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Abstract
Our objective is to improve disk I/O performance

in multi-disk systems supporting multiple concur-
rent users, such as file servers, database servers, and
email servers. In such systems, many disk reads are
absorbed by large in-memory buffers, and so disk
writes comprise a large portion of the disk I/O traf-
fic. LFS (Log-structured File System) has the po-
tential to achieve superior write performance by ac-
cumulating small writes into large blocks and writ-
ing them to new places, rather than overwriting on
top of their old copies (called Overwrite). Although
it is commonly believed that the high segment clean-
ing overhead of LFS makes it a poor choice for work-
loads with random updates, in this paper we find
that because of the fast improvement of disk tech-
nologies, LFS significantly outperforms Overwrite
in a wide range of system configurations and work-
loads (including the random update workload) un-
der modern and future disks.

LFS performs worse than Overwrite, however,
when the disk space utilization is very high due to
the high cleaning cost. In this paper, we propose
a new approach, the Hybrid Log-structured (Hy-
Log) disk layout, to overcome this problem. Hy-
Log uses a log-structured approach for hot pages
to achieve high write performance, and Overwrite
for cold pages to reduce the cleaning cost. We com-
pare the performance of HyLog to that of Overwrite,
LFS and WOLF (the latest improvement on LFS)
under various system configurations and workloads.
Our results show that, in most cases, Hylog per-
forms comparably to the best of the other three ap-
proaches.

1 Introduction
Disk I/O performance is crucial to the perfor-

mance of many computer systems. With large in-
memory buffers, most disk reads can be resolved in
memory [18]. As a result, in write-intensive systems,
such as a DBMS running OLTP (On-Line Transac-
tion Processing) applications, email servers, and file

servers, write requests make up a large portion of
the total disk traffic [3, 22]. Since these writes are
usually small, most of the disk I/O time is seek time
and rotational latency, resulting in less than 10% of
the disk maximum bandwidth being utilized [19, 21].

LFS (Log-structured File System) [18, 19] is a
disk layout that can achieve superior write perfor-
mance by writing data to new places in large chunks
rather than overwriting on top of their old copies.
But LFS has to perform segment cleaning to reclaim
large contiguous free space for further writes. Previ-
ous studies found that this cleaning overhead signif-
icantly degrades system performance when the disk
space utilization is higher than 50% on a 1991 disk
under OLTP workloads [21]. Disk technology has
improved dramatically since these studies were pub-
lished. Using 1991’s DEC RZ26 and today’s Chee-
tah X15 36LP as examples, the disk positioning time
has decreased from 15ms to 5.6ms (2.7x improve-
ment), while the disk bandwidth has increased from
2.3MB/s to 61MB/s (27x improvement). The disk
bandwidth improved 10 times more than the posi-
tioning time for these two disks, and this trend is
likely to continue [6]. Since LFS was designed to
utilize the disk bandwidth, this trend favors the per-
formance of LFS. Whether the cleaning cost of LFS
is still prohibitively high under modern and future
disks is an unaddressed issue.

In this paper, we use a simple cost model to study
the performance of LFS and Overwrite (i.e., the tra-
ditional approach that new data are overwritten on
top of old copies). Our results show that although
the cleaning overhead was expensive for old disks
and still accounts for a large amount of disk traffic
in modern and future disks, the overall performance
of LFS is significantly better than that of Overwrite.
LFS loses its advantage to Overwrite only under
very high disk space utilization. For example, LFS
performs better than Overwrite under uniform ran-
dom update workload (a pathological workload for
LFS that causes the most cleaning cost) when the
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disk space utilization is lower than 97% on a year
2003 disk because of its cleaning overhead, assum-
ing 8KB page size and 1MB segment size.

Because of the skewness in page access distribu-
tion in real systems [8], most writes are to a small
portion of data pages (called hot pages), while the
other pages (called cold pages) are updated infre-
quently. In LFS, hot pages rarely need to be cleaned
because their current copies on the disk are often
invalidated by further writes to these pages before
the space they occupy is reclaimed by the cleaner.
Therefore, most of the cleaning cost comes from cold
pages, while most of the high write performance
comes from accumulating the writes to hot pages.

We propose a new disk layout called HyLog (Hy-
brid Log-structured). The basic idea underlying Hy-
Log was first mentioned in the conclusions of [12]:
“it is not impossible to envision an LFS in which
some segments are managed using in-place updat-
ing”. To our knowledge, no further analyses or ex-
periments have been conducted. HyLog uses a log-
structured layout for hot pages to achieve high write
performance, and overwrite for cold pages to reduce
the cleaning cost. We evaluate the performance of
HyLog, Overwrite, LFS, and WOLF (the latest LFS
variant [26]) under RAID-0 and RAID-5 disk arrays
with concurrent users, a wide range of disk space
utilization, and a number of benchmarks and real
workloads. We also speculate a disk model five years
into the future and study the performance of these
disk layouts when using this future disk. Our results
show that the performance of HyLog is the most ro-
bust among the disk layouts we considered. In most
cases, HyLog achieves performance comparable to or
better than the best of Overwrite, LFS, and WOLF.

2 Related Work

Many approaches have been proposed to improve
disk write performance. NVRAM (non-volatile
RAM) is used in many storage systems to cache
bursts of writes. Since NVRAM is constrained in
size due to its high price, Disk Caching Disk [9]
employs a log disk to substitute for NVRAM and
achieves similar write performance. The problem
with these two approaches is that they achieve high
write performance only in systems with many idle
periods. Virtual Log is an approach to improving
small disk write performance [27] even in systems
with no idle periods. But it requires detailed knowl-
edge of the disk layout and the location of the disk
head at any moment, which might be difficult to
obtain from modern disks [10].

LFS was designed to optimize the write perfor-
mance of file systems [19]. In LFS, the disk is di-

vided into large fixed-size chunks called segments.
Writes to data pages are accumulated in memory
and written out to free segments. At the same time,
the old copies of these pages are invalidated, leaving
free space in the segments where they reside. From
time to time, segment cleaning must be conducted
to reclaim the free space in these partially filled seg-
ments so that free segments are always available for
future writes.

A previous study [21] found that LFS has
high cleaning overhead under OLTP-like workloads,
where small random writes make up a large portion
of the disk I/O requests. Many algorithms have
been proposed to reduce the cleaning cost of LFS
[2, 14, 16, 19]. But the cleaning cost is still high in
systems with high disk space utilization and little
idle time. Freeblock scheduling [13] has the poten-
tial to conduct cleaning without affecting foreground
response times, even in a never-idle system. This
algorithm relies on detailed knowledge of internal
disk activities in order to make correct scheduling
decisions, which is difficult for modern disks [10].
PROFS [25] attempts to improve the performance
of LFS by placing hot data in the faster zones of
the disk and cold data in the slower zones during
the cleaning, but this approach does not address the
high cleaning cost of LFS. Write Anywhere File Lay-
out (WAFL) [7] and Log-Structured Array [15] use
LFS and NVRAM to manage disk layouts. WAFL
also maintains multiple snapshots of the file system.
Although NVRAM eliminates writes for keeping the
metadata integrity and improves write performance,
the high cleaning cost of LFS is not addressed.

WOLF [26] is the most recently proposed ap-
proach to reducing LFS cleaning overhead. WOLF
separates hot and cold pages when they are written
to the disk. It usually writes two segments of data
to the disk at one time. Pages are sorted based on
their update frequencies before being inserted into
the segment buffers. The rationale is that the seg-
ments containing pages with higher update frequen-
cies will soon become low-utilized since the pages
in them are likely to be updated again in a short
time, thus reducing the cleaning overhead. This ap-
proach works well only when about half of the pages
are hot and half are cold, so that they can be writ-
ten into separate segments. In other cases, WOLF
might have little advantage over LFS.

3 Disk Layout Write Cost Model

The extensive use of client and server caching on
read traffic makes write performance an important
factor in many systems [18]. In fact, write traffic was
found to exceed read traffic on some recent file sys-
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tem [3] and OLTP workloads [22]. For the purposes
of modeling, we assume that the read performance
is not affected by different disk layouts, and seek to
model the write cost of these disk layouts.

3.1 Assumptions and Definitions
We use a simple disk model with seek time, ro-

tational latency, and transfer bandwidth. The posi-
tioning time Tpos is the sum of the average seek time
and the average rotational latency, i.e., the time
for the disk to rotate half a rotation. The transfer
bandwidth B is the average sustained bandwidth at
which the disk can read/write data. We assume the
read bandwidth is the same as the write bandwidth.

We assume that data are stored on the disk in
fixed-size pages. The size of each page is P bytes. In
LFS, the disk is separated into fixed-size segments,
each of which has S pages. The time to read or
write a page is Tpg and the time to read or write a
segment is Tseg. We have Tpg = Tpos + P/B and
Tseg = Tpos + SP/B.

3.2 Modelling LFS and Overwrite
3.2.1 Segment I/O Efficiency

One design objective of LFS is to achieve better
write performance than Overwrite. This is achieved
by writing data in units of segments instead of pages.
The segment I/O efficiency η represents the saving
of disk I/O time for writing one segment over writ-
ing S pages of the segment individually. η is defined
as

η =
STpg

Tseg

=
S(P + TposB)

SP + TposB
. (1)

The higher the η, the better the performance of
LFS, if other factors are not changed. η is a mono-
lithically increasing function of the segment size S. η
is also a monolithically increasing function of TposB,
named as the disk performance product, which rep-
resents the amount of data the disk can transfer dur-
ing the time to position the disk head. We list the
parameters of three high end SCSI disks of different
years in Table 1 and show their segment I/O effi-
ciency in Figure 1. Modern disks have much larger
η than old disks, implying LFS performs much bet-
ter on modern disks than on old disks.

When a disk has multiple pending requests from
several users, a disk scheduling algorithm is often
used to reorder the requests so that the average disk
positioning time can be reduced. η decreases with
an increase in number of users as a result.

3.2.2 Space Utilization

The disk space utilization is an important factor af-
fecting the performance of LFS [19, 21]. The disk

Table 1: Disk Parameters
Brand
Name

Year
Positioning
Time (ms)

Bandwidth
(MB/s)

Cheetah
X15 36LP

2003 5.6 61.0

Quantum
atlas10k

1999 8.6 20.4

DEC
RZ26

1991 15.0 2.3
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Figure 1: Segment I/O Efficiency of Different Disks.

[Page size is 8KB. The small crosses indicate the
segment size used for each disk in this paper.]

space utilization ud represents the proportion of the
disk space occupied by user data. The space utiliza-
tion of the segments that are selected for cleaning is
called the cleaning space utilization u, which is the
space utilization of the segment with the most free
space. Therefore, u ≤ ud. More specifically, their
relation is given in [15] as

ud = (u − 1)/ lnu. (2)

Figure 2 shows that the simulation results match
this formula well.

3.2.3 The Write Cost Model

In Overwrite, each write takes Tpg time. Thus the
write cost of Overwrite Cow is

Cow = Tpg

To model the write cost of LFS, the segment clean-
ing overhead must be considered. There are two
segment cleaning methods: cleaning [19] and hole-
plugging [14]. We call these variants of LFS LFS-
cleaning and LFS-plugging, respectively.

In LFS-cleaning, some candidate segments for
cleaning are first selected, and then these segments
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Figure 2: Disk Space and Cleaning Space Utiliza-
tion.

are read into memory, and their alive pages are writ-
ten out in segments, after which the free space in
these segments is reclaimed. After 1 segment is read,
u segment space is written and 1−u segment space is
freed. Therefore 1+u

1−u
segment I/O operations are re-

quired to free 1 segment space. For the system to be
balanced, whenever a segment of user data is writ-
ten to the disk, a segment of free space is reclaimed
by cleaning. Thus LFS requires 1 + 1+u

1−u
= 2

1−u
seg-

ment I/O operations to write one segment of user
data. The average time required to write one page
in LFS is defined as the write cost Clfscleaning .

Clfscleaning =
Tseg

S
·

2

1 − u
.

In LFS-plugging, some candidate segments are
read into memory, and the alive pages of these can-
didate segments are written out to holes found in
other segments so that the space occupied by these
candidate segments becomes free. To reclaim one
segment of free space, 1 segment read and uS page
writes are needed. Therefore, the write cost of LFS-
plugging Clfsplugging is defined as the average time
required to write one page.

Clfsplugging =
1

S
· (2Tseg + uSTpg).

3.2.4 Performance Comparisons

The performance of these disk layouts can be com-
pared by comparing their write costs. To simplify
the write costs, we define the scaled write cost by
scaling all write costs by S

Tseg
.

C′
ow =

S

Tseg

Cow = η (3)

C′
lfscleaning =

S

Tseg

Clfscleaning =
2

1 − u
(4)

C′
lfsplugging =

S

Tseg

Clfsplugging = 2 + uη (5)

Note that C′
lfscleaning is the same as the tradi-

tional write cost of LFS [19]. In [19], the write cost
of Overwrite was defined as the reciprocal of the uti-
lized disk bandwidth (i.e.,

TposB+P

P
), which ignores

the effect of segment size. Segment size is important
to the performance of LFS [14] and is taken into ac-
count by C′

ow. Figure 3 shows the scaled write cost
of the disks listed in Table 1. The relationship be-
tween LFS-cleaning and LFS-plugging is consistent
with previous studies [14]. Overwrite, LFS-cleaning
and LFS-plugging always cross at the same point
when u = 1 − 2/η. Since faster disks have larger
η, this cross point happens at higher disk space uti-
lization (e.g., u = 94% or ud = 97% for a year 2003
disk), which means the performance advantage of
LFS over Overwrite increases as disk technologies
improve. Figure 3 indicates that LFS outperforms
Overwrite under such workloads when the cleaning
space utilization is below 94% under modern disks.
LFS should perform better than what is shown in
this figure under more realistic workloads since the
cleaning space utilization is lower than that of a uni-
form random update workload [14]. Therefore, un-
der modern and future disk technologies, the impor-
tance of cleaning cost of LFS is much less important
than the common belief derived from studies with
10-year-old disks [21].
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Figure 3: Write Costs of Different Layouts.

[Smaller values indicate better performance. The
segment size for Cheetah X15 36LP is 1MB, for
atlas10k is 512KB, and for DEC RZ26 is 128KB.
The selection of segment sizes are discussed in Sec-
tion 3.3. The write cost of LFS-cleaning for all disks
overlaps.]

4



3.3 Segment Size of LFS

Simulation studies in [14] showed that the seg-
ment size is important to the performance of LFS.
By experimenting on different disks, the following
rules-of-thumb were found [14]:

1. The optimal segment sizes are different for dif-
ferent disks. Only the disk performance prod-
uct (product of positioning time and transfer
bandwidth) matters.

2. Larger segments are required for faster disks.
The optimal segment size can be approximated
by 4 times the disk performance product.

Equation (1) shows that TposB is the only disk
characteristic that affects η, which is consistent
with the first rule-of-thumb. The scaled write costs
(Equations (3), (4) and (5)) indicate that the higher
the η and the lower the u, and the more advantage
LFS can achieve over Overwrite. Figure 1 shows
that the larger the segment, the higher the η. How-
ever, on one hand, the increase of η is slower with
larger segment sizes, while on the other hand, the
cleaning space utilization becomes higher with larger
segments [14]. Therefore, there is an optimal seg-
ment size to achieve the best performance. From
Equation (1), we have

lim
S→∞

η =
TposB + P

P
.

Assume that we want to select a segment size so that
α proportion of this limit is achieved (0 < α < 1).
Then

S(TposB + P )

TposB + SP
= α

TposB + P

P
.

Thus we have

S · P =
α

1 − α
TposB,

where S ·P is equal to the segment size. If α = 80%,
we have

S · P = 4TposB, (6)

which is consistent with the second rule-of-thumb.
These preferred segment sizes are marked by small
crosses in Figure 1. The crosses are close to the
“knee” of the curve. In this paper, we use this for-
mula to calculate the segment size and then round
it to the closest size in powers of two.

3.4 Multiple Users and RAID

Many systems use disk arrays and have multi-
ple concurrent users. We use Nd to represent the
number of disks and Nu to represent the number
of users. We assume that users send out requests
without think time. When RAID is used, all disks

are viewed as one large logical disk. We assume the
stripe size is S pages. In RAID-0, the segment size
of the logical disk is NdS; in RAID-5, the segment
size of the logical disk is (Nd−1)S, because one disk
worth of space is used to store parity data. This or-
ganization allows segment I/O to utilize all available
disk bandwidth and eliminates the write penalty in
RAID-5.

3.5 The HyLog Model and Performance
Potential

Figure 3 indicates that a small reduction in disk
space utilization can significantly reduce segment
cleaning cost and improve the performance of LFS.
Because of the skewness in page access distribution
[8], most writes are to a small portion of hot pages.
If only these hot pages are managed by LFS while
cold pages are managed by Overwrite, we can ded-
icate all free space to the hot pages, since Over-
write does not need extra free space. The result-
ing space utilization for the hot pages would be
lower, which implies higher performance for the hot
pages. Therefore, the overall performance could ex-
ceed both LFS and Overwrite. We call this approach
the HyLog layout.

We first give the write cost model of HyLog and
then analyze its performance potential.

In HyLog, the disk is divided into fixed-size seg-
ments, similar to LFS. A segment is a hot segment
(containing hot pages and free pages), a cold seg-
ment (containing cold pages and free pages), or a
free segment (containing only free pages). The hot
segments and free segments form the hot partition,
and the cold segments form the cold partition.

Since LFS-plugging performs worse than LFS-
cleaning under low space utilization and worse than
Overwrite under high space utilization, including
LFS-plugging in HyLog does not bring performance
benefit. Therefore, we do not consider LFS-plugging
when modeling HyLog. Assume the proportion of
hot pages is h (0 < h < 1) and the proportion
of writes to the hot pages (called hot writes) is w
(0 < w < 1). We use u′

d and u′ to represent the
disk space utilization and cleaning space utilization
of the hot partition, respectively. If all free space is
in the hot partition, we have

u′
d =

uh

1 − u + uh
. (7)

u′ can be calculated from u′
d based on Equation (2).

The scaled write cost of HyLog C′
hylog is

C′
hylog = (1 − w)C′

ow + wC′
lfs

= (1 − w)η +
2w

1 − u′
. (8)
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When h is 0 and 1, the cost of HyLog degrades to
Overwrite and LFS, respectively. The proportion of
hot writes w is a function of h, which is the CDF of
the write frequencies.

For uniformly distributed random access, w =
h. It was found the CDF of page update fre-
quency in production database workloads follows the
Hill(fmax, k, n) distribution Hill(105, 0.528, 0.546)
[8], which is defined by f(x) = fmax · xn/(k + xn).
Note that these distributions are for page updates
before being filtered by the buffer cache. When
write through is used (such as in an NFS server),
these distributions can also describe the page writes
to disks. When write back is used (such as in a
database server), the page writes to disks are less
skewed (closer to the uniform distribution).

Another distribution commonly used to represent
the skewness of data accesses is defined by Knuth
[11, p. 400]: pi = 1

Nθ(nθ−(n−1)θ)
, where i = 1 . . .N

and 0 ≤ θ ≤ 1. When θ = 1, this is the uniform
distribution. When θ = log 0.80

log 0.20 = 0.1386, this is

the “80-20” rule where 80% references go to 20%
pages. We call this distribution Knuth(a, b), where
θ = log 0.01a

log 0.01b
. Figure 4(a) shows the CDF of the

above distributions with different parameters.
Figures 4(b) and 4(c) show the scaled write cost

of HyLog under these distributions. Equation (2) is
used to convert between the disk space utilization
and cleaning space utilization. Since this equation
works only for uniform random workloads, the re-
sults shown in Figure 4(b) and 4(c) are conservative
for skewed distributions. With the right number of
hot pages, HyLog outperforms both Overwrite and
LFS. The higher the skewness of the distribution,
the fewer hot pages are required and the more ben-
efit can be achieved. In other words, HyLog has
greater performance potential than LFS and Over-
write under high disk space utilization. When the
disk space utilization is low, HyLog has limited ben-
efit over LFS.

4 The Design of HyLog

4.1 Design Assumptions

We assume the disk layouts under study (Over-
write, LFS, WOLF, and HyLog) are at the storage
level rather than the file system level. Therefore, the
allocation and deallocation of data are not known.
We assume NVRAM is used by these disk layouts so
that small synchronous writes caused by metadata
operations are not necessary. Therefore, we omit
the metadata operations and focus on the impact
of cleaning overhead of LFS. This omission greatly
simplified the design and implementation of the disk
layout simulator. Since LFS performs much better

than Overwrite on metadata operations [19, 21], the
omission of metadata operations makes our results
for LFS, WOLF, and HyLog conservative compared
to Overwrite.

These assumptions, however, do not mean that
HyLog can only be used at the storage level with
NVRAM. When technologies such as Soft-updates
[4] and journaling [28] are applied to HyLog, it could
be used at the file system level as well.

WOLF [26] reduces the segment cleaning cost of
LFS by sorting the pages to be written based on
their update frequencies and writing to multiple seg-
ments at a time. This idea can be easily applied to
HyLog to further reduce its cleaning cost, but, to
isolate the benefit realized from the design of Hy-
Log and from the idea of WOLF, this optimization
is not performed in this paper.

4.2 Separating Algorithm
Before a page is written to the disk, HyLog runs

a separating algorithm to determine if this page is
hot. If it is, the write is delayed and the page is
stored temporarily in an in-memory segment buffer.
Otherwise, it is immediately overwritten to its orig-
inal place on the disk. When hot pages fill up the
segment buffer, they are written out to a free disk
segment, freeing the disk space occupied by their old
copies.

As time goes on, some hot pages may become cold.
These pages are written to the cold partition rather
than to their current locations in the hot partition to
avoid extra cleaning overhead. As some cold pages
become hot and are written to the hot partition,
free space may appear in the cold partition. To re-
claim this free space more effectively, HyLog uses an
adaptive cleaning algorithm to select segments with
the highest cleaning benefit from both hot and cold
partitions.

Accurately separating hot pages from cold pages
is the key to the design of HyLog, as shown in Fig-
ure 4. The basic idea of the separating algorithm is
simple. First, the write frequencies of recently up-
dated pages are collected. These write frequencies
are used to get the relationship between w and h.
Then Equation (8) is used to calculate C′

hylog for all
h. The hot page proportion h with the lowest C′

hylog

is used as the expected hot page proportion.
Accurately measuring η is important for HyLog

to make correct decisions. The service time of page
I/O and segment I/O of each request is collected at
the disk level. The average of the most recent 10,000
requests is used to compute η. Since a segment I/O
always keeps all disks busy, while one page I/O only
keeps one disk busy, page I/O is less efficient in disk
arrays. If the proportion of the disk idle time is
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Figure 4: Performance Potential of HyLog.

[The two horizontal lines in Figure 4(b) and 4(c) represent the write cost of Overwrite and LFS, respectively.
η is 32.8, representing Cheetah X15 36LP with 1MB segment size and 8KB page size. Knuth(a, b) means
a% of the references go to b% of the pages.]

Pidle, η is adjusted to η/(1 − Pidle).
The write frequencies of all disk pages are col-

lected in real time. A frequency counter is associ-
ated with each page. This counter is initialized to
0, and reset to 0 after every measurement interval.
Whenever a page is written to the disk, its frequency
counter is incremented. At the end of each measure-
ment interval, all frequency counters are sorted in a
descending order and stored in an array, which is
used to calculate hot writes given the hot page pro-
portion. The separating algorithm is invoked every
measurement interval. After the expected hot page
proportion is obtained, a page separating threshold
can be determined so that all pages with write fre-
quencies no less than the threshold are considered
hot pages.

Preliminary experiments were conducted to study
the sensitivity of system performance to the value of
the measurement interval. When the measurement
interval is smaller than 20 minutes, the throughput
is not sensitive to the measurement interval. How-
ever, the throughput starts dropping with larger
measurement intervals. Since the separating algo-
rithm is invoked every measurement interval, 20
minutes is used as the measurement interval to re-
duce the separating algorithm overhead.

4.3 Segment Cleaning Algorithm
We adapted HyLog’s segment cleaning algorithm

from the adaptive cleaning algorithm [14], which
dynamically selects between cost-age cleaning and
hole-plugging based on their write cost.

In Hylog, the cleaner is invoked whenever the
number of free segments is below a threshold (set to
10). In every cleaning pass, the cleaner processes up
to 20MB of data. It first calculates the cost-benefit
values of the following four possible cleaning choices:

(1) cost-age in the hot partition, (2) hole-plugging in
the hot partition, (3) cost-age in the cold partition,
and (4) hole-plugging in the cold partition. It then
performs cleaning using the scheme with the lowest
cost-benefit value.

5 Methodology

5.1 The Simulator, Verification, and
Validation

We used trace-driven simulations to compare the
throughput of different disk layouts. Our simulator
consists of a disk component, a disk layout com-
ponent, and a buffer pool component. We ported
the disk component from DiskSim 2.0 [5]. The disk
layout component simulates disk layouts for Over-
write, LFS, WOLF, and HyLog. The implementa-
tion of LFS is based on the description in [14, 19]
and the source code of the Sprite operating system
[23]. The implementation of WOLF is based on the
description in [26]. The buffer pool component uses
the LRU algorithm. The three components commu-
nicate through an event-driven mechanism. Over-
write, LFS and WOLF are implemented as special
cases of HyLog. By considering all pages as cold, we
get Overwrite, and, by treating all pages as hot, we
get LFS and WOLF. Therefore, the only difference
between these disk layouts is the page separating
algorithm. This guarantees the fairness of the per-
formance comparison. We validated the simulator
carefully in this subsection to improve the credibil-
ity of our performance comparisons.

In order to verify the disk layout component, a
simple disk layout simulator called TinySim was
developed independently. TinySim simulates LFS
and WOLF, and supports single user and single
disk. TinySim and the disk layout component were
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run under uniformly distributed random update and
hot-cold (10% of the pages are referenced 90% of the
time) synthetic workloads, respectively. The overall
write cost, which is the key performance metric of
LFS and WOLF [14, 26], was obtained from both
simulators. In most cases, the differences between
the results of the two simulators were within 5%.

After verification, the cleaning algorithms in the
disk layout component were validated against those
discussed in [14]. Figure 5 shows the overall write
costs of the cost-age, hole-plugging, and adaptive
cleaning algorithms under a uniformly distributed
random update workload. These cleaning algo-
rithms show trends very similar to those in Figure 6
of [14].

 10

 20

 30

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

O
ve

ra
ll 

W
rit

e 
C

os
t

Disk Space Utilization

CostBenefit
HolePlugging

Adaptive

Figure 5: Validation of Overall Write Cost of LFS.

[The workload is uniform random update. Page size
is 8KB, segment size is 256KB, Tpos = 15ms, B =
5MB/s, and cache size is 128MB.]

We further validated our implementations of
Overwrite and LFS by comparing their performance
with that of FFS (uses overwrite) and BSD LFS
published in [21] under the TPC-B benchmark. As
in [14], we used the uniformly distributed random
update workload to simulate the TPC-B benchmark.
Since the DSP 3105 disk used in [21] is not available
in DiskSim, a similar disk, the DEC RZ26, was used
in the validation experiments. Table 2 lists the spec-
ifications of the two disks. The DEC RZ26 has 3%
slower average seek time and slightly higher transfer
rate because it has one more sector per track than
the DSP 3105.

Table 3 shows the throughput of Overwrite and
LFS obtained from our simulator and that in [21].
Although the reported throughput of LFS with
cleaning in [21] was 27.0, it has been argued [17] that
34.4 should be a more reasonable value. Therefore,
34.4 is used here when calculating the difference.

Table 2: Disk Comparison for Simulator Validation
Parameters DSP 3105 DEC RZ26
RPM 5400 5400
Sectors/Track 57 58
Cylinders 2568 2599
Platters 14 14
Track Buffer 256KB 285KB
Avg. Seek Time 9.5ms 9.8ms
Transfer Rate 2.3MB/s 2.3MB/s

The 4.8% lower throughput we observed for Over-
write in our experiments may be due to the 3.2%
slower seek time of the DEC RZ26. The LFS im-
plementation used in [21] can achieve only 1.7MB/s
write throughput, 26% slower than the maximum
hardware bandwidth, because of “missing a rotation
between every 64 KB transfer”. Since the number
of segment reads is equal to the number of segment
writes (for every segment read, there is always u seg-
ment write for cleaning and 1− u segment write for
new data), this slowdown of segment write should
cause 13% performance difference, which matches
the difference in Table 3. Since the differences in
all results are within a reasonable range, we believe
that our implementations of Overwrite and LFS are
valid.

Table 3: Throughput Validation. ud = 50%.
Layout Previous[21] Ours Diff.
FFS/Overwrite 27.0 25.7 -4.8%
LFS w/o cleaning 41.0 43.3 5.6%
LFS w cleaning 27.0 (34.4) 39.0 13.4%

5.2 The Workloads

We used three traces in our experiments: TPC-
CTM, Financial, and Campus. Their characteristics
are summarized in Table 4.

The TPC-C benchmark is a widely accepted
benchmark for testing the performance of database
systems running OLTP workloads developed by the
Transaction Processing performance Council (TPC)
[24]. The TPC-C trace contains all read and write
requests to the buffer pool when running the bench-
mark on IBM r© DB2 r© 7.2 on Windows NT r© Server
4.0. The scale of the TPC-C benchmark is expressed
in terms of the number of warehouses represented.
The database used in this study contains 50 ware-
houses. The TPC-C trace was collected using a trac-
ing package ported from [8].

The Financial trace [22] was published by the
Storage Performance Council. It is a disk I/O trace
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Table 4: Trace Characteristics
TPC-C Financial Campus

Data size(MB) 5088 10645 9416
Page size(KB) 4 4 8
#reads(×106) 176.27 0.97 21.05
#writes(×106) 31.17 3.41 7.64
Logical
reads/writes

5.66 0.28 2.76

Physical
reads/writes

1.37 0.13 2.56

of an OLTP application running at a large finan-
cial institution. Since the trace was collected at the
I/O controller level, many reads have already been
filtered out by the in-memory buffer. This trace
contains I/O requests to 23 containers. In our ex-
periments, the requests to the three largest contain-
ers were ignored to reduce the resources required by
the simulator. Since these three containers have the
fewest requests relative to their sizes, this omission
has little impact on our results.

The Campus trace is a one-day trace taken from
the NFS trace collected at Harvard University cam-
pus in October 2001 [3]. This trace is dominated by
email activities. It contains reads, writes and direc-
tory operations to the NFS server. Reads and writes
make up 85% of the requests. Since the sizes of the
directories are unknown from the trace, it is difficult
to replay the directory operations in the simulator,
but because we assume NVRAM is used, these direc-
tory operations do not cause expensive synchronized
writes. So their impact on performance is small. We
discard the directory operations and use only the
reads and writes.

5.3 Experimental Setup

Since our interest is the performance of various
disk layouts on busy systems, we configured the sim-
ulator as a closed system without think time, i.e., the
next trace record is issued as soon as the processing
of the previous one finishes. Using this method, we
were able to use traces with a small number of users
to represent the workloads imposed on a system by
many more users with think time. For example, the
workload generated by 30 users without think time
with 1.28 seconds average response time is equiva-
lent to that generated by about 500 users with 21
seconds1 average think time between requests. The
details of this deduction are in the appendix.

We used the Quantum atlas10k 1999 disk model,
the latest disk model provided by DiskSim. Its spec-

1The weighted average think time plus keying time defined
in Clause 5.2.5.7 of TPC-C benchmark version 5.0

ifications are given in Table 5. Write-back caching
is disabled to protect data loss from power failure.
The disk scheduling algorithm is SCAN based on
logical page numbers.

Table 5: Disk Specifications

Parameters
Atlas10k
(Year
1999)

Year
2003
Disk

Year
2008
Disk

RPM 10025 15000 24000
Sectors/Track 229-334 476 967
Cylinders 10042 10042 10042
Platters 6 8 8
Size(GB) 9.1 18 36
Seek Time(ms) 5.6 3.6 2.0
Bandwidth(MB/s) 20.4 61 198

To study the performance of disk layouts on to-
day’s and future disks, we also designed models for
a high-end disk of year 2003 and a high-end disk of
the sort we might imagine to appear in year 2008.
Looking back over 15 years history of disk technol-
ogy evolution, we made the following assumptions:
every 5 years, transfer rate increases by 242% [6],
average seek time decreases by 76% [20], and RPM
(Rotations Per Minute) increases by 61% [1]. We
also assumed that all cylinders have the same num-
ber of tracks, the number of platters is 8, and the
disk size is 18GB for the year 2003 disk and 36GB
for the year 2008 disk. The specifications of these
two disks calculated on the basis of these assump-
tions are given in the two rightmost columns of Ta-
ble 5. The seek time distribution data were created
by linearly scaling the seek time distribution of the
atlas10k disk defined in DiskSim.

We used RAID-0 and RAID-5 as multi-disk mod-
els. The stripe size for both RAID-0 and RAID-5 is
computed based on Equation (6) and then rounded
to the closest powers of two. For RAID-0 arrays
with n disks, the segment size is n × StripeSize.
For RAID-5 arrays, the segment size is (n − 1) ×
StripeSize, since 1/n of the total disk space is ded-
icated to parity data.

In order to vary the disk space utilization, only
part of the disk is accessed, independent of the ac-
tual size of the disk. For example, if the data size
is 6GB and the disk space utilization is 60%, the
total disk space required is 6GB

60% = 10GB. If there
are 5 disks, the first 2GB of each disk is used. Since
the disk layout approaches do not handle page allo-
cation and deallocation, all data are stored on the
former part of the disk initially. As a result, the
seek time (particularly for Overwrite) is very short,
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which makes η smaller. Thus this data layout makes
the performance results for LFS, WOLF, and Hy-
Log conservative compared to Overwrite than in real
workloads where data are often placed far apart. For
LFS, WOLF, and HyLog, the data will eventually
spread across the whole disk as data are written,
which is considered as the warmup period. Only the
performance data collected after the warmup period
is considered.

The performance metric used in this paper is
throughput, defined as the number of I/O requests
finished per second.

Table 6 summarizes the parameters and values
used in our experiments. Since these parameters can
be easily controlled in the TPC-C trace, this trace
is used to study the impacts of various parameters
on throughput. When evaluating the throughput of
RAID-5, we compare a 9-disk RAID-5 array with
an 8-disk RAID-0 array so that they have the same
segment size.

Table 6: Experimental Parameters
Configuration Range Default

Disk layout
Overwrite,
LFS, WOLF,
HyLog

—

Number of users 1–30 20
Number of disks 1–15 4
Disk utilization 0.5–0.98 —

Disk type
atlas10k,
year 2008 disk,
year 2003 disk

atlas10k

Disk array type
RAID-0,
RAID-5

RAID-0

Workload
TPC-C,
Financial,
Campus

TPC-C

Buffer pool size — 400MB

6 Simulation Results
6.1 Validation of the Cost Model

Since the cost model was developed for uniform
random update workload, we use results for the
same workload to validate the cost model. In partic-
ular, we use previous results for TPC-B (reported in
[17, 21]), a random update workload, to verify the
throughput of LFS and Overwrite. Since the write
cost is the average time required to write a page and
a transaction requires a page read and a page write,
the throughput X is computed as

X =
1

Tpg + C + Tcpu

,

where C is the write cost of the disk layout, and Tcpu

is the CPU overhead for processing each page, which
is 0.9ms for Overwrite and 1.8ms for LFS [21]. The
results in Table 7 show that the model matches the
measurement results well.

Table 7: Cost Model Validation
Layout Previous Model Difference
Overwrite 27.0 [21] 28.6 6.0%
LFS-cleaning 34.4 [17] 37.3 8.4%

6.2 Impact of Various Factors

Disk Space Utilization and Disk Type

Figure 6(a) shows the throughput of different lay-
outs under various disk space utilization and differ-
ent disks. Since the throughput of LFS, WOLF,
and HyLog almost overlaps for the year 2003 and
year 2008 disks, only one line is shown for each
of these disks. The throughput of all layouts im-
proves with faster disks. The throughput of Over-
write is not affected by the disk space utilization,
while the throughput of other layout approaches
decreases when the space utilization is high. The
faster the disk, the more LFS and WOLF can tol-
erate the high space utilization because faster disks
have higher η as shown in Figure 1. Figure 6(b)
gives a closer look at the throughput of the atlas10k
disk. The throughput of WOLF overlaps that of
LFS for most configurations and outperforms LFS
by 5% when the disk space utilization ud is very high
(98%). The throughput of HyLog overlaps that of
LFS when ud ≤ 95%. This is because HyLog con-
siders all pages as hot based on its cost model Equa-
tion (8) (see Figure 4(b)). The throughput of HyLog
is comparable with Overwrite when the disk space
utilization is higher. HyLog outperforms Overwrite
by 7.4% when the disk space utilization is 97%.

To provide some insights into the performance
that LFS and HyLog show above, we give further
analysis of two example points: LFS running on at-
las10k with 95% disk space utilization and HyLog
running on atlas10k with 98% disk space utilization.

In the LFS example, the measured cleaning space
utilization is u = 88.4%. This is lower than the
90.2% computed from Equation (2) because of the
skewness of accesses in TPC-C. Therefore, to write
one segment of new data, 1+u

1−u
= 16.3 segment I/Os

need to be performed for cleaning. So the cleaning
traffic contributes 94.2% to the total segment I/O
traffic. The measured Tpg and Tseg from simulation
is 5.6ms and 27.3ms, respectively. Therefore, η =
26.3. The measured proportion of disk idle time is
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Figure 6: The Impact of Disk Space Utilization on
System Throughput.

[The throughput is normalized to Overwrite. The
number of users is 20, the number of disks is 4, the
trace is TPC-C, and the buffer pool size is 400MB.]

30%, so η should be adjusted to η/(1−30%) = 37.6.
Based on the scaled write cost model,

C′
ow/C′

lfscleaning = η(1 − u)/2 = 2.2,

which means the write throughput of LFS is 2.2
times of the write throughput of Overwrite. Since
the write traffic contributes 42% to the total traf-
fic after filtering by the buffer cache (Table 4), LFS
outperforms Overwrite by 30%, which is close to the
simulation result of 27%.

In the HyLog example, the hot page proportion
selected by the page separating algorithm during the
run is 35-45%. We use the data collected at the first
measurement interval after warmup as the example.
The proportion of hot pages is 42.2%, and the pro-
portion of hot writes is 58.2%. The measured clean-
ing space utilization is 93.4%, which is lower than
that in LFS for the same configuration (96.2%). The

proportion of disk idle time is 22.5%, the measured
Tpg and Tseg are 5.8ms and 27.2ms, respectively, and

the adjusted η is
TpgS

Tseg(1−Pidle) = 35.2. Therefore, the

write cost model indicates that the write throughput
of the hot partition is 16% higher than Overwrite.
Thus the overall weighted write throughput is 9%
higher than Overwrite. Taking the read traffic into
account, the throughput of HyLog is 1.036 that of
Overwrite, which is close to the simulation result
of 1.008. The write throughput of LFS computed
from the cost model under 98% disk space utiliza-
tion is 66.9% of Overwrite, and the overall through-
put of LFS including read and write traffic is 82.8%
of Overwrite, which is close to the simulation result
of 78.0%.

Figure 7 shows how well the separating algorithm
works. The hot page proportion found by the sep-
arating algorithm (35-45%) is close to optimal, and
the achieved throughput is 96.4% of the maximum
possible throughput.
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[The number of users is 20, the number of disks is
4, the trace is TPC-C, the disk space utilization is
98%, and the buffer pool size is 400MB.]

Impact of Number of Users and Number of
Disks

Figure 8 shows the throughput normalized to Over-
write under different numbers of users and disks.
WOLF is not shown since it almost overlaps with
LFS. Two trends can be observed in the relative
throughput of LFS, WOLF, and HyLog: (1) it drops
with more users; (2) it drops with more disks.

With more users, the average disk seek time is
reduced because of the disk scheduling algorithm,
which reduces η. The disk idle time in Overwrite is
also reduced with more users. Therefore, the first
trend happens in both low disk space utilization

11



(Figure 8(a)) and high disk space utilization (Fig-
ure 8(b) and 8(c)).

With more disks, the segment size is larger, thus
the cleaning cost is higher [14], which reduces the
benefit of the log-structured layout. This happens
only when cleaning cost plays an important role,
which is true when the disk space utilization is high.
Therefore, the second trend is apparent only when
the disk space utilization is high (Figure 8(b)).

In Figure 8(b) and 8(c), the throughput of HyLog
overlaps with that of LFS when LFS outperforms
Overwrite, and HyLog becomes comparable with
Overwrite when Overwrite outperforms LFS. Hy-
Log incorrectly follows LFS when there are 4 users
and 15 disks, because at this configuration, a very
small error in the estimation of η can cause HyLog to
make the wrong decision, while HyLog can tolerate
some error in the estimation of η in other configura-
tions.

Impact of Disk Array Type

Figure 9 shows the throughput of the four disk
layouts (Overwrite, LFS, WOLF, and HyLog) on
RAID-0 and RAID-5. For Overwrite, the through-
put on RAID-5 is about 50% of that on RAID-
0. This performance degradation is caused by the
slower page update of RAID-5. For LFS and WOLF,
the use of RAID-5 increases throughput by 6.5-10%,
because the segment I/O performance is not af-
fected by RAID-5, while the one more disk in RAID-
5 increases the page read throughput. When the
disk space utilization is high, the throughput of Hy-
Log on RAID-0 is comparable with Overwrite. The
throughput of HyLog on RAID-5 is comparable with
LFS because the slower page I/O in RAID-5 makes
η higher. Thus most pages are considered to be hot
pages.

6.3 Results for the Other Workloads
Figure 10 shows the throughput of the four disk

layouts using the Financial and Campus traces. The
throughput is normalized relative to that of Over-
write. For both traces, the performance advantage
of LFS, WOLF, and HyLog is much higher than that
observed with the TPC-C trace. This difference is
attributed to two facts. First, the distribution of
data updates in the Financial and Campus traces is
more skewed than it is in the TPC-C trace, lead-
ing to less cleaning cost. Second, the proportion of
writes in these two traces is much higher than in the
TPC-C trace, since many reads have already been
filtered out by client-side buffers (in the Campus
trace) or in-memory buffers (in the Financial trace).
Since the Financial trace is more skewed than the
Campus trace and the writes in the Financial trace
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Figure 8: Impact of Number of Users and Number
of Disks.
[Disk is atlas10k, trace is TPC-C. In Figure 8(a),
the throughput curves of LFS and HyLog almost
overlap, thus only the throughput of LFS is drawn.
Figure 8(c) shows the hidden data points of Fig-
ure 8(b).]

have higher proportion than in the Campus trace,
the advantage of log-structured layouts in the Fi-
nancial trace is higher than in the Campus trace.
The performance results under other configurations
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show similar trends.

7 Conclusions and Future Work

In this paper we study the write performance of
the Overwrite and LFS disk layouts. A write cost
model was developed to compare the performance
of these disk layouts. Contrary to the common be-
lief that its high cleaning cost disadvantages LFS,
we found that because of the advancement of disk
technologies, the performance of LFS is significantly
better than Overwrite even under the most patho-
logical workload for LFS (random update), unless
the disk space utilization is very high.

Since LFS still performs worse than Overwrite un-

der certain conditions such as high disk space utiliza-
tion, we propose a new disk layout model called Hy-
Log. HyLog uses a log-structured approach for hot
pages to achieve high write performance and over-
write for cold pages to reduce the cleaning cost. The
page separating algorithm of HyLog is based on the
write cost model and can separate hot pages from
cold pages dynamically. Our results on a wide range
of system and workload configurations show that
HyLog performs comparably to the best of Over-
write, LFS, and WOLF in most configurations.

As future work, we want to study the read per-
formance of LFS and HyLog and the impact of disk
technology on them.
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Appendix

The average think time plus keying time defined by
the TPC-C benchmark is 21 seconds. The simula-
tion results indicate that the system with 30 users
without think time has a response time of 1.28 sec-
onds if one disk is present in the system. Assum-
ing that the number of users with think time in
the system is n, the average arrival rate of users
is n

21+1.28 = n
22.28 . From Little’s Law, we have:

30 = n
22.28 × 1.28. Therefore, n = 522 ≈ 500, which

indicates that the workload generated by 30 users
without think time presents equivalent workload to
that generated by about 500 users with 21 seconds
think time between requests.
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