieve per-
formance comparable to the best manually tuned system.

Keywords: DBMS, DB2, Buffer Pool Management,
Page Cleaning, Self-tuning Algorithms

1 Introduction

In a Database Management System (DBMS), a buffer
pool is used to cache the disk pages of the database. Be-
cause the speed gap between disk and memory is large, the
effectiveness of the buffer pool management algorithm is
very important to the performance of the DBMS. Tuning
such an algorithm is a complex task because of the number
of parameters involved and the complexity of their inter-
actions. It requires a detailed understanding of the nature
of activities that compete for the resources being managed,
including storage space and the I/O channel. Because of
the complexity of a commercial DBMS, however, it is often

�This research was supported by IBM’s Centre for Advanced Stud-
ies (CAS) and the Natural Sciences and Engineering Research Council of
Canada (NSERC).

difficult to analyze the buffer pool algorithm, or to imple-
ment a new one and test it directly. Simulation provides an
effective alternative. For our research, a blend of direct ex-
perimentation and trace-driven simulation is being used in
a detailed study of buffer pool management in the IBM R�

Corporation’s popular DBMS, DB2 R� (specifically, version
7.1.0 for Windows R�).

The On-Line Transaction Processing (OLTP) workload
is an important type of workload for a DBMS. Because typ-
ical queries used in OLTP workloads are very simple, query
optimization does not play a significant role in performance,
but the management of buffer pool is crucial because of the
randomness of the disk I/Os. Therefore, the OLTP workload
is an ideal workload to study buffer pool management. The
TPC benchmarkTM C [7] provides a workload representing
an OLTP environment, and is used as the workload in our
study. To provide a realistic reproducible workload for the
simulation experiments, a trace of the buffer pool requests
when running the TPC-CTM benchmark was captured.

OLTP workloads are normally I/O-bound. There are four
types of I/O requests in the DB2 buffer pool: prefetched
reads, normal reads, synchronous writes, and asynchronous
writes. Since there is almost no sequential access of data in
the workload studied, prefetching is not used in this work-
load, thus prefetched reads are not discussed in this paper.
Whenever a page is read into the buffer pool, a physical
disk read occurs. If the buffer pool is full, a page needs
to be selected for replacement before a new page can be
read into the buffer pool. If the page selected for replace-
ment has been modified (called a dirty page), it must be
written to disk before the new page is read in. This is a syn-
chronous write. At the same time, one or more “page clean-
ers” (threads or processes) are at work in the buffer pool.
These page cleaners collect changed pages and write them
to the disks before they are selected for replacement. These
write operations are asynchronous since they aren’t initiated
directly as a result of read operations. The asynchronous
writes which are caused by the page cleaning activities can
be managed by changing the number of page cleaners. This

1

is the focus of this paper.
Several events can trigger the page cleaners to start

cleaning. Dirty replacement (when a dirty page is selected
for replacement) is one of these events. Since dirty replace-
ments happen frequently in the workload we use in this pa-
per when the system is untuned, other events that might trig-
ger page cleaning are not considered.

The page cleaning speed can affect system throughput
significantly. The page cleaning speed can be controlled by
the number of page cleaners, and the number of page clean-
ers can be set by the database administrator before the users
connect to the database server. Simulation results presented
later in the paper show that tuning the number of page clean-
ers to an “optimal” value can improve system throughput by
as much as 19%, but manually tuning this parameter is dif-
ficult for the following reasons:

� A workload of sufficient length must be available to
determine how system performs under a particular set-
ting.

� Each performance “experiment” must run long enough
to skip the buffer pool warmup period and to eliminate
statistical fluctuations resulting from short-term tran-
sient effects.

� The database must contain enough data to provide a
realistic operating environment.

� When the system configuration or workload changes
(e.g., more disks or memory are used, the database be-
comes larger, or more users are using the system), the
tuning must be performed again.

For the research reported in this paper, a detailed study
was conducted of the I/O activities of the buffer pool and of
the effect on performance of the number of page cleaners.
From the insights gained, a self-tuning algorithm for page
cleaning is developed to automate the tuning task by peri-
odically adjusting the page cleaning speed. Simulation re-
sults show that, on average, the throughput of the self-tuned
system is close to the best manually tuned system, and that
with larger buffer pools or more disks, the self-tuning al-
gorithm performs even closer to the best manually tuned
system. Furthermore, the performance of the self-tuning al-
gorithm is not sensitive to the particular parameter values
used.

This paper is organized as follows: Section 2 gives a
brief review of some previous work related to database
buffer pool management and self-tuning algorithms; Sec-
tion 3 describes the page cleaning algorithm used in DB2;
Section 4 presents the results of the experiments conducted
to study the relationships among buffer pool I/O activities
and the effect of the number of page cleaners on system per-
formance; Section 5 discusses the self-tuning algorithm for
page cleaning; Section 6 presents the simulation results of

the self-tuning algorithm; and Section 7 gives conclusions
and future work.

2 Related work

A buffer pool is used in a DBMS to reduce disk I/Os
and effective management of the buffer pool is an important
performance factor. Various buffer pool management algo-
rithms, including LRU, FIFO, CLOCK, LRD, DGCLOCK,
and Working Set, are analyzed in [4]. In addition to simple
replacement algorithms such as these, there are many more
sophisticated algorithms that utilize information of various
sorts in making their replacement decisions. For example,
algorithms such as ILRU [5], OLRU [5], HOTSET [6], and
DBMIN [2] are designed to respond to the reference be-
haviour of database indexes and queries.

Because of the complexity of real database systems, the
effective configuration and tuning of any management al-
gorithm is a significant challenge for the DBA. To ease the
task, some goal-oriented tuning algorithms have been pro-
posed. An approach that dynamically adjusts the buffer pool
sizes of a DBMS based on response time goals is presented
in [3]. A goal-oriented tuning architecture to convert the
low level control knobs (buffer pool size, working buffer
size, etc.) to high level transaction response time goals
is proposed in [1]. These goal-oriented tuning algorithms
are feedback algorithms. Response time goals of different
transaction classes must be specified by the database ad-
ministrator (DBA) before the application starts. These al-
gorithms collect system states periodically and adjust the
buffer pool allocated for each transaction class to meet the
response time goals. The self-tuning algorithm proposed in
this paper is also a feedback algorithm. It does not need a
goal from the DBA, however, since its goal is to maximize
system throughput.

3 The DB2 page cleaning algorithm

The buffer pool is a buffer which caches disk pages for
the DBMS. Figure 1 shows the structure of the buffer pool.
Since many users can use DB2 simultaneously, there is one
database agent (a thread or a process) corresponding to each
current user. Each agent processes that user’s queries and
requests database pages from the buffer pool.

Unlike virtual memory management, there is no hard-
ware support in the buffer pool to access a page that is not
in memory. Therefore, a fix/unfix mechanism [4] is used.
Agents send fix requests to the buffer pool while processing
queries. If the page is already in the buffer pool, no physi-
cal I/O is needed; otherwise, the page is read into the buffer
pool from the disk. DB2 can access this page freely from
the buffer pool since it cannot be evicted from memory after

2

Cleaner
Page

Cleaner
Page

Agent

fix/unfix

Agent

fix/unfix

Agent

fix/unfix

Async Writes Sync WritesReads

I/O Controller

B
uf

fe
r

Po
ol

Page

Disk Disk

Cleaner

Disk Disk Disk Disk

Dirty
PagesClean Pages

Figure 1. The structure of the buffer pool

the fix. When DB2 finishes using this page, an unfix request
is sent to the buffer pool. After the unfix, this page is al-
lowed to be replaced as long as there are no other fixes still
outstanding.

A common performance metric for a buffer pool man-
agement algorithm is the read miss ratio, but this considers
only the cost of physical reads. Although this may be suffi-
cient for virtual memory management in operating systems,
it might be less useful in a DBMS running OLTP work-
loads where many physical writes take place. In such an
environment, ignoring write cost may lead to improper de-
sign of the buffer pool replacement algorithm. To overcome
this problem, both the read cost and the write cost should
be considered. Since this kind of system is normally I/O
bound, the system throughput is inversely proportional to
the total I/O time, which is equal to the sum of read time
and write time. Because of the randomness of the disk I/O
in the OLTP workload, the disk level caching and prefetch-
ing do not have large effect on the I/O time. Moreover, there
is no extra write overhead due to the RAID-0 disk organi-
zation used in the disk system. Therefore, the read cost and
write cost are considered the same in the system studied in
this paper. Thus, the lower the sum of the reads and writes,
the higher the system throughput.

When the buffer pool is full, a page must be selected
for replacement when a new page needs to be read into the
buffer pool. When a page is selected, its status is checked.
If it is clean, the space it occupies can be used immediately,
but if it is dirty, a synchronous write must take place before
the user agent can fetch the new page.

In addition to synchronous writes, DB2 also uses page
cleaners to perform asynchronous writes. Each page cleaner
manages a subset of dirty pages as shown in Figure 1. All
page cleaners are asleep initially. When a page cleaner
wakes up, it collects dirty pages and writes them to the disk.
During the cleaning, the user agents can continue to request

buffer pool pages from the buffer pool since the writes gen-
erated by page cleaners are performed asynchronously.

DB2’s page cleaners wake up if a synchronous write oc-
curs, if the proportion of dirty pages exceeds a threshold
value, or if the proportion of changes recorded in the log
file exceeds a threshold value. Since synchronous writes
are very frequent occurrences with the workload we used in
this paper when the system is untuned, the page cleaners are
always awake, and so other triggering mechanisms are not
studied.

4 Experiments with the page cleaning
algorithm

4.1 Methodology

Both simulation and measurements are used to study the
performance of the page cleaning algorithm in DB2 version
7.1.0 for Windows, and the factors that affect it. A trace-
driven buffer pool simulator was developed and validated
[8], and traces of buffer pool activities were collected to
provide realistic input. The simulator is being used to study
the performance of the page cleaning algorithm and various
activities of the buffer pool and the I/O system. The perfor-
mance of the new self-tuning page cleaning algorithm was
studied in the simulator as well.

The TPC-C benchmark is used to provide the workload
to the simulator and to provide the system against which
simulation results are compared. The TPC-C Benchmark
is an OLTP workload made up of five different transac-
tions. System throughput is measured by the number of
New-Order transactions the system is able to process each
minute. The size of the TPC-C database is given by the
number of “warehouses” defined (each warehouse holds
about 100MB of data). Since this study focuses on the
server workload, remote terminal emulators are not used to
generate the TPC-C transactions. All transactions are gener-
ated on the DBMS server with no think time between trans-
actions. Because the TPC-C benchmark prohibits the public
disclosure of TPC-C performance results that have not been
audited by independent auditing agencies, the absolute val-
ues of any simulation or experimental results are withheld,
and only normalized values are presented in this paper. This
does not compromise the performance comparisons.

The trace of the buffer pool activities needed for the
simulator was collected from transactions against a TPC-
C database with 50 warehouses spanning 11 physical disks.
The benchmark was run on a PC Server running Windows
NT R� Server 4.0 in the Distributed Systems Performance
Laboratory at the University of Saskatchewan. During trace
recording, all fix/unfix requests to the buffer pool through
the trace point are recorded by the trace tool in a mem-
ory buffer and stored periodically for subsequent process-

3

ing. This technique (described in [8]) enables us to obtain
arbitrarily large traces for our experiments.

4.2 I/O activities in the buffer pool

Some general observations about the buffer pool man-
agement and its I/O behaviours are presented in this subsec-
tion in order to understand the impact of the page cleaning
algorithm on performance.

In the experiments described, an untuned configuration
of DB2 was used, with 2 page cleaners. Figure 2 shows
the system throughput under this configuration measured in
both the simulator and DB2. The y-axis is the TPM which is
normalized relative to the average TPM of the measurement
results when the system enters the stable state. The x-axis
is the running time which is normalized relative to the total
running time of the measurement experiment. This figure
shows that the simulation results are quite close to those
obtained from measurement. The throughput spike shown
in the figure occurs only in the system warmup phase when
the page cleaners just start cleaning.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Normalized Time

DB2 measurement results
Simulation results

Figure 2. Simulation vs. measurement

We carried out a series of experiments to determine how
various factors of the buffer pool contribute to performance.
In our initial experiments, we found that 90% of the pages in
the buffer pool are dirty, which seems high. This motivated
more experiments on the distribution of pages in the buffer
pool. Figure 3 shows the evolution of pages in the buffer
pool over the first 30% time of the simulation. Also shown
on this graph is the throughput, scaled so that its shape can
be compared with the other curves plotted. The number
of pages is normalized relative to the buffer pool size. At
the beginning, all pages in the buffer pool are free pages.
Both the number of dirty pages and the number of clean
pages increase as time goes on. After the buffer pool is
full, the number of dirty pages continues to increase, but

the number of clean pages drops. At the same time, the
throughput drops as well under this untuned configuration.
Finally, when 90% of the buffer pool pages are dirty, the
system enters a steady state. The number of clean pages at
this point is much lower than it is when the buffer pool is
just full, implying that there are too many dirty pages in the
buffer pool in the steady state. To investigate the reason for
this, the I/O activities of the buffer pool were examined in
more detail. The results are shown in Figure 4.

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3

P
ro

po
rt

io
n

of
 p

ag
es

Normalized Time

Dirty pages
Scaled throughput

Clean pages
Free pages

Figure 3. Pages in the buffer pool in the un-
tuned configuration (2 page cleaners)

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3

P
ro

po
rt

io
n

Normalized Time

Proportion of dirty pages

Proportion of reads

Proportion of sync writes

Proportion of async writes

Figure 4. I/O activities of the buffer pool in the
untuned configuration (2 page cleaners)

When the buffer pool is almost full, the page cleaners
are triggered by one of the related events. They begin to
clean out dirty pages by asynchronous writes. However,
asynchronous writes cannot clean out pages fast enough in
this untuned configuration, so dirty pages must be selected

4

for replacement. This means that synchronous writes oc-
cur. The synchronous writes not only delay the reads di-
rectly (since a read cannot proceed before the synchronous
write finishes), but also compete with other activities for
I/O bandwidth. Therefore, the read speed is slowed by
the need to write in order to create space for the incoming
pages. When the read speed becomes slower, the through-
put drops, and dirty pages are generated more slowly (i.e.,
fewer pages in the buffer pool are changed per unit time).
When the number of dirty pages generated by the TPC-C
requests equals the number of dirty pages cleaned by writes
in the same time interval, the system enters a steady state.

As shown in Figure 4, the proportion of synchronous
writes is high (close to 40% of all I/O activity), which im-
plies that the page cleaning speed is too low. The number
of asynchronous writes should be increased in order to de-
crease the number of synchronous writes. To do this, the
aggregate page cleaning speed must be increased. The ag-
gregate page cleaning speed can be increased by using more
page cleaners.

4.3 The impact of more page cleaners

The number of page cleaners in the untuned configura-
tion is 2. Figure 5 shows that throughput improves when
more than 2 page cleaners are used - in this case 44 page
cleaners. The run time on the x-axis and the throughput on
the y-axis are normalized relative to the run time and aver-
age throughput with 2 page cleaners. Figure 6 shows the
I/O activities and the proportion of dirty pages with 44 page
cleaners: there are very few synchronous writes left and the
proportion of dirty pages drops significantly.

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Normalized Time

44 page cleaners
2 page cleaners

Figure 5. Effect of number of page cleaners

Figure 7 shows the effect of varying the number of page
cleaners from 1 to 100. Figure 7(a) shows the effect of the
number of page cleaners on throughput. All throughput val-
ues are normalized relative to the throughput under the un-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

P
ro

po
rt

io
n

Normalized Time

Proportion of dirty pages

Proportion of reads

Proportion of async writes

Proportion of sync writes

Figure 6. I/O activities with 44 page cleaners

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 0 10 20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of Page Cleaners

Measurement results
Simulation results

(a) Effect on throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

Number of Page Cleaners

Normalized disk I/O

Dirty page proportion

Normalized disk reads

Normalized disk writes

Proportion of sync writes

(b) Effect on dirty pages, synchronous writes, and disk I/Os

Figure 7. Effect of multiple page cleaners

tuned configuration. The simulation results match the mea-
surement results quite closely. When the number of page

5

cleaners is an integral multiple of the number of physical
disks, which is 11 in this case, better load balance across
disks can be achieved. Therefore, the performance spikes
occur on these specific points.

When the number of page cleaners is less than 44, the
throughput generally increases with more page cleaners.
After that point, however, putting more page cleaners to
work is unable to improve performance any further. More
is not always better. The selection of the appropriate num-
ber of page cleaners is clearly important in tuning such a
system.

Figure 7(b) shows the effect of the number of page clean-
ers on dirty pages, synchronous writes, and disk reads, disk
writes, and total I/Os. The number of disk reads, disk
writes, and total I/Os are normalized relative to the disk
I/Os under the untuned configuration. When the number
of page cleaners increases, the number of read misses drops
and the number of write misses increases. The number of
disk I/Os first decreases then increases. Increasing the num-
ber of page cleaners reduces both the proportion of dirty
pages and the proportion of synchronous writes. Further in-
creasing the number of page cleaners after the proportion of
synchronous writes is close to 0 brings no additional bene-
fits: the number of read misses becomes almost flat; the de-
crease of dirty pages slows down; the number of disk I/Os
starts to increase; and throughput drops. Figure 7(b) shows
a criterion for tuning the page cleaning activity: the num-
ber of page cleaners should be tuned to the minimum num-
ber so that the synchronous writes are just eliminated. A
self-tuning algorithm for changing the page cleaning speed
based on this principle is described in the next section.

These simulation experiments were performed on sys-
tems with different numbers of disks and different buffer
pool sizes, and the effect of the number of page cleaners on
throughput was very similar to Figure 7(a), although the lo-
cations of spikes was different because there was a different
number of disks. The optimal number of page cleaners for
each system configuration is shown in Table 1. The optimal
number of page cleaners is always an integral multiple of
the number of physical disks, but the optimal value is dif-
ferent under different configurations, which increases the
difficulty of the tuning of the number of page cleaners.

Table 1. Optimal number of page cleaners

Number of Disks 7 8 11 15
Buffer Pool=380MB 49 48 44 45
Buffer Pool=440MB 49 56 44 45

5 A self-tuning algorithm for page cleaning

The number of page cleaners that maximizes system per-
formance is different for different workloads or different
configurations. Tuning this parameter manually is difficult
and time-consuming. A self-tuning page cleaning algorithm
was designed to overcome this problem, the objective of
which is to maximize throughput by dynamically changing
the page cleaning speed.

The number of page cleaners is fixed in the self-tuning
algorithm to keep the algorithm simple. In the page clean-
ing algorithm used in DB2 7.1.0 for Windows, each page
cleaner collects many pages and sends out one page at a
time for cleaning. One more page is sent out after the pre-
vious write is done.

In order to change the page cleaning speed without
changing the number of page cleaners in the self-tuning al-
gorithm, each page cleaner keeps more than one outstand-
ing asynchronous write. A parameter � is introduced for
this purpose – a real number whose integral part ��� indi-
cates the number of outstanding asynchronous writes kept
by each page cleaner. The page cleaner compares the num-
ber of outstanding asynchronous writes with ��� whenever
an asynchronous write sent by this page cleaner finishes.
If there are more than ��� asynchronous writes outstand-
ing, the page cleaner stops sending new writes to disk; oth-
erwise, more writes are sent to disks until the number of
outstanding asynchronous writes sent by this cleaner equals
���. � thus has the same effect as the number of page
cleaners in the current algorithm: the bigger the � value,
the faster the page cleaning speed.

The initial value of � is its minimum value 1. � is
adjusted periodically in order to dynamically tune the page
cleaning speed to its optimal value. An adjustment interval
is defined for this purpose. Some statistics of the buffer pool
and the disk activities are collected during each adjustment
interval. � is adjusted at the end of each adjustment interval
based on the data collected.

An adjustment goal must be defined so that � can be
adjusted to make the system achieve the goal. The results
presented in Section 4.3 show that the page cleaning speed
should be increased to the point where the number of syn-
chronous writes just reaches 0. It is easy to determine the
number of synchronous writes that occurred in any adjust-
ment interval, but it is hard to tell whether the page clean-
ing speed is too high or not if the observed number of syn-
chronous writes is 0. As Figure 7(b) shows, the number of
synchronous writes is 0 when the number of page cleaners
is more than necessary. Therefore, adjusting the number of
synchronous writes to 0 is not a goal that is easy to reach
in the self-tuning algorithm, although this is possible with
manual tuning. Instead, the self-tuning algorithm seeks to
keep the proportion of synchronous writes small (say, 5%).

6

The following notation is used in describing the adjust-
ment operation performed in every adjustment interval:

� ��: proportion of synchronous writes observed in an
adjustment interval.

� ��: the desired proportion of synchronous writes.
� �: the scale parameter.

At the end of each adjustment interval, the following ad-
justment is performed:

� � ������ � �� � ��� � ��		 (1)

During each adjustment interval, a count is maintained of
synchronous writes and total disk I/Os. The ratio is the ob-
served proportion of synchronous writes, ��. At the end of
every adjustment interval, �� is compared with the desired
proportion of synchronous writes��. The greater the differ-
ence between �� and ��, the more� needs to be changed.
The change to � should be proportional to ��� � ���. The
value of � � ������	 in Equation 1 shows the amount that
� needs to be changed. The scale parameter � is used to
amplify the difference between�� and��. If�� equals��,
the current page cleaning speed is the desired value and �
can remain unchanged. If �� � ��, the proportion of syn-
chronous writes is more than desired. Thus � needs to be
increased to clean pages faster. If �� � ��, the proportion
of synchronous writes is less than desired, which indicates
that the page cleaning speed is too high. Thus��������		
is negative and its absolute value indicates the amount that
� should be decreased. Since the minimum value of � is
1, the use of the ��� function guarantees that � � � after
the adjustment.

6 Simulation results

The results of the simulation experiments with the self-
tuning algorithm are presented in this section. This algo-
rithm uses three parameters Adjustment Interval,�, and��.
The values listed in Table 2 were used to generate the sim-
ulation results presented in this section.

Table 2. The parameter values

Parameter Value
Interval 1 second
�� 5%
� 7.5

Figure 8 shows the throughput of the system under the
untuned configuration (2 page cleaners), the best manu-
ally tuned configuration (44 page cleaners), and the self-
tuning algorithm. The performance of the self-tuning al-

gorithm is close to that of the best manually tuned sys-
tem. The throughput of the best manually tuned system is
19.2% higher than that of the untuned configuration, and
the throughput of the self-tuning algorithm is 16.3% higher.
This result shows that the self-tuning algorithm performs
comparably to the best manually tuned system.

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Normalized Time

Manually tuned
Self-tuned

Untuned configuration

Figure 8. Throughput comparison

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
ro

po
rt

io
n

Normalized Time

Proportion of dirty pages

Proportion of reads

Proportion of async writes

Proportion of sync writes

Figure 9. I/O activities with the self-tuning al-
gorithm

Figure 9 shows the system I/O activities when running
the self-tuning algorithm. The proportion of synchronous
writes is kept very close to 5% which is the same as the
value of ��. Because of the higher page cleaning speed, the
proportion of dirty pages is lower than that of the untuned
configuration, indicating that the self-tuning algorithm can
effectively control the proportion of synchronous writes.
Figure 10 shows how the parameter � is adjusted in a ten-
minute interval. The value of � fluctuates in a small range
(between 3 and 5), because the characteristics of this work-

7

load do not change.

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 100 200 300 400 500 600

P
ag

e
C

le
an

in
g

S
pe

ed

Time (second)

Figure 10. How page cleaning speed is ad-
justed

This self-tuning algorithm was also tested in several
other system configurations (different numbers of physical
disks and different buffer pool sizes). The results are sum-
marized in Figure 11. All throughput values are normal-
ized relative to the throughput under the untuned configura-
tion (2 page cleaners). The results show that the self-tuning
algorithm performs close to the best manually tuned algo-
rithm.

In order for this algorithm to be robust, the performance
must not be unduly sensitive to the selection of values for
the three parameters (Adjustment Interval, ��, and �).
More simulation experiments were performed to determine
the sensitivity of the results to the values of these parame-
ters. All throughput values in the following figures are nor-
malized relative to the average throughput under the param-
eter values shown in Table 2.

Figure 12 shows the impact of the adjustment interval on
performance. Even though the adjustment interval is var-
ied from 0.1 sec to 20 secs (two orders of magnitude), the
system throughput changes by less than 1%. Further exper-
iments showed that as long as the adjustment interval is at
least several times longer than the average disk access time
(about 10ms for typical hard drives), there is no significant
difference in performance. A small interval can respond
promptly to a workload change, while a large interval can
reduce system overhead. Since the workload of TPC-C does
not change in the simulation experiments performed, the ad-
justment interval is not important to throughput. Figure 13
shows that when the desired synchronous write proportion
�� changes from 0.2% to 10%, the throughput also varies
by less than 1%. This indicates that as long as �� is a small
value, performance does not change significantly. Figure 14
shows the impact of the scale parameter� under two differ-

Self−tuned

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

7 8 11 15

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of Disks

Manually tuned

 1

(a) Buffer pool size = 380MB

Self−tuned

 1.05

 1.1

 1.15

 1.2

 1.25

7 8 11 15

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of Disks

Manually tuned

 1

(b) Buffer pool size = 440MB

Figure 11. Comparison of self-tuned and man-
ually tuned algorithms

 0.96

 0.98

 1

 1.02

 1.04

 0 2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Adjustment Interval (seconds)

Figure 12. Impact of the adjustment interval

ent adjustment intervals. Again the performance difference
is within 1%. The results of these experiments indicate that
the self-tuning algorithm can be used for different systems
without changing the parameters.

8

 0.96

 0.98

 1

 1.02

 1.04

 0 0.02 0.04 0.06 0.08 0.1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

The Desired Proportion of Synchronous Writes

Figure 13. The effect of parameter ��

 0.96

 0.98

 1

 1.02

 1.04

 1 2 3 4 5 6 7 8 9 10

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

The Scale Parameter

Interval = 1 second
Interval = 10 seconds

Figure 14. Impact of the scale parameter �

7 Conclusions and future work

Buffer pool management is important to the performance
of any DBMS. Some elements of the buffer pool man-
agement algorithm of DB2 were analyzed by trace-driven
simulation, using traces captured from running the TPC-C
benchmark. Our analysis of the I/O activities of the buffer
pool tells us that properly tuning the number of page clean-
ers is important to performance. A self-tuning algorithm is
proposed to make this tuning easier. The algorithm is sim-
ple to implement and requires no special configuration. The
results of our simulation experiments show that the self-
tuning algorithm can achieve throughput comparable to that
of the best manually tuned algorithm.

Our current and future work includes implementing this
algorithm in DB2 and measuring its effectiveness in a larger
system, and testing the effectiveness of this approach for
real workloads with changing characteristics – first in our
simulator and then in real systems.

Acknowledgments

We are grateful to many people at the IBM Toronto Lab-
oratory who involved themselves in this work, answered
many technical questions, and gave helpful suggestions: in
particular, Berni Schiefer, Keri Romanufa, Aamer Sached-
ina, Steve Rees, Kelly Lyons, Yongli An, and John Li. Some
initial development on both the simulator and the tracing
tool was done at the University of Saskatchewan by Kevin
Froese. We thank our colleague Dwight Makaroff for read-
ing the paper and providing comments.

IBM and DB2 are registered trademarks of IBM Corporation in the
United States and/or other countries. Windows and Windows NT are reg-
istered trademarks of Microsoft Corporation in the United States and/or
other countries. TPC Benchmark and TPC-C are trademarks of the Trans-
action Processing Performance Council.

References

[1] K. P. Brown. Goal-oriented Memory Allocation in Database
Management Systems. PhD thesis, Computer Sciences Depart-
ment, University of Wisconsin, Madison, WI, 1995.

[2] H.-T. Chou and D. J. DeWitt. An evaluation of buffer man-
agement strategies for relational database systems. In Pro-
ceedings of the ��

�� International Conference on Very Large
Data Bases (VLDB’85), pages 174–188, Stockholm, Sweden,
August 1985.

[3] J.-Y. Chung, D. Ferguson, G. Wang, C. Nikolaou, and J. Teng.
Goal oriented dynamic buffer pool management for data base
systems. Technical Report TR94-0125, ICS/FORTH, Herak-
lion, Crete, Greece, October 1994.

[4] W. Effelsberg and T. Haerder. Principles of database buffer
management. ACM Transactions on Database Systems,
9(4):560–595, December 1984.

[5] G. M. Sacco. Index access with a finite buffer. In Pro-
ceedings of the ��

�� International Conference on Very Large
Data Bases (VLDB’87), pages 301–309, Brighton, England,
September 1987.

[6] G. M. Sacco and M. Schkolnick. Buffer management in re-
lational database systems. ACM Transactions on Database
Systems, 11(4):473–498, December 1986.

[7] TPC Benchmark�� C. http://www.tpc.org/tpcc/.
[8] W. Wang and R. Bunt. Simulating DB2 buffer pool man-

agement. In Proceedings of CASCON 2000, pages 88–97,
Toronto, Canada, November 2000.

9

