
VM Clock Synchronization Measurements
Jagmohan Chauhan, Dwight Makaroff and Anthony Arkles

Dept. of Computer Science
University of Saskatchewan

Saskatoon, SK, CANADA S7N 3C9
Email: {jac735, makaroff, aja042} @cs.usask.ca

Abstract—A modern twist to clock synchronization is the push
towards server virtualization and cloud computing. Distributed
applications now often run on geographically-distributed, virtu-
alized servers that are isolated from the underlying hardware.
Despite the fact that most applications run well in an abstracted
environment without direct hardware access, tight real-time
synchronized clocks are still necessary.

We performed a set of experiments to quantify the additional
clock error when running the NTP daemon inside a Virtual
Machine. We found that the delay asymmetry is relatively
small when running in a non-virtualized environment, but quite
significant in a virtualized environment.

I. INTRODUCTION

Clock synchronization deals with the observation that in-
ternal clocks of several computers differ (clock offset) and
that events from distributed and network applications require
precise ordering for correct functionality and/or performance.
Even when initially set accurately, real clocks will differ after
some amount of time due to clock drift (or skew), caused by
clocks counting time at slightly different rates.

Some types of distributed applications require tight syn-
chronization between the components. In particular, networked
games [1], high speed financial trading [2] and factory automa-
tion networks [3] are but three application areas where tight
synchronization bounds are needed.

Synchronizing a client to a network server consists of
several packet exchanges. The travelling time (delay) is es-
timated to be half of “the total delay minus remote processing
time”, assuming symmetrical delays. The more symmetric the
round-trip time, the more accurate the estimate of the current
time will be. Synchronization is challenging in virtualized
environments, due to the extra software processing required
between the probe packet timestamp and the actual time the
packet was transmitted/received at the hardware level, leading
to less accurate timestamps and poorer synchronization.

II. BACKGROUND AND MOTIVATION

The enemy of precise network time synchronization is
non-determinism, or more specifically, delay variability [2]
or synchronization error, which has four sources [4]: a) Send
Latency which includes kernel protocol processing, operating
system delays, and the time required to transfer the message
from the host to its network interface, b) Access Latency, the
delay incurred waiting for access to the transmit channel, c)
Propagation Latency (travel time), the time needed for the
message to travel from sender to receiver once it has left the

sender, and d) Receive Latency: the time for the receiver’s
network interface to receive the message from the channel and
notify the host of its arrival.

In a cloud-computing environment, applications on several
virtual machines may communicate over a LAN or over a
WAN. The simplest technique for time synchronization is
to do it in the VMs which need it. The implementation of
timestamping in the virtual machine entails operating system
overhead in passing system calls through to the hardware,
context-switching and interference between the VMs [5]. Thus,
if a system can implement timestamping as close to the
hardware as practical, accuracy can be maximized [3].

III. IMPLEMENTATION AND TESTBED

We implemented a simple NTP client which obtains kernel
level timestamps, measuring the send and the receive latency
up to the point of the last possible kernel operation. The
Linux kernel (2.6.27) was modified at the device driver level.
The ioctl command SIOCGSTAMPNS informs the kernel that
timestamping is required. By comparing the kernel timestamp
and an application-generated timestamp, we measured the
send latency. Likewise, we measured the receive latency by
comparing the netif rx timestamp with an application-level
timestamp immediately after the recvfrom() call. The System
under test used in the experiments was 2.4 Ghz Pentium quad
core with 2GB of RAM. Virtual Box 2.1.4 is used to create
and manage instances of VM on the host system. Benchmark
software Bonnie++, Stress and iperf was installed.

IV. EXPERIMENTS AND RESULTS

During each test, NTP packets were sent at regular intervals
and corresponding send and receive latencies were recorded.
The CPU and memory tests were done using the Stress
benchmarking tool1. For the I/O operations stress tests, we
use Bonnie++ benchmark2. For network stress testing we used
iperf,3 to create TCP and UDP data streams and measure the
throughput of the network.

Four different kind of scenarios were considered: a) Mea-
surement for NTP done at Host Level (NTP-host-base), b)
Measurement for NTP done at Host Level running load on
one Virtual Machine (NTP-host1vm), c) Measurement for NTP
done at Host Level but running load on two Virtual Machines

1http://weather.ou.edu/ãpwprojects/stress/
2http://www.coker.com.au/bonnie++/
3http://sourceforge.net/projects/iperf/



(NTP-host2vm), and d) Measurement for NTP done at VM
Level (NTP-VM).

CPU load tests: In each test, we specified a certain number
of threads for each scenario: 250, 500, 750 and 1000. Figure
1 shows the difference of the average between the receive and
send latencies. The best results are observed in NTP-host-
base with the worst results in NTP-VM, where the average
latencies can go to around 2000 µs. For all scenarios except

Fig. 1. Latencies for CPU Stress in system

NTP-VM, adding more threads does not affect the Send and
Receive latencies much. In NTP-VM, the variability was also
substantially higher than in all other scenarios. We observed a
number of extreme outlier values. The graph shows the average
with the extreme outliers removed. Further examination of the
data reveals 2 modes in the latency difference distribution. The
first mode is between 600 and 1000 µs, and the second mode
is between 4000 and 4500 µs, depending on the load.

Memory load tests: We specified different number of threads
for the memory stress tests: 1, 3 and 5. Each thread spins
on malloc/free and mallocs/frees 256 MB of memory per
operation, which is the default. The significant observation
here is that the results get better with load in the VMs and
measurements at the host (NTP-host1vm and NTP-host2vm)
than NTP-host-base, which is opposite to CPU stress testing.

Fileystem I/O load: We used file sizes of 4, 8 and 12 GB on
the host and 1, 2 and 3 GB on the guest for these Bonnie++
tests. The file sizes were chosen in a way that they should be
greater than the memory of the system, which was 2 GB for
Host and 512 MB for the VM. We observed similar trends as
in previous results, which are shown in Table I.

Scenario Average Latency Difference (µs)
NTP-host-base (4/8/12 GB) 26/25/26
NTP-host-1vm (1/2/3 GB) 34.5/35/37
NTP-host-2vm (1/2/3 GB) 37/40/42

NTP-VM (1/2/3 GB) 425/510/567

TABLE I
LATENCIES FOR BONNIE++ STRESS IN SYSTEM

Network Stress Test: Send latencies are always less than
29 µs. The worst average receive latencies are achieved with
NTP-VM where it reaches 1445 µs for UDP and 2002 µs for
TCP traffic load. Running heavy traffic load on VMs does not
adversely affect the NTP calculations on the host and is, in
fact, better than NTP-host-base.

We also performed tests to see if the NTP send and receive
latencies are affected in case we are are running NTP client on
one VM and the other VM is heavily loaded. We found that
there is substantial interference between the VMs and guest-
host synchronization is not precise.

V. RELATED WORK

In Local Area Networks, the IEEE 1588 Precision Time
Protocol (PTP) standard has been studied in the context of
sensor and control networks that support real-time applications
[6]. Similar work in industrial control applications that com-
municate wirelessly indicates that the most accurate synchro-
nization can be achieved by timestamping at the lowest level in
the stack [3]. This work measures consequences of path delay
instability caused by software processing. NTP has been shown
by Broomhead et al. to be inadequate when conditions are not
ideal [2]. In particular, they show 3 scenarios in which Xen
virtualization has challenges. The RADclock solution provided
resolves these virtualization issues under paravirtualization.

VI. CONCLUSIONS AND FUTURE WORK

Clock synchronization software (particularly NTP) requires
network delays (send and receive) to be symmetric; any asym-
metry ends up causing errors in the clock synchronization. On
a non-virtualized system, this is a reasonable assumption; our
host Linux system showed a low asymmetry between 16 and
82 µs. On a virtualized system, though, this assumption breaks
down. Because of this dramatic shift in performance, we do not
recommend running an NTP client inside a virtualized system
when accurate clock synchronization is required. Alternatively,
clock synchronization should happen on the host, with a
different host-to-VM synchronization mechanism controlling
the clocks inside the VMs. For our future work, we are going to
create an effective solution for guest-host time synchronization
in the virtualized environment.

REFERENCES

[1] M. Roccetti, S. Ferretti, and C. Palazzi, “The brave new world of
multiplayer online games: Synchronization issues with smart solutions,”
IEEE ISORC, 2008.

[2] T. Broomhead, L. Cremean, J. Ridoux, and D. Veitch, “Virtualize Every-
thing But Time,” in OSDI’10, Vancouver, BC, Canada, Oct. 2010, pp.
1–6.

[3] A. Mahmood and G. Gaderer, “Timestamping for IEEE1588 based Clock
Synchronization in Wireless LAN,” in ISPCS, Brescia, Italy, Oct. 2009,
pp. 1–6.

[4] H. Kopetz and W. Schwabi, “Global Time in Distributed Real-time
Systems,” Technischen Universitat Wien, Tech. Rep. 15/89, 1989.

[5] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime measurements in
the cloud: observing, analyzing, and reducing variance,” VLDB, vol. 3,
pp. 460–471, September 2010.

[6] D. M. Anand, J. Fletcher, Y. Li-Baboud, and J. Moyne, “A Practical
Implementation of Distributed System Control over an Asynchronous
Ethernet Network Using Time Stamped Data,” in 2010 IEEE CASE,
Toronto, Canada, Aug. 2010, pp. 515–520.


