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ABSTRACT

As the computing capacity and network bandwidth at
clients increase rapidly, the bottleneck for distributing
continuous media streams is pushed upstream to the
network backbone and the media source server. Com-
pared with traditional text or image files, streaming
media files need very large storage space, large band-
width to be transferred, and a time-constrained service
to ensure the play back quality.

To reduce server workload and network band-
width consumed by media streams, continuous media
stream proxy was introduced. Different proxy caching
policies were also proposed to maximize the utiliza-
tion of the limited proxy space and the network band-
width saving. In this paper, using bandwidth saving
as a metric, we compare three media proxy caching
policies: Smallest Caching Utility (SCU), Least Fre-
quently Used (LFU), and Least Recently Used (LRU).
Our comparisons investigate the impact of proxy size,
time interval, and various workload characteristics on
these three policies. Our simulation results show that
time interval is a significant parameter for SCU, and
that the policies behave differently under various work-
load parameters (e.g. shape parameter a of Zipf-like
distribution popularity).
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1 Introduction

Continuous streaming media objects, particularly
video files, have become more and more popular on
the Internet. Unlike traditional text or image files,
media files are very large, ranging from hundreds of
megabytes to gigabytes. In addition, a time sensitive
service is required for streaming media objects to avoid
client jitter.

As the computing capacity of personal computer
and network bandwidth increase rapidly, the bot-
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tleneck for distributing continuous media streams is
pushed upstream towards the media source server [10].
Deploying a proxy to cache the popular objects in the
context of distributing continuous streaming media is
one technique to reduce network bandwidth consump-
tion and server workload. The logic for using a proxy is
that requests for objects that are cached at the proxy,
will not require resources at the server and the network
between the proxy and the server. Another advantage
of deploying proxy is to decrease the initial latency of
response.

Caching is only effective if locality of reference is
present in the client request patterns. A recent study
[5] has attempted to isolate two aspects of locality:
correlation and popularity. Correlation considers that
references to the same object occur close together in
time, while popularity merelet refers to the fact that
some objects have much more requests than others,
though they could be evenly spread out over the length
of the observation period. Our study chooses three
algorithms which take divergent views on which aspect
of locality is more significant. The Least Frequently
Used (LFU) approach considers popularity only, while
Smallest Caching Utility (SCU) and Least Recently
Used (LRU) make some attempt at considering both
aspects of locality. As the time interval considered by
SCU increases, it puts more weight on the popularity
component of locality. In this paper, we use bandwidth
saving as a metric to compare these continuous media
stream proxy caching policies under various workload
conditions.

Our comparison investigates the impact of proxy
size, time interval, and various workload character-
istics on these policies. Our simulation results show
that the time interval At is a significant parameter for
SCU. The performance difference among LFU, SCU,
and LRU decreases when the shape parameter a for
Zipf-like distribution increases. When the media traf-
fic is self-similar, the performance difference between
LFU and SCU is larger than other traffic modes. The
performance difference between LFU, SCU, and LRU



increases when the number of sessions goes up, and
also when the number of objects decreases.

The paper is organized as follows. Section 2
presents the related work to our research. Section 3
presents our simulation background and methodology.
Our simulation results are presented in Section 4; and
we give our conclusions in Section 5.

2 Related Work

Compared with the extensive study of the character-
istics of the requests to the traditional web objects,
there are just a few published papers that study the
characteristics of media workloads. Chesire et al. [4]
analyzed a client-based streaming media workload gen-
erated by a large educational organization. Based
on their trace-driven simulation, the authors argued
that network bandwidth saving can benefit from proxy
caching although less than a traditional web workload.
Almeida et al. [2] studied the log files of two media
servers at two major United States universities and
characterized the workloads in terms of session arrival
rate, session inter-arrival time distributions, and dis-
tribution of file access. Cherkasova et al. [3] analyzed
the log files of two enterprise media servers. They
found that most of the incomplete sessions were ac-
cessing the initial parts of media files; the distribution
of clients accesses to media files can be approximated
by Zipf-like distribution. They also proposed two new
metrics, new file impact and life span, to characterize
the dynamics and evolution of the workloads.

Various continuous streaming media proxy
caching policies have been proposed. Resource Based
Caching (RBC) [9] is a web proxy caching algorithm
that handles different data types, including continu-
ous and non-continuous objects. By characterizing
the resource requirement and caching gain of an ob-
ject, the RBC scheme dynamically selects the object
granularity to maximize the utilization of the limited
cache resource, either bandwidth or space, and re-
places the cached objects based on their updated cache
resource usage and caching gain. Almeida et al. [1]
proposed a hybrid caching strategy called LFU/IC (In-
terval Caching), for streaming media files. This strat-
egy deploys IC caching either in memory or on disk
and LFU for disk caching. Smallest Caching Utility
scheme presented by Lim et al. [7], replaces the last
segment of a cached media object with the smallest
caching utility, which is the ratio of caching bandwidth
benefit to caching space cost.

Our simulation comparison differs from the above
research in terms of the research scope that it focuses
on. In this paper, we investigate the impact of media
proxy cache size, compared with origin server, and var-
ious parameterized workloads on the continuous me-
dia proxy caching policies LFU, SCU, and LRU. To

our knowledge, there is no such detailed research work
reported, although this topic is a big concern in the
field of continuous stream media proxy [1] [6]. This
paper tries to explore and identify the possible work-
load parameters that have a significant impact on these
continuous stream media proxy caching schemes. As
well we use these significant parameters to compare
the performance of these schemes in terms of back-
bone network bandwidth saving.

3 Simulation Methodology

We use a synthetic workload for our experiments. This
is because we want to study the impact of various
workload parameters on the performance differences
among SCU, LRU, and LFU. A real trace or log file is
not generic because it is unable to provide a control-
lable, large range of workload characteristic parame-
ters.

Generator of Internet Streaming Media Objects
and workloads (GISMO) was proposed by S. Jin et al.
[6]. GISMO can generate continuous streaming media
workloads that are characterized to match properties
of real workloads in terms of object popularity, tem-
poral correlation of requests, seasonal access patterns,
user session durations, user interactivity, and VBR
long-range dependence and marginal distribution.

We use the output of GISMO [8] as the objects ,
stored at the origin media server and the workload re-
quests generated by clients behind the proxy. Our sim-
ulator, running as the proxy, responds to the clients’
requests by caching objects according to the replace-
ment policy. LFU, LRU, and SCU algorithms are
implemented in our simulator to decide which object
should be cached, and which object or segment should
be evicted if the cache is full and a new caching require-
ment arrives. The bytes corresponding to the portion
of the file cached are accumulated as bandwidth saving
if they are directly served from proxy. The percentage
of bandwidth saving is the ratio of bandwidth saving
to the initial bandwidth requirement without proxy.
The simulator outputs the percentages of backbone
network bandwidth saving for LFU, LRU, and SCU
under the current workload.

GISMO [8] reads in two parameters: the num-
ber of objects to create and the number of sessions
to create, and outputs the objects and access requests
to these objects. In GISMO, the skewed popularity of
streaming media objects is characterized by a Zipf-like
distribution. The parameter o determines the level of
popularity skewness for the objects. GISMO uses the
Pareto distribution to model correlated inter-arrival
time. The media object size is modeled by Lognor-
mal distribution. We use CBR objects to model our
continuous media objects, which are stored at the ori-
gin server side and will be partially or totally cached



at the proxy when clients request the objects. The
default system parameters are shown in Table 1.

Table 1: Workload Parameters

[ Characteristic | Distribution [ Default value |

Object popularity Zipf-like a=0.73
Temporal a=1.0
correlation Pareto k = 0.001
Partial access Pareto a=10
k = 0.001

. . pn =10

Object size Lognomal =05

The network architecture for our simulation in-
cludes single media server and single media proxy,
which located near the client population. The sim-
ulator is implemented in C.

3.1 Metrics

There are at least two possible measures of perfor-
mance that are of interest: latency and bandwidth us-
age. If only a prefix is delivered from the cache, while
the remainder is serviced directly from the server,
there is no startup latency introduced, though the
client needs additional buffer and bandwidth to be able
to receive the media object. If the remainder portion
of an object must be retrieved into the proxy cache, it
may be the case that the proxy does not have the band-
width to both receive from the server and stream to its
clients. We do not consider this aspect of performance.
We concentrate on the savings in bandwidth that re-
sult from caching entire video object, or at least some
prefix of the object. Bandwidth savings is defined as:

Requested bytes from cache/total request size.

For every set of the experimental results we used
in this paper, we ran the simulator based on 15 differ-
ent randomly generated workloads and used average
values. The different workloads generated very similar
results.

3.2 Caching Algorithms and Parame-
ter Settings

The LRU policy supposes that the most recent re-
quested object will be most likely accessed again in
the future. LRU will replace the object that has not
been requested for the longest time when a cache re-
placement is necessary.

The LFU scheme keeps records of the access fre-
quencies for every cached media object, and updates
the records when a new session arrives. An object with
the least access frequency will be kicked out when a
replacement is necessary.

To maximize the LRU and LFU cache utilization
in our simulation, when the size of target cached object
is larger than that of as needed, we evict part of the

target cached object, not the entire cached object with
the least access frequency.

The related parameters mentioned for SCU by
Lim et al. [7] are:

e s: segment size
e L;: length of stream 4, which is requested by client
e (;: the size of the cached part of stream 14

e P;: the total amount of data played back by
clients for stream i during the past recent time
interval At

e CU;(C;): caching utility of stream i for cached
data C}

For every cached media object, SCU keeps
records of C; and the start & end timestamps of every
live stream during the recent past time interval At for
C;- When a segment replacement is necessary, SCU
calculates the CU;:

k
E P;
i=1

CU; =

C (1)

where k is the number of total live streams for
cached object ¢ during time interval At, P;; is the
amount of data played back by client 5 for object 4
during time interval At for every cached media object.
The simplified abstract SCU algorithm is:

while (a client requests '"current" object)

{

using time interval delta_t, update P[i] for every cached object;

if (one segment s of current object requires cache space) {
if (free space is not enough) {
calculate CU[i] for every cached object;
victim = the object with the least CU of all updated CU[il;
if (victim object == the object that s belongs to)

/*the victim object has the same object id with current object*/

return;
if (CULvictim] (CLvictim] -s) > CU[current] (C[current] + s))

/*replacing s of victim object can’t get better caching utilityx/

return;
replace the last s of the victim object with the current s;
update C[current] and C[victim];
}
else allocate free space for this segment s;
}
}

While implementing SCU for our simulator, we
found that the authors of [7] omitted one significant
system parameter for SCU policy interval time At,
which could have a very close relationship with the
performance of SCU, since it determines the value of
P; for a cached object. The experimental results in
section 4 confirm our guess.

During our first stage of experiments, we set the
SCU parameter s=10M B to be the same as the origi-
nal setting presented by Lim et al. [7].



We deployed prefix caching to cache the initial
part of the object. We assume that all the media ob-
jects have the same encoding bit rate, and that the me-
dia objects are transferred to clients and played back at
a constant speed, proportional to the encoding speed
of media files.

For our simulation, we change various parameters
to examine their impact on the performance of LFU
and SCU, and on the performance difference between
them. We test the impact of one parameter while leav-
ing the other parameters unchanged. For our experi-
ments, we generated a workload with the duration of
one day.

4 Experimental Results

4.1 SCU Time Interval

First, to investigate the impact of time interval on
SCU performance saving, we use GISMO default pa-
rameters to generate 200 objects and 20,000 sessions
as the workload. The total size of these 200 objects,
the origin server size, is 210,016 megabytes, and the
initial total backbone network bandwidth cost for this
workload is 3,756,236 megabytes. For our later exper-
iments, we do not provide the information about origin
server size and initial bandwidth cost again, since we
use the ratio of size (proxy-_size/server_size) and the
ratio of bandwidth saving as our metric. The value of
popularity parameter o is 0.73, which is the default
value of a in GISMO [8] for testing the impact of time
interval.
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Figure 1: Impact of SCU Time Interval

Figure 1 shows the impact of the parameter time
interval on SCU performance. The z-axis is the ratio
of proxy size to origin server size, and the y-azis is the
percentage of SCU bandwidth saving.

Figure 1 presents the SCU performance for the
time interval, At, of 1 minute, 5 minutes, 10 minutes,
2 hours, and 5 hours. When proxy size is zero, there
is no bandwidth saving for SCU proxy scheme, since

SCU cannot cache any objects. The bandwidth saving
percentage can reach 94% when the proxy size is equal
to server size, which means SCU proxy scheme can be
very effective at reducing the backbone network me-
dia traffic if the proxy size is large enough. It cannot
reach 100% because the first request for every object
cannot be served by the proxy that is initially empty.
Figure 1 shows that the SCU performance increases
gradually when the time interval becomes longer until
an interval of 2 hours. This is because by increasing
P;, the longer time interval helps SCU to make a wiser
decision regarding segment replacement. For all the
comparisons in our simulation, we use the performance
of SCU with the optimal time interval, not a constant
value, to compare with that of LRU and LFU.

4.2 Pouplarity Parameter «

Our experiments show that the shape parameter a for
Zipf-like distribution (i.e., the popularity parameter),
is a quite influential parameter for the bandwidth sav-
ing ratio. Figure 2 shows the impact of popularity
parameter o, when a=0.5, 0.73, and 1.5. We chose
these values basing on the workload characterization
reported in literature. The parameter o ranges from
0.2 to 2.0, reported by Almeida et al. [2] [3]. The op-
timal time intervals of SCU policy for a=0.5, a=0.73,
a=1.5 are 5 hours, 2 hours, and 5 hours respectively.
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Figure 2: Impact of Popularity Parameter o, At=2h

The y-axis on Figure 1 shows the difference in
bandwidth savings as a ratio. The standard LRU
cache replacement algorithm is used as the denomi-
ator for this ratio. When the value is greater thatn
1, the comparative algorithm has a higher bandwidth
saving than LRU.

From Figure 2 we can see that when « is small,
LRU outperforms LFU for all cache sizes. As « in-
creases, the difference between LRU and LFU de-
creases to the point where there is no difference for
a=1.5. In general, SCU reduces the bandwidth more
for all values of «a, but the performance becomes the
same for large cache size and high value of a. As the



popularity is skewed, the influence of corelation de-
creases and LFU becomes a more useful algorthm to
consider. With small cache and low skew, LFU is a bad
choice. LFU benefits much from popularity skewness
since its replacement decision is just based on access
frequencies.

4.3 Diurnal Parameter

In our experiments, we adjusted GISMO to generate
three typical byte transfer modes to test the perfor-
mance difference of the caching algorithms. Figure 3
shows the impact of diurnal parameter.
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Figure 3: Impact of Diurnal Parameters

We use self-similar, peak@night, and peak@day
to model the typical media network traffic processes.
The optimal time intervals of SCU scheme for these
three modes self-similar, peak@night, and peak@day
are 5 hours, 5 hours, and 2 hours. Figure 3 shows
that SCU scheme gets a fairly good bandwidth saving
from self-similar traffic when the cache size is small.
This is because SCU can take good advantage of the
reasonable time period of traffic similarity to accu-
mulate the P;s for the cached objects to keep the
objects in cache for later similar accesses, not being
evicted. Our test experiments confirmed this — SCU
got the best performance when time interval At is 5
hours, which is a little longer than the time period
of minimal traffic self-similarity, about 4 hours. In
Figure 3 SCU gets a good performance for peak@day,
proxzy_size/server_size<0.15, since SCU can serve a
long time of peak traffic well based on its ability of
balancing cache space for all objects, which is the ad-
vantage of dividing P; by C; to calculate CU.

4.4 Session Number and Object Num-
ber

Figure 4 shows the impact of session number.
The optimal time intervals of SCU scheme for
session_number=10K and session_number=100K
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Figure 4: Impact of Session Number

are the same: 2 hours. Compared with the perfor-
mance of SCU with session_number=10K, SCU with
session_number=100K gets a higher performance.
More sessions means more traffic during time inter-
val At, and that SCU can get more bandwidth saving
information P; during time interval At. Again, LFU
performes worse than both SCU and LRU in all cases.

The impact of object number is shown in Fig-
ure 5. The optimal time intervals of SCU policy
for object_number=50, and object_number=100 are 2
hours, and 5 hours respectively. In Figure 5, the differ-
ence between SCU and LFU are greater with smaller
number of objects. Decreasing object number will re-
sult in more requests in a unit time period, while the
object popularity skewness does not change. Thus
SCU can get more past traffic information about the
cached objects in terms of bandwidth saving contribu-
tion, while LFU cannot benefit due to the unchanging
order of popularity.

In Figure 3, Figure 4, and Figure 5 we can
see that SCU/LFU fluctuates dramatically when
proxy_size/server_size is less than 0.15. We can not
explain this exactly. A possible reason is that the per-
formances of LFU and SCU are not stable and that
their performance change inversely the when the proxy
size is too small compared with the server size.
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4.5 Remaining Parameters

Due to some users partial access characteristic, i.e., be-
havior of just accessing initial part of media objects,
all the algorithms can cache the initial parts of all the
objects when proxy is big enough. At that time, the
algorithms get similar bandwidth saving. Figure 2,
Figure 3, Figure 4, and Figure 5 show that the perfor-
mance difference between SCU and LFU is small when
proxzy_size/server_size is greater than 0.5.

Our experiments also show that object size, par-
tial access characteristic, temporal correlation, and
segment size do not have an obvious impact on the
performance difference between LFU and SCU. The
experimental figures for the impact of these parame-
ters are not shown due to space limitation.

5 Conclusion and Future Work

Our work is to investigate the performance of three
continuous media proxy caching policies, SCU, LFU,
and LRU, in various workload scenarios. Our conclu-
sions include:

e Time interval At is a significant parameter for
SCU. SCU with a self-tuning mechanism to adjust
time interval At is a possible successor for current
SCU scheme.

e The performance difference among LFU, SCU,
and LRU is reduced when shape parameter « for
Zipf-like distribution increases.

e When the media traffic is self-similar, the perfor-
mance difference between LFU and SCU is larger
than other traffic modes.

e The performance difference between LFU and
SCU increases when the session number goes up,
while as the object number decreases, the per-
formance difference between LFU and SCU in-
creases.

Our future work is to extend our proxy to a broad net-
work environment, which includes server/proxy side
multicast, patching/merging techniques, VBR traffic,
and workload with more user interactivity.
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