Database Server Wor kload Char acterization in an E-commerce Environment*

Fujian Liu Yanping Zhao

Wenguang Wang

Dwight Makaroff

Department of Computer Science
University of Saskatchewan
57 Campus Drive
Saskatoon, SK, S7N 5A9, Canada
{ful113, zhao, wang, makaroff } @cs.usask.ca

Abstract

In an E-commerce system, the database server perfor-
mance is crucial. Dynamic cache is often used to reduce
the load on the database server, which reduces the need for
scalability. A good understanding of the workload charac-
teristics of the database server in an E-commerce environ-
ment is important to the design, tuning, and capacity plan-
ning of the database server. In this paper, we characterize
the database server workloads in a benchmark E-commerce
system. We focus on the response time, CPU utilization, the
database page reference characteristics, and disk 1/0s of
the database server. We found that using dynamic cache can
substantially reduce the CPU utilization but not always the
number of disk 1/Os of the database server. In most cases,
using dynamic cache reduces temporal locality in database
page references, but to a smaller degree than that reported
in file servers and web proxies. Interestingly, in certain E-
commerce workloads, using dynamic cache results in better
temporal locality.

1. Introduction

The use of the Internet to conduct E-commerce activ-
ities has shown a steady increase and is a major compo-
nent of the retail industry. A typical corporation-sized E-
commerce system is composed of many front-end servers
and a back-end database server. The front-end servers in-
clude web/application servers, image servers, and dynamic
cache servers. They interact with users through web in-
terface and execute business logic. The back-end database
server stores business information and processes queries.

+  Thisresearch is supported by NSERC and IBM Centres for Advanced
Studies.

In an E-commerce system, the front-end servers can be
replicated easily because they store read-only data (e.g., im-
ages, scripts, and static web pages). It is cost-effective to
use low-end commodity machines for this purpose. Alter-
natively, the database server stores frequently updated data.
It is difficult to replicate the database server while main-
taining data consistency efficiently. A single large database
server is often used in such systems. This database server
may easily become the performance bottleneck, since most
user requests invoke database queries. Also, the database
server is often the most expensive component in the sys-
tem. For example, in the xSeries 440 system [16], which
generates the highest TPC-W benchmark performance re-
sult, the price of the database server is about the same as
that of the sixty-two front-end servers. Therefore, improv-
ing the performance of the database server is crucial to im-
prove the overall performance of the system and to reduce
the cost.

Understanding the workload characteristics of the
database server is a prerequisite for studying its perfor-
mance. The DBMS is designed and tuned for traditional
database workloads, e.g., On-line Transaction Process-
ing (OLTP) and On-line Analytical Processing (OLAP).
E-commerce workloads may have different character-
istics. Moreover, dynamic cache is often employed to
reduce the load on the database server. Various dy-
namic cache technologies may be used in the system, and
new caching approaches may emerge in the future. The ex-
istence of dynamic cache may affect the workload charac-
teristics of the database server.

In this paper, we study the workload characteristics of
the database server in a large E-commerce system, and in-
vestigate the impact of dynamic cache on the workload
characteristics. The web server(s), the application server(s),
and the database server in the system that we emulated re-
side on separate machines. We focus on the response time,



CPU utilization, the database page reference characteristics,
and disk 1/Os of the database server.

We use the TPC-W benchmark [16] in this study.
We emulated three kinds of dynamic caches, query re-
sult cache, table cache, and a hybrid of both termed
as hybrid-cache. A query result cache stores query re-
sults and serves subsequent identical queries using these
results. A table cache server runs on a separate ma-
chine and replicates infrequently-updated tables. The
table cache server processes queries that involve the repli-
cated tables so as to reduce the load on the database server.
The hybrid-cache combines query result cache and ta-
ble cache to achieve better caching efficiency. We imple-
mented a light-weight trace tool in the DBMS and col-
lected traces of database page references to the buffer pool
(an in-memory buffer that caches database pages). We an-
alyzed trace characteristics, and evaluated various buffer
replacement algorithms using trace-driven simulations.

The main findings of this study are:

e Using dynamic cache can considerably reduce the
CPU utilization of the database server.

e Query result cache has little impact on the number of
disk 1/Os of the database server, while table cache and
hybrid-cache can significantly reduce the number of
disk 1/0s.

e Table cache and hybrid-cache can substantially reduce
the working set size of the database page references.

e In most cases, using dynamic cache reduces temporal
locality in database page references, but to a smaller
degree than that reported in file servers [17] and web
proxies [6]. In workloads with few cacheable queries,
however, using table cache increases temporal local-
ity.

e Various buffer replacement algorithms work well in
systems using dynamic cache. LFU performs better
than LRU in systems using dynamic cache. Advanced
replacement algorithms based on temporal locality,
such as LIRS and LRU-2, perform the best in both sys-
tems with and without dynamic cache.

Although we use a benchmark E-commerce sys-
tem rather than a real system, the analysis methodology
employed in this paper is general. We use the bench-
mark system because it is very hard to collect database
server traces in real E-commerce systems. The bench-
mark system provides a controlled environment to emulate
most key features that affect the E-commerce system per-
formance.

The remainder of this paper is organized as follows. We
first provide the background and then describe the method-
ology used. After that, we present the workload character-
istics at the database server and discuss the results. Finally
we conclude the paper and outline possible future research.

2. Background
2.1. The TPC-W benchmark

The TPC-W benchmark [16] is a widely used benchmark
for measuring the performance of E-commerce systems. It
simulates a breadth of activities of a business-oriented trans-
actional web server, specifically an on-line bookstore. The
store size is expressed by the number of items and the num-
ber of emulated browsers (EBs). The performance metric
reported by TPC-W is the number of web interactions pro-
cessed per second (WIPS).

TPC-W defines two classes of web interactions: browse
and order. The browse web interactions involve brows-
ing the web site and searching the database, e.g., querying
new products, best sellers, and product details. The order
web interactions update the database, e.g., loading shopping
carts, and registering customers. By varying the ratio of the
browse and order web interactions, TPC-W simulates three
kinds of workloads: shopping, browsing, and ordering. Ta-
ble 1 describes the distribution of interactions in the work-
loads.

Workload Browse Order
Type Interactions | Interactions
Browsing 95% 5%
Shopping 80% 20%
Ordering 50% 50%

Table 1. TPC-W workloads

2.2. Dynamic cache

Dynamic web pages are widely used in E-commerce
systems. Generating these pages often requires executing
queries at the database server. Thus, they cannot be cached
by static caches such as web proxies. Dynamic caches,
which reside on separate machines other than the database
server, can store this content. They can be roughly classi-
fied as query result cache and table cache.

Query result cache In a query result cache, the query re-
sults (or the web page segments generated from these re-
sults) are saved such that subsequent identical queries can
be served directly from the cache. Since the cached re-
sults may become out-of-date as the database changes, they
must be invalidated. A query result cache can be easily im-
plemented since it does not involve processing database
queries. Many web server products, such as WebLogic
Server JSP Cache [2], Oracle Web Cache [1], and CacheP-
ortal [4], have employed query result cache. One drawback



of query result cache is that it may contain duplicate data
(resulted from slightly different queries).

Table cache A table cache server is a partial replication
of the database server. It processes queries that access the
cached tables. If a query involves uncached tables, the table
cache server partitions the query into sub-queries such that
some of them can still be processed locally. The database
server periodically propagates relevant updates to the table
cache server. Infrequently changed tables are suitable can-
didates for caching, so that the update propagation cost does
not dwarf the benefit of caching. Since a table cache server
needs to process queries, it is more complicated to imple-
ment than a query result cache. The table cache server of-
ten has much less computational power than the database
server. When the database server is lightly loaded, using ta-
ble cache may result in worse performance than perform-
ing all queries on the database server [10]. Currently, only a
few systems use table cache, such as Oracle Internet Appli-
cation Server [15] and DBCache [10].

Form-based cache Form-based cache [11] has a simple
search engine that is optimized for top-n conjunctive key-
word queries. This approach avoids the complexity of a full-
blown query processing engine required by table cache and
has better efficiency than the query result cache.

3. Experimental methodology

The system used in this study (Figure 1) is composed of
emulated browsers (EBs), application logic, dynamic cache
emulator, and database server, based on the TPC-W imple-
mentation at the University of Wisconsin-Madison [3].

We made extensive performance optimizations on the
original implementation. We removed the web/appserver
layer to speed up the emulation process, but none of these
optimizations affect the databse workloads, only the time
required to generate a databse request. In all experiments
performed in this study, the EBs and the database server
runs on one machine. This setup removes the network la-
tency between EBs and the database server. It is also eas-
ier to automate the experiments since all components are
on one machine. Preliminary studies found that the CPU,
memory, and disks are not fully utilized in the experiments
conducted. Therefore, this experimental setup should not
change the performance of the database server.

3.1. Dynamic cache emulator

We implemented three kinds of dynamic caches: query-
result-cache, table-cache, and hybrid-cache. We emulated
caching functionalities rather than implementing them. We
carefully designed the emulators to make sure that the work-
loads to the database server using these emulators are the

Trace
Dynamic Point 1
Cache
Upper-Tlayer
IgBMSy
| Trace
Emulated Point 2
Database
Browsers Pool Sarver

\
@ Disks

Figure 1. E-commerce system structure

same as those using the corresponding real caches. The dy-
namic caches are emulated running on separate machines.

Query-result-cache In the query result cache, cacheable
queries are queries that search stable data, such as author
and title search, and queries that are allowed by the TPC-W
benchmark to be cached for a certain period of time, such
as best sellers search. LRU is used to manage the cache.
The cached results (except the author and title search re-
sults) are discarded after they stay in the cache for 30 sec-
onds, as specified in the TPC-W benchmark. In this study,
the size of the query cache is set to 20MB. Preliminary ex-
periments found that this size is sufficiently large; cached
data always becomes stale before the cache is filled.

Table-cache The table-cache maintains a copy for each
of the infrequently-updated tables, including country, item,
author, address, and customer. For a query that involves
data only from these tables, the cache returns a faked re-
sult rather than actually processing the query. According to
TPC-W benchmark, these returned results will be used only
by the product detail web interaction to generate subsequent
queries. Since all those queries involve only the cached ta-
bles, faking query results will not affect the workload to
the database server. If a query involves data from tables
stored only in the database server, the query is directed to
database server. If a query involves data from tables stored
both in cache and in the database server, it is partitioned into
sub-queries, such that the sub-queries that involve only the
cached tables can be processed locally by the cache. The
propagation of relevant changes from the database server to
the table-cache is not implemented. Since the cached tables
are updated infrequently, this simplification will not notice-
ably impact the performance of the database server.

Hybrid-cache The hybrid-cache works like a table-cache,
except that it also caches the query results of the best sell-
ers query. This query is cacheable as specified in the TPC-
W benchmark, but is not suitable to be cached by the table-
cache, since it involves searching frequently-updated tables.



The cached query results expire after 30 seconds, as re-
quired by the TPC-W benchmark.

3.2. Configurations and parameters

The machine we used for the experiments is an IBM eS-
erver xSeries 255. It has four Intel Xeon MP 1.5GHz pro-
cessors with hyper-threading, 8GB RAM, and 12 34.7GB
IBM U320 disks attached to two IBM ServeRAID-4Lx Ul-
tral60 SCSI controllers. All disks are 15,000RPM with an
average seek time of 3.6ms. The operating system is Win-
dows 2000 Advanced Server, and the DBMS is IBM DB2
8.1 for Windows. The TPC-W database is built with 10,000
items and 3,000 EBs. The size of the database is 17.6GB.
The page size used in the database is 4KB. The database is
placed on a 5-disk hardware RAID-0.

System load is controlled by the number of EBs, which
each have an exponentially distributed think time (7 sec-
onds) between consecutive requests, as specified by the
TPC-W benchmark.

3.3. Trace collection

We placed two trace points in the system, as shown
in Figure 1. At trace point 1, the response time of each
database query is recorded. These response times are then
used to compute the database server response time for each
web interaction. At trace point 2, a light-weight trace pack-
age [7] records database page references to the buffer pool.

4. Database server workload characteristics
4.1. General characteristics

Figure 2 presents the average database server response
time as a function of the number of EBs. In the figure, not
using any dynamic cache is labeled as no-cache. The re-
sponse time is computed by averaging the database server
response time for each web interaction. For the table-cache
and hybrid-cache, this response time plus the average time
required by the dynamic cache to process cached queries is
the response time experienced by users. Since table cache is
scalable, compared with the query processing time cost at
the database server, especially heavily loaded, we suppose
the query processing time cost at table cache server(s) can
be negligible. So, our emulation of returning faked query
results for table-cache and hybrid-cache in the experiments
does not jeopardize our conclusions.

For the browsing and the shopping workloads, the no-
cache system is under heavy load when the number of EBs
is greater than 1600, as indicated by the rapid increase in
response time. The corresponding number for the ordering
workload is 400.

Figure 2 shows that, in general, when the system is
heavily loaded, dynamic cache substantially reduces the
database server response time. Under light load, query-
cache has little benefit on reducing the database server re-
sponse time, because a cached query result often expires
before the identical subsequent query is received by the
cache. The figure also shows that using dynamic cache has
the largest benefit in the browsing workload and the small-
est benefit in the ordering workload. This is because most
queries in the browsing workload are cacheable, while the
opposite is true for the ordering workload.

Since we are interested in the performance of the sys-
tem when it is heavily loaded, we use workloads with 1,800
EBs in the following experiments. Figure 2 and other pre-
liminary experiments suggest that the characteristics of the
table-cache is very similar to that of the hybrid-cache. For
clarity, the results of the table-cache are not shown in the re-
mainder of this section.

Table 2 presents hit ratios of the query-result-cache
and database server response time under various time-out
threshold values. Using a longer time-out threshold al-
lows the query-result-cache to absorb more queries, thus
increasing hit ratios and reducing response times. These re-
sults suggest that when the database server is heavily
loaded, it may be beneficial for the system to temporar-
ily use a larger time-out threshold at the cost of more
obsolete results.

Timeout Response Cache Hit
(sec.) Time (sec.) | Ratio
5 6.72 15.2%
30 4.64 40.7%
60 2.74 49.1%

Table 2. Time-out Threshold (1,800 EBs)

Table 3 shows the reductions in CPU utilization of
DBMS when various dynamic caches are employed. The
use of dynamic cache considerably reduces the CPU utiliza-

Dynamic Cache | Browsing | Shopping | Ordering
Query-result 76.8% 20.1% 18.7%
Hybrid 89.6% 55.1% 33.9%

Table 3. DBMS CPU utilization reduction

tion, especially for the browsing workload, since it gener-
ates many cacheable queries. The hybrid-cache is more ef-
fective than the query-result-cache in reducing the CPU
utilization.



! 30

! 30

no-cache

no-cache

no-cache

ﬁ 25 query-result-cache - ﬁ 25 b query-result-cache - é 25 | query-result-cache =
ﬁ table-cache -~ ﬁ table-cache —e— ﬁ table-cache -—o—
3 20 hybrid-cache = 3 20+ hybrid-cache = B 20+ hybrid-cache =
[} [} [}
E 15t E 15t E 15t
= = =
8 10t 8 10t 8 10t
ios Pos Pos
o4 o4 £ 14
0 0 oo e - S et 0 Laa™
0 400 800 1200 1600 2000 0 400 800 1200 1600 2000 0 400 800 1200 1600 2000
Number of EBs Number of EBs Number of EBs
(a) Browsing (b) Shopping (c) Ordering

Figure 2. DB server response time (30 sec. time-out threshold)

4.2. Database page reference behaviours

In this section, we investigate database page references.
Table 4 summarizes the main characteristics of the traces
when using 1,800 EBs (the "Duration” is measured by min-
utes). Since page writes occupy only a small proportion of
the total references, we consider only page reads in the fol-
lowing analysis. Preliminary experiments found that this
omission does not noticeably influence the results.

Workload Param. No- Query- | Hybrid-
cache | result- | cache
cache
Duration 23.2 20.3 16.1
Browsing | # Requests | 12.4M | 1.6M | 0.76M
Read Prop. | 96.6% | 96.5% | 92.4%
Duration 24.3 22.0 20.3
Shopping | # Requests | 10.7M | 3.7M | 2.6M
Read Prop. | 96.6% | 96.3% | 95.4%
Duration 50.0 51.3 50.0
Ordering | #Requests | 9.7M | 7.8M | 6.1M
Read Prop. | 95.4% | 93.7% | 91.9%

Table 4. Buffer pool trace characteristics

Figure 3 shows the number of database page references
under the shopping workload when various dynamic caches
are used, normalized to that without using dynamic cache.
Using dynamic cache can considerably reduce the number
of database page references. The browsing and the ordering
workloads have similar trends and are not shown.

Figure 4 presents the number of distinct pages (i.e., the
working set size) referenced for the shopping workload.
The results for the browsing and ordering workloads exhibit
similar trends and are not shown. The figure shows that us-
ing query-result-cache does not reduce the working set size

1

8 query-result-cache 4
o 08 [, hybrid-cache —=
(9]
‘T 06 "
m ,
oo, e
g 02t L = ST - N - B
z

O L L L L

0 400 800 1200 1600 2000

Number of EBs

Figure 3. DB page references: shopping

80000

[
g 60000 |
I
g 40000 |
g2
= 20000 4 no-cache
g query-result-cache =

0 hybrid-cache e

0 400 800 1200 1600 2000

Number of EBs

Figure 4. Shopping working set size

of database page references, while using hybrid-cache can
substantially reduce the working set size. This is because
query-result-cache only reduces the frequency at which the
cacheable queries are sent to the DBMS, while hybrid-cache
reduces the number of distinct queries reaching the DBMS.

Temporal locality describes the likelihood of a page refer-
ence, given that it has been referenced recently. The buffer
pool miss ratio of LRU under different buffer pool sizes (cu-
mulative LRU stack depth [12]), can show the temporal lo-
cality. A lower miss ratio means better temporal locality in
the database page references.



3 ‘ 'no-cache’ 'no-cache’ 'no-cache’

12 query-result-cache - 12 + query-result-cache - 12 + query-result-cache -
S 10l.0 hybrid-cache s s 10! hybrid-cache -—= S 10!} hybrid-cache =
s 8l ° °
kol kol ol
o 6l . =@ 14 24
8 8 8
S 4 N = =

2t -

0 ! by

0 20000 40000 60000 80000 0 20000 40000 60000 80000 0 20000 40000 60000 80000

Buffer Pool Size (pages)

(a) Browsing

Buffer Pool Size (pages)

(b) Shopping

Buffer Pool Size (pages)

(c) Ordering

Figure 5. Buffer pool miss ratio

Figure 5 presents the buffer pool miss ratio when using
various dynamic caches, as a function of the buffer pool
size. The first half of each trace is used as the warm-up pe-
riod. In Figure 5(a) and 5(b), the buffer pool has the low-
est miss ratio when dynamic cache is not used. One may
be tempted to conclude that the database server has the best
performance when not using dynamic cache. However, as
shown in Figure 3, the database server without using dy-
namic cache generates 2-3 times more database page ref-
erences than that using dynamic cache. This larger number
of references offsets all the benefits of the lower miss ra-
tio in the buffer pool.

The browsing workload has the largest proportion of
cacheable queries, while the ordering workload has the
fewest proportion of cacheable queries. As shown in Fig-
ure 5 from left to right, in no-cache systems, the miss ra-
tio increases as the proportion of cacheable queries in the
workload decreases. This suggests that the buffer pool ref-
erences generated by the cacheable queries have very good
temporal locality. In other words, these queries mainly con-
sume CPU resources, but cause few disk 1/0s.

Since the query-result-cache filters out some of the
cacheable queries, it always causes higher miss ratios than
not using dynamic cache. Increased miss ratios are consis-
tent with previous findings of the cache filtering effect in
multi-layer file servers [17] and web proxies [6]. In Fig-
ure 5, the miss ratio gap between query-result-cache and
no-cache decreases from left to right, since fewer cacheable
queries are present in the workload.

In Figure 5, the miss ratio of database page references
with hybrid-cache decreases (i.e., the temporal locality in-
creases) from left to right, as the proportion of cacheable
queries in the workload decreases. In Figure 5(c), the tem-
poral locality with hybrid-cache is better than that with no-
cache. This is because the miss ratio is affected by two fac-
tors: the cache filtering effect and the working set size. The
hybrid-cache filters out cacheable queries, which decreases

the temporal locality of references (i.e., increases the miss
ratio). On the other hand, as shown in Figure 4, the hybrid-
cache has a smaller working set size than that of no-cache,
providing a lower miss ratio given the same buffer pool size.
In the browsing workload, since many queries are filtered by
the hybrid-cache, the cache filtering effect dominates, giv-
ing a higher miss ratio than that of no-cache. In the order-
ing workload, since there are very few cacheable queries,
the cache filtering effect almost vanishes. The smaller work-
ing set size of the hybrid-cache results in a lower miss ra-
tio than that of no cache. The miss ratio of the hybrid-cache
flattens out when the buffer pool size is larger than the work-
ing set size (about 40,000 pages as shown in Figure 4).

Two basic buffer page replacement algorithms are LFU
and LRU. LFU replaces the Least Frequently Used page;
LRU replaces the Least Recently Used page. ARC (Adap-
tive Replacement Cache)[13] automatically balances the re-
cency and frequency of the page references. CLOCK [5] is
an approximation to LRU, with the advantages of low over-
head and low lock contention. LRU-2 [14] and 2Q (Two
Queue) [9] both base buffer priority on sustained popularity
rather than on a single access, as LRU does, while 2Q has
lower overhead. LIRS (Low Inter-reference Recency Set)
[8] uses recency to evaluate inter-reference recency.

Figure 6 shows the buffer pool miss ratio with vari-
ous replacement algorithms. Note that ARC performs sim-
ilarly to LIRS with small buffer pools, and to LRU with
large buffer pools. The results for CLOCK, 2Q, and LRU-2
are not presented, since CLOCK always performs slightly
worse than LRU, 2Q performs similarly to ARC, and LRU-
2 performs slightly better than LIRS. Using dynamic cache
causes higher miss ratios (i.e., worse temporal locality) in
database page references, but to a smaller degree than that
reported in file servers [17] and web proxies [6]. Although
the frequency-based algorithm LFU has advantages over
LRU in systems using dynamic cache, LFU performs worse
than advanced recency-based algorithms, such as LIRS.



LFU ——

12 LRU -
—_ ARC =
g 10 LIRS &
o g Random --------
&
8 °
s 4

2 "“‘i;.;;;.

0 B '

0 20000 40000 60000 80000
Buffer Pool Size (pages)
(a) No-Cache

14 —

2y
$ 10t
o L
E 8

6 L
2
= 47

2 L

0

0 20000 40000 60000 80000
Buffer Pool Size (pages)

(b) Hybrid-Cache

Figure 6. Buffer pool miss ratio (with differ-
ent replacement algorithms)

Spatial locality describes how likely a page will be refer-
enced if a page with a close-by page number is referenced.
Good spatial locality in database page references implies
that the buffer pool can benefit from use of a large page
size and/or a prefetch policy. Spatial locality can be mea-
sured using run length [7]. A run length of n pages means
that these n pages are accessed sequentially or almost se-
quentially.

Figure 7 presents the cumulative distribution of database
page run lengths. For example, the point A in Figure 7(a)
indicates that 40% of the references occur in sequential runs
with fewer than 35 references.

Figure 7(a) shows that for no-cache running the brows-
ing workload, about 50% of the references belong to se-
quential runs with fewer than 70 references, implying weak
spatial locality. Figure 7(a) also shows that another 50%
of the references belong to a sequential run of 244 refer-
ences. A closer look at the trace found that this run is a
sequential scan of the author table. Since the queries that
invoke this sequential scan can be cached by the query-
result-cache, a smaller proportion (20%) of references are
involved in this run in the query-result-cache. This sequen-

tial run disappears in the run length distribution when using
the hybrid-cache, since the author table is cached by the ta-
ble cache server. From the left to the right of Figure 7, the
proportion of references belonging to this sequential run de-
creases as the proportion of cacheable queries in the work-
load decreases.

In Figure 7, most references occur in sequential runs of
small lengths, implying that prefetch may only have moder-
ate impact on the system performance.

4.3. Disk I/Os

Disk 1/0s are database page references that are not in
the buffer pool. The number of disk 1/Os is a crucial fac-
tor in performance of the database server, which is deter-
mined by many factors, including the number of database
page references, the working set size of the references, the
locality of the references, the replacement algorithm, and
the size of the buffer pool. These factors are studied using
the traces of database page references to the buffer pool.
Figure 8 presents the number of disk 1/Os with and with-
out using dynamic cache, for the shopping workload. The
results for the browsing and ordering workloads are simi-
lar and not shown. The query-result-cache generates sim-
ilar number of disk 1/Os to that in no-cache, unless the
buffer pool is too small (< 10, 000 pages). This implies that
the database page references reduced by use of the query-
result-cache are buffer pool hits in no-cache, and that the
cacheable queries have a relatively small working set com-
pared to the buffer pool size. If the working set of cacheable
queries cannot fit in the buffer pool, these queries will gen-
erate disk 1/0s in no-cache. In that case, using the query-
result-cache will reduce the number of disk 1/Os (as illus-
trated by the left-most point of the query-result-cache line
in the figure).

5. Discussions

Generally speaking, table cache does a better job in re-
ducing the load on the database server than query result
cache. However, a table cache server must have query pro-
cessing ability, which requires higher hardware and soft-
ware cost than a query result cache server. Moreover, us-
ing table cache results in longer response times than us-
ing query result cache, since the table cache needs to pro-
cess each query it receives. Employing query result cache
in front of table cache can accelerate query processing, but
will not change the load on the database server.

SMP (Symmetric Multi-Processor) is a commonly
used technique to scale a database server. All commer-
cial DBMSs run on large SMP servers. In a single SMP
server, the memory and disks are relatively easy to ex-
pand. Several hundreds of gigabytes of memory and sev-



1

1

0.8 0.8
w n 06¢ n 06¢
3 8 oul 5
0.4 04
02 no-cache 02! no-cache 02| no-cache
’ query-result-cache ’ query-result-cache ’ query-result-cache
o L hybrid-cache 0 hybrid-cache 0 hybrid-cache
03580 160 240 320 400 480 0 80 160 240 320 400 480 0 80 160 240 320 400 480
Pages Pages Pages
(a) Browsing (b) Shopping (c) Ordering

Figure 7. Run length of database page references

eral thousands of disks (through a dedicated storage
server) can be configured. On the other hand, the scal-
ing of processors is very difficult and costly. It is rare to
see a SMP having more than 64 processors. Since dy-
namic cache can effectively reduce the CPU load of the
database server, it can help a SMP database server sup-
port much higher load.

As E-commerce web sites provide better searching and
data mining services, the proportion of cacheable queries
may increase in future E-commerce workloads. Using dy-
namic caches may bring more benefits to such systems.

6. Conclusions and future work

The performance of the database server is crucial to an
E-commerce system. The workload seen by the database
server is dramatically changed by use of dynamic cache.
Understanding these changes is important to the design, tun-
ing and capacity planning of the database server.

We studied the workload characteristics of the database
server in a benchmark E-commerce system. Different kinds
of dynamic caches were used, including query result cache,
table cache, and hybrid-cache. We found that using dy-
namic cache can considerably reduce the response time of
the database server when it is heavily loaded. Table cache
does a better job than query result cache in reducing the
database server load. Using hybrid-cache only marginally
further reduces the load than using table cache.

By analyzing the traces of database page references, we
found that using dynamic cache can substantially reduce the
number of references. The references exhibit moderate spa-
tial locality, which can be further reduced by use of dynamic
cache. In most cases, the temporal locality exhibited in these
references becomes worse after using dynamic cache, but
to a smaller degree than that reported in file servers and
web proxies. Simple frequency-based algorithms have ad-
vantages over LRU in systems using dynamic cache. Ad-

vanced algorithms based on temporal locality, such as LIRS
and LRU-2, perform the best in both systems with and with-
out dynamic cache.

Interestingly, for workloads with few cacheable queries
(e.g., the TPC-W ordering workload), using table cache in-
creases temporal locality of database page references. This
result is contrary to that in file servers and web proxies.

Future possible research directions include collecting
and studying traces from real E-commerce systems and
comparing them with TPC-W. We would also like to com-
pare the database server workloads in E-commerce systems
with traditional database workloads, i.e., OLAP and OLTP.
Implementing a more realistic table cache model, which in-
volves query processing and update propagation, and inves-
tigating its performance impact is also part of future work.

250000

no-cache

@ query-result-cache -
Q 200000 | 4 hybrid-cache o
% a

a 150000

k]

5 100000

o)

5

2 50000

0

0 20000 40000 60000 80000
Buffer Pool Size (pages)

Figure 8. Number of disk 1/0s

Acknowledgments

We want to thank Miso Cilimdzic for porting the trace
tool to DB2 8.1, Said Elnaffar for providing the TPC-W im-
plementation and helping the configuration of the system.
We also wish to thank our system administrator Brian Gall-
away for his timely help, and Rick Bunt, Derek Eager, Wei-



dong Han, Yongli An, Jianwei Song, Greg Oster, and Qing
Wang for their helpful discussions and valuable comments.

References

[1]

(2]

(3]

[4]

[5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

J. Anton, L. Jacobs, X. Liu, J. Parker, Z. Zeng, and T. Zhong.
Web caching for database applications with Oracle web
cache. In Proc. of ACM SGMOD’ 02, pages 594-599, Madi-
son, WI, 2002.

BEA Systems, Inc. WebLogic server JSP cache.
http://e-docs. bea. coml W s/ docs60/ ] sp/

i ndex. ht m , 2004.

T. Bezenek, T. Cain, R. Dickson, T. Heil, M. Martin,
C. McCurdy, R. Rajwar, E. Weglarz, C. Zilles, and M. Li-
pasti. Characterizing a Java implementation of TPC-W. In
374 Workshop On Computer Architecture Evaluation Using
Commercial Workloads, Toulouse, France, 2000.

K. Candan, W. Li, Q. Luo, W. Hsiung, and D. Agrawal.
Enabling dynamic content caching for database-driven web
sites. In Proc. of ACM SSGMOD’ 01, pages 532-543, Santa
Barbara, CA, 2001.

F. J. Corbat6. A paging experiment with the multics sytem.
In In Honor of P. M. Morse, pages 217-228. MIT Press,
Cambridge, Mass, 1969.

R. Fonseca, V. Almeida, M. Crovella, and B. Abrahao. On
the intrinsic locality properties of web reference streams. In
Proc. of IEEE INFOCOM' 03, San Francisco, CA, 2003.

W. Hsu, A. Smith, and H. Young. 1/O reference behavior of
production database workloads and the TPC benchmarks —
an analysis at the logical level. ACM Trans. Database Sy<t.,
26(1):96-143, 2001.

S.Jiang and X. Zhang. LIRS: an efficient low inter-reference
recency set replacement policy to improve buffer cache per-
formance. In Proc. of ACM SSGMETRICS 02, pages 31-42,
Marina Del Rey, CA, 2002.

T. Johnson and D. Shasha. 2Q: A low overhead high perfor-
mance buffer management replacement algorithm. In Proc.
of VLDB' 94, pages 439-450, Santiago, Chile, 1994,

Q. Luo, S. Krishnamurthy, C. M. H. Pirahesh, H. Woo, B. G.
Lindsay, and J. F. Naughton. Middle-tier database caching
for e-business. In Proc. of ACM S GMOD’02, pages 600—
611, Madison, WI, 2002.

Q. Luo and J. F. Naughton. Form-based proxy caching for
database-backed web sites. In Proc. of VLDB’ 01, pages 191—
200, Roma, Italy, 2001.

D. J. Makaroff and D. L. Eager. Disk cache performance for
distributed systems. In Proc. of ICDCS 90, pages 212 — 219,
Paris, France, 1990.

N. Megiddo and D. S. Modha. ARC: A self-tuning, low over-
head replacement cache. In Proc. of the 2"¢ USENIX Con-
ference on File and Sorage Technologies FAST’ 03, pages
115-130, San Francisco, CA, 2003.

E. O’Neil, P. O’Neil, and G. Weikum. The LRU-K page re-
placement algorithm for database disk buffering. In Proc. of
ACM SIGMOD’ 93, pages 297-306, Washington, DC, 1993.

Oracle Corporation. Oracle internet application server docu-
mentation library, 2004.

[16] TPC Benchmark™™ w.

http://ww.tpc.org/
t pcw , 2004.

[17] D. Willick, D. Eager, and R. Bunt. Disk cache replacement

policies for network fileservers. In Proc. of ICDCS 93, pages
2-11, Pittsburgh, PA, 1993.



