
Performance Evaluation of Video-On-Demand in
Virtualized Environments: The Client Perspective

Jagmohan Chauhan
Dept. of Computer Science
University of Saskatchewan

Saskatoon, SK, CANADA S7N 3C9
jac735@cs.usask.ca

Dwight Makaroff
Dept. of Computer Science
University of Saskatchewan

Saskatoon, SK, CANADA S7N 3C9
makaroff@cs.usask.ca

ABSTRACT
Virtualization is a key technology for data centres to im-
plement infrastructure as a service as well as to achieve
server consolidation and application colocation. Over the
years performance of virtual machine (VM) monitors have
improved [8]. Thus, new services are being migrated to these
environments. Latency sensitive applications however, are
not considered fit for Virtual environments due to high vir-
tualization overhead and potential interference from other
VMs. In this paper, we performed measurement-based anal-
ysis of the performance impact on VOD server in presence
of I/O bound workloads in co-located virtual machines. The
focus of our study is on the QOS (quality of service) received
by clients; metrics of delay, jitter, packet loss are examined.
As expected, the performance of VOD server in a VM suffers
severe degradation in presence of heavy disk-I/O bound and
outbound network UDP co-located workloads.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems

Keywords
I/O Virtualization, KVM, Virtio, Vhost-Net, video-on-demand

1. INTRODUCTION
Large media server deployments require the use of clus-

ters of servers and complicated content distribution net-
works. There is also a place for small and medium-sized
media servers to be deployed at a lower infrastructure cost
for enterprises with more modest viewing population. If
some portion of a computer’s resources could be dedicated
to video server applications, then cloud infrastructures could
be deployed to achieve this functionality.

Virtualization allows for such sharing of resources through
the creation and management of virtual machines. A given

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VTDC’12, June 18, 2012, Delft, The Netherlands.
Copyright 2012 ACM 978-1-4503-1344-5/12/06 ...$10.00.

hardware platform thus contains host software (a hypervi-
sor), which creates a simulated computer environment, and
a virtual machine (VM), called the guest-OS. Virtualiza-
tion provides server consolidation, fault isolation, security
and migration within a machine and between machines in
a cluster or in the cloud. Virtualization necessarily exacts
performance penalties, both in resources required to run the
hypervisor, and as well as in reduced performance on the
virtual machine compared to running native on the physical
machine. One of the important criteria of success for any
virtualized platform is the ability of the underlying hyper-
visor to isolate performance of collocated virtual machines.

Over the last few years, hypervisors have evolved, giving
better performance isolation for some workloads especially
in presence of CPU and memory bound co-located applica-
tions [1]. However, virtualization of I/O operations is con-
sidered the biggest bottleneck for virtualization technologies
today [14]. This raises an important question: Does the
current hypervisor implementation provide sufficient perfor-
mance isolation for latency sensitive applications like gaming
and multimedia to guarantee the effectiveness of resource
sharing? If not, what changes need to be made to pro-
vide these QoS guarantees? This is especially relevant when
the applications running on multiple virtual machines of the
same physical machine compete for disk/network resources.

In this paper, we investigate the performance measure-
ment and analysis of Video on Demand in a Virtualized
cloud using an RTP streaming server, a common approach
in resource-constrained server environments [13]. Video on
Demand places considerable real time requirements on the
servers in terms of content delivery and supporting an ac-
ceptable level of QOS at the clients. Barker and Shenoy [2]
focused on latency sensitive applications in cloud environ-
ments but their emphasis was on the server characteristics
and ignored the client perspective. We think that the client
side’s view is important for two reasons:

• QOS is an important criteria in any multimedia ap-
plication and it matters the most for clients. Clients
simply desire the best QOS possible.

• The relevant behaviour of the server at any point in
time will be reflected at the client in terms of packet
loss, delay and jitter.

Overall, through our performance analysis we determine
whether applications such as VOD can be handled in vir-
tual machine environments and how I/O bound collocated
workloads affect client performance. Based on the analysis,
we also try to determine if current hypervisors are good at

performance isolation or not. The remainder of the paper
is structured as follows. We give a brief overview of KVM
in section 2. In section 3, we describe related work. The
testbed, experiments including methodology is presented in
section 4. We present our analysis in section 5. Section 6
summarizes key findings and conclusions.

2. OVERVIEW AND BACKGROUND
In this section, we briefly discuss KVM’s architecture and

its features as these form the necessary background for our
performance analysis ad measurement study. We have cho-
sen KVM because it is the platform of choice for several
corporate cloud technologies, including IBM, HP and Linux
distribution vendors Red Hat and Ubuntu. In fact, some
industry observers1 claim that KVM is the most promis-
ing choice for future deployment of VM technology. Thus, a
performance study of KVM for latency sensitive applications
can be considered a timely contribution.

Kernel-based Virtual Machine (KVM) [6] represents the
latest generation of open source virtualization. Figure 1
shows a KVM-based VM instance.2 KVM is implemented
as a loadable kernel module that converts the Linux kernel
into a bare metal hypervisor. KVM takes advantage of hard-
ware CPU virtualization support such as that provided by
AMD and Intel to achieve efficient virtualization of CPUs
and memory. The kernel module exports a device called
/dev/kvm, which enables a guest mode of the kernel (in ad-
dition to the traditional kernel and user modes). Devices
in the device tree (/dev) are common to all user-space pro-
cesses. Each process that opens /dev/kvm sees a different
map (to support isolation of the VMs). VCPUs run in pro-
cess execution context as shown in Figure 2 which shows the
entire VCPU execution flow.2

Figure 1: KVM based VM(c©Siemens AG, Corpo-
rate Technology)

There are a number of mechanisms possible for the imple-
mentation of virtual machine network I/O operations. We
will explain the differences between the traditional architec-
ture and optimizations provided by alternate architectures.

1http://www.zdnet.co.uk/news/cloud/2011/05/20/red-
hat-kvm-is-vital-for-the-clouds-future-40092818
2adapted from www.linux-kongress.org/2010/slides/KVM-
Architecture-LK2010.pdf c©Siemens AG, Corporate Tech-
nology)

Figure 2: VCPU Execution Flow in KVM
(c©Siemens AG, Corporate Technology)

For each I/O operation, a VM usually exits from guest
VM execution and enters the host kernel mode for each I/O
request as shown in Figure 3(a). Then, the I/O operation is
redirected to the host user mode (also called VM userspace)
and emulated. For instance in case of network virtualiza-
tion, a NIC is emulated in a VM by the I/O emulation code
running in the user mode. The NIC can resemble an exist-
ing NIC such as Intel E1000 or be a paravirtualized NIC.
To actually transmit and receive Ethernet frames, the I/O
emulation code makes use of a point-to-point TAP network-
ing device which has two end points: one in user space and
one in kernel space. Thus, the I/O emulation code can send
and receive frames by interacting with the user space end
of the TAP device. The kernel end of the device can be
bridged with a physical NIC to connect to the outside net-
work. From the above description, we can see that network
I/O emulation is handled by the emulation code running in
user mode. We should note that to enter the user mode,
the VM needs to perform a context switch to exit from the
guest mode (VM exit). Since VM exits usually have high
overhead, it is important to reduce their numbers.

KVM uses a well-architected paravirtualized driver based
on virtio [11] (Figure 3b). The guest runs a paravirt virtio
driver and QEMU emulates the virtio device. The number
of context switch from Guest->Host->User and vice/versa
are reduced significantly. I/O is buffered in circular send
and receive queue. Virtio device drivers are also used for
block devices to do disk related operations. In Vhost-net
architecture (Figure 3c), the kernel emulates virtio device
through vhost-net and the guest runs the paravirt virtio de-
vice driver. The context switches take place between kernel
and user, eliminating per vmexit context switches.

3. RELATED WORK
A lot of research has been done regarding the performance

of virtualization in different application domains. Padala et
al. focussed on server consolidation [10]. The authors stud-
ied the impact of virtualization on server consolidation and
its performance. Wang et al. studied the network perfor-
mance in an Amazon EC2 center [16]. They measured the
processor sharing, packet delay, TCP/UDP throughput and
packet loss among Amazon EC2 virtual machines and found
out that even though the data center network is lightly uti-
lized, virtualization can still cause significant throughput
instability and abnormal delay variations.

(a) Traditional Network architecture (b) Virtio-net architecture (c) Vhost-net architecture

Figure 3: KVM Network Architecture

There has been lot of focus on the impact of virtualization
technologies on high performance computing [4, 5]. These
works point out that the current clouds need an order of
magnitude in performance improvement to be useful to the
scientific community. Nae et al. [9] proposed a new hybrid
resource provisioning model that uses a smaller and less ex-
pensive set of proprietary data centers, complemented by
virtualized cloud computing resources during peak hours in
their study of MMOG virtualizaton technology.

The work done closest to our investigation is that of Barker
and Shenoy [2]. They studied the impact of Xen based
virtualization on latency sensitive applications like gaming
and multimedia. The results reveal that the jitter and the
throughput seen by a latency-sensitive application degrades
due to background load from other virtual machines. The
degree of interference varies from resource to resource and
is most pronounced for disk-bound latency sensitive tasks,
which can degrade by nearly 75% under sustained back-
ground load. The work was done on Amazon EC-2 cluster
and local setup of machines. Our work is different in that
we are focusing on only VOD server with a different virtu-
alization technology and taking the client’s perspective into
account, which has been ignored in previous studies.

4. EVALUATION METHODOLOGY
In this section, we give an overview of our evaluation

methodology. We first describe our experimental testbed
and explain the scenarios, benchmarks and metrics we used
for evaluating VOD performance.

4.1 Experimental Testbed
For all of our experiments we had two machines, one as a

VOD server and the other generating client video requests.
The host machine running VOD server is an Intel Quad core
machine (2.40 GHz, 32 bit) with 3 GB of RAM, 320 GB of
hard disk and 100Mbps network connection.The host is in-
stalled with latest 3.0 Linux kernel and provides hardware
acceleration feature to be used with KVM. KVM is used to
create two VM instances on the host. The first VM instance
acts as VOD server and second one hosts an interfering work-
load. Each VM instance has same configuration: 1 VCPU,
512 MB of RAM, 25 GB of disk. The VMs use virtio device

drivers for the block devices and network. Ubuntu 11.10 has
been installed on the guest virtual machines. The client ma-
chine is running 2.4 Ghz Pentium quad core having 2 GB of
RAM, 300 GB of hard disk and 1 Gbps network connection.
The two machines are part of same LAN which is being
served by 8 Gbps network switch. Our experimental set-
tings ensure that neither the client machine or the network
links become the bottleneck; thus, we chose the 100 Mbps
NIC card on the server. It eliminates any situation where
network and NIC at client could have been a bottleneck.

We used the VLC server3 to act as VOD server. VLC has
many features which make it attractive as a VOD server, in-
cluding the following: ability to encode and decode variety
of formats, transcoding on the fly, open source availabil-
ity. We use OpenRTSP4 to generate client requests to the
VOD server from our client machine, and transmit the video
data with a UDP-based RTP stream. OpenRTSP provides
QOS statistics after receiving streams, is open source and
gives the ability to receive streams over the network without
playing them (to save CPU overhead on the client machine).
The VOD server contains actual Youtube videos of 4 min-
utes duration in mp4 format. RTSP is used to establish and
teardown the stream sessions. RTSP is used in YouTube
mobile services, Real Media and Apple’s Quick Time.

4.2 Scenarios
We designed two experimental scenarios:

• All clients accessing the same video: Simultaneous ac-
cess is a common scenario for any VOD server with
unicast delivery of highly popular videos. We expected
this kind of scenario to overflow the network buffers
at the VOD server because of the VBR nature of the
streams, which leads to simultaneous bitrate peaks.

• All clients accessing different videos. This scenario is
also common to any VOD server and holds especially
true for cold videos. Our expectation in this scenario
is that the disk shall become the bottlenecked resource
at the VOD server because the requested video sizes

3http://www.videolan.org/vlc/
4http://www.live555.com/openRTSP/

will not fit in memory and then VOD server has to do
a lot of disk I/O to fulfill the needs of different clients.

In all the above scenarios, the main idea was to increase
the number of clients till the point we see start to observe
issues at clients like packet loss, high delay etc. This is done
to calculate the saturating point of the VOD server, which
provides our baseline cases. We then reduce the number of
clients until the saturating point is not observed any more.
We calculate the performance metrics for all clients at this
point and this act as our base case.

After establishing the base case, we started to stress the
colocated VM with different types of disk and network in-
tensive benchmarks. At the same time, the VOD server was
serving the same number of clients as we got in baseline case.
This helped us to observe the performance affect on VOD
server when it is running along with another VM which is
doing some resource intensive job. The impact is measured
at the client side with the help of QOS performance metrics
which are discussed in the next section.

We used following benchmarks on the colocated VM.

• For the I/O operations stress tests, we use Filebench.5

Filebench is a file system and storage benchmark that
allows to generate a large variety of workloads. Unlike
typical benchmarks such as bonnie++, it is very flexi-
ble and allows to minutely specify (any) applications’
behaviour using extensive Workload Model Language.
Filebench uses loadable workload personalities to al-
low easy emulation of complex applications (e.g., mail,
web, file, and database servers).

• For network stress testing we used iperf,6 a commonly
used network testing tool that creates TCP/UDP data
streams and measures connection throughput.

4.3 Performance Metrics
The following metrics are used in our measurement study:

• Packet Loss Percentage: This represents the percent-
age of packets lost at the VOD server network stack
for a stream. Since we are using UDP, a stream with
large packet loss has poorer visual quality.

• Delay: This represents the time (milliseconds) between
any two consecutive packets for a stream. If packets
experience longer delays than required for continuous
playback, then either playback will be interrupted, or
a startup latency must be introduced. Quantifying the
required startup latency is part of future work.

• Jitter: This represents the weighted average of varia-
tion in delay as described in the RTP standard [12].

• Delayed packets: This represents the number of pack-
ets which are delayed beyond a maximum threshold of
400 ms for a stream.

Although QOS statistics are already implemented in Open-
RTSP, we extend it to add the jitter, reordering and number
of delayed packet statistics, as well as to write all the QOS
stats to a file. The discussed performance metrics give us
an idea of the QOS as observed by the clients. In our study,

5http://sourceforge.net/apps/mediawiki/filebench/index.php
6http://sourceforge.net/projects/iperf/

we defined a highest quality stream to have no more than
0.1% packet loss, max delay under 400 milliseconds, a jitter
of no more than 50 ms and no reordering. For VOD appli-
cation, the indicator of good QOS is specified by Tarnai and
Telekom [15] and our thresholds for QOS are based on it.

5. EVALUATION

5.1 Scenario 1 (Same Video)
In this scenario, all the clients access the same video over

the network from the VOD server. The total bitrate for the
video was 3.2 Mbps. The baseline QOS stats are shown in
Table 1. The number of clients we were able to support
without observing packet loss was 12. The average values
shown in the table are the average of all the clients for 5 runs.
The max values in stats shows the maximum of all the values
observed in 5 runs for all the clients. The video and audio
streams are shown separately to get better understanding.
We observed that in our base case the value of jitter were
less than 1 ms and delay under 80 ms for both audio and
video streams in most cases. There was no packet reordering
or loss. The average network bandwidth used was around 50
Mbps and occasionally reaching maximum bandwidth of 94-
95 Mbps. Jitter shows a high variability in the base case, for
both the audio and the video streams. This further indicates
instability, but at a very small time scale for the audio.

Metric Value Std. Dev.
Video avg. jitter. 0.23 0.39
Video max. jitter 1.95
Video avg. max delay 68.17 16.63
Video max. delay 129.17
Audio avg. jitter. 0.21 0.29
Audio max. jitter 1.51
Audio avg. max delay 60.19 20.04
Audio max. delay 130.70

Table 1: Scenario 1 Base Case Performance (ms)

Disk stress test.
Filebench is used for this test. We used the fileserver

and webserver workloads from the available workload types.
The fileserver workload emulates simple file-server I/O activ-
ity, performs a sequence of creates, deletes, appends, reads,
writes and attribute operations on a directory tree. 50 threads
are used by default. The workload generated is somewhat
similar to SPECsfs.7 The total file size was 1024 MB, which
was greater than the size of RAM available to the VM. The
web server workload emulates simple web-server I/O activ-
ity. It produces a sequence of open-read-close on multiple
files in a directory tree plus a log file append. 50 threads
are used in our experiments along with 80000 files. This was
done to make resulting the file size equal to 1024 MB and
comparable to the fileserver workload. We saw more than
100% disk utilization at all times for both workloads. The
performance metrics for this test are shown in Table 2. We
did not see high impact on any of the average performance
metric values. Both the file server and the web server work-
load had similar results. There were no packet losses. Jitter

7http://www.spec.org./

Fileserver Webserver
Metric Mean Std. Dev. Mean Std. Dev.

Video avg. 0.13 0.09 0.18 0.32
jitter

Video max 0.58 2.05
jitter

Video avg. 89.46 45.49 81.9 43.03
max delay
Video max 288.5 224.5

delay
Audio avg. 0.15 0.17 0.21 0.26

jitter
Audio max 0.99 1.2

jitter
Audio avg. 79.59 44.73 73.36 45.47
max delay
Audio max 279.3 212.3

delay

Table 2: Scenario 1 Disk Stress Case Performance
(ms)

and delay do not have a correlation, as packets may experi-
ence high, uniform delay. Despite a high amount of activity
in the colocated VM, the VOD server was able to handle the
multimedia traffic. The main reason is that the single video
being served was located in physical RAM, eliminating con-
tention on the physical disk. The high degree of variation in
the results shows that there is less predictability and though
the increase in the average values is not that significant, the
relative size and occurrence of outliers does increase.

Network stress test.
As mentioned earlier, iperf is used for this test. We did

4 kinds of tests here: TCP Send, TCP Receive, UDP Send,
and UDP Receive, where TCP or UDP refers to the type of
protocol we used for the iperf tests and send/receive tells the
direction of traffic w.r.t. to the VM running iperf. So TCP-
Send means the network-collocated VM is sending TCP traf-
fic. In case of TCP, the client sends as much traffic as it can
and there is no option to regulate it. In the UDP tests, how-
ever, we can specify the bandwidth we want to use. In our
case, we specified it as 95 Mbps because this is the through-
put we got when we run iperf standalone. The performance
metrics for this test are shown in Table 3.

We found some interesting results here. Firstly, the packet
loss for UDP-Send is substantially higher than packet loss in
TCP-Send cases. When a TCP stream tends to see packet
losses, congestion avoidance is used by TCP which reduces
the network traffic and the VOD traffic gets a chance to send
through packets easily. This causes a loss of throughput in
the collocated VM (62 Mbps). With UDP, there is no flow
control, and both VMs try to send as much traffic as possi-
ble, leading to high packet losses. The throughput in the col-
located VM was 82 Mbps. Linux tc rate-limiting could have
been used to provide isolation among the competing VMs.
This mechanism gives each VM its guaranteed rate while
fairly dividing slack bandwidth. However, such a mechanism
can mitigate, but not totally eliminate interference. In fact,
Barker and Shenoy [2] show that network isolation mecha-
nisms in the hypervisor present a trade-off between mean
latency and metrics such as jitter and timeouts–dedicated

caps yield lower average latency, while fair sharing yields
lower timeouts and somewhat lower jitter due to the ability
to use unused capacity from bursty background loads.

Secondly, the reason for packet loss in the Send cases is the
high number of VM exits because of high IRQs and sharing
of common network channel on the host kernel.

Finally, we observe no packet loss in presence of UDP/TCP
receive traffic. KVM virtio network architecture maintains
separate queues for sending and receiving traffic, account-
ing for some of the lack of interference. Another reason can
be network device drivers in Linux can use NAPI, which
switches from interrupt to polling mode during high recep-
tion load to reduce the number of interrupts and improve
network processing. This leads to fewer VM exits.

5.2 Scenario 2
In this scenario, all the clients access different videos si-

multaneously. We used the same benchmarks with same
settings as in scenario 1 and also perform 5 runs for each
configuration. As expected, the disk I/O becomes the bot-
tleneck in this scenario. The videos have different bit rates
and hence the network utilization was not very high. We
were able to support a maximum of 15 clients with highest
QOS. The reason this is higher than Scenario 1 is because of
the statistical multiplexing of the VBR streams’ bandwidth
requirements over time, in which the spikes in bandwidth
requirements do not coincide. The total size of the videos
was around 450 MB, which was less than the RAM avail-
able to the VM. If we increase the number of videos close
to physical RAM available, we observed delayed packets in
the multimedia streams. The baseline results are shown in
Figure 4 and 5. The legend on all remaining bar graphs
remains the same as in these figures.

Figure 4: Base config Jitter (Scenario 2)

Figure 5: Base config Delay (Scenario 2)

The values for jitter were less than 1 ms for most of the
cases, which is encouraging. The delay we observed ranged

Case Avg
pkt loss
video %

Avg
Jitter
video
(ms)

Max
Jitter
video
(ms)

Avg
Delay
video
(ms)

Max
Delay
Video
(ms)

Avg
pkt loss
audio
%

Avg
Jitter
audio
(ms)

Max
Jitter
audio
(ms)

Avg
Delay
audio
(ms)

Max
Delay
audio
(ms)

TCP Send 0.45 7.16 7.68 93.53 181 0.09 7.41 8.95 88 192
TCP Recv 0 0.1 0.54 69 96 0 0.13 0.77 53 79
UDP Send 60 1.09 5.41 127 226 26 0.76 2.47 186 302
UDP Recv 0 0.18 0.64 142 291 0 0.33 2.72 140 304

Table 3: Network Stress Case Performance (Scenario 1)

between 100-200 ms; for every stream it was different and
did not depend on video bitrate. Each run produced dif-
ferent behaviour for each video, so even for the base case,
more client resources would be required to accommodate late
packets than in the single video case. The variation between
runs was significant, but for QoS guarantees, we are not so
concerned about average values, but keeping the maximum
delay values observed as small as possible.

For both the fileserver and webserver workloads, we ob-
served very high max and average jitter values for some of
the videos (not shown), but on average, the jitter is below
3 ms. The delay results corresponding to the fileserver re-
lated tests are shown in Figure 6. High average maximum

Figure 6: FS-test Delay (Scenario 2)

delay of 2-3 seconds across all runs for nearly every video
and max delay of 4-6 seconds was common for the fileserver
workload. The webserver workload was even worse (10-20
seconds). The high disk I/O activity leads to high number
of VM exits in the collocated VM. This also means a large
number of interrupts to the host kernel to service the inter-
rupts whenever the block is ready to be read or written, and
a high number of context switches between the VMs. The
VOD server workload has high network activity which leads
to frequent VM exits. However, these VM exits (causing a
host interrupt to send network packets) could not be prop-
erly serviced as most of its time is being taken by the disk
collocated workload. The result is high jitter and delay, but
the delay rarely exceeds the threshold (average 8-12 delayed
packets per stream). Startup-latency of a few seconds at
the client could be sufficient for this delay, easily available
on wired clients. For the webserver workload, more startup-
latency would be required.

Figure 7 shows the jitter statistics for TCP send case while
8 shows the delay statistics for UDP send case. There were
no packet losses in the TCP send case. This is because with
different videos, the network utilization was moderately high
at all times and TCP rate control reduced the interference
provided by the collocated workload, leaving more resources

Figure 7: TCP Send Jitter (Scenario 2)

Figure 8: UDP Send Delay (Scenario 2)

for the VOD server. The percentage of packet loss in UDP
remains very high, however, and was different for different
videos because of its aggressive sending policy. The percent-
age of packet loss was different for different videos in UDP
Send and it ranges from 25-50% for video stream. For audio
stream, the percent of packet loss ranged between 10-30%.
We observed moderate jitter (6-7 ms) in TCP Send and ex-
tremely low jitter values in UDP Send case. This may be
because in case of TCP, all the packets reach the destination
but with a bit of variable delay. In UDP, many packets do
not reach the destination client. As a result we also see a
high delay in the UDP Send case (Fig. 9), compared to TCP
Send case (result not shown).

Figures 9(a) and 9(b) are shown to display the difference
in delay statistics for TCP and UDP receive case. We did
not see any packet losses in TCP or UDP receive test cases
as was observed in scenario 1. We also did not observe high
jitter and average maximum delay values. Figures 9(a) and
9(b) show high maximum delay, but that was only due to a
single delayed packet in each video.

5.3 Other Scenarios
A. Experiments with Vhost-Net: The vhost net is a kernel-

(a) TCP (b) UDP

Figure 9: Network Rx Delay (Scenario 2)

Case Avg
pkt loss
video
%

Avg
Jitter
video
(ms)

Max
Jitter
video
(ms)

Avg
Delay
video
(ms)

Max
Delay
Video

Avg
pkt loss
audio
%

Avg
Jitter
audio
(ms)

Max
Jitter
audio
(ms)

Avg.
Delay
audio
(ms)

Max
Delay
audio
(ms)

TCP Send 0.67 7.3 7.8 208 598 0.11 7.5 8.68 196 598
TCP Recv 0.005 0.169 0.67 77.7 112 0.0007 0.23 4.76 69.94 119
UDP Send 67.7 0.4 1.26 132.6 238 27.9 0.39 0.92 208 465
UDP Recv 0.008 0.50 3.38 187 623 0 0.68 3.24 178 600

Table 4: Performance metrics for network stress case in presence of vhost-net (Scenario 1)

level backend for virtio networking. The main motivation
for vhost is to reduce virtualization overhead by moving the
task of converting virtio descriptors to skbs and back from
qemu userspace to the vhost net driver. For virtio-net, this
means removing up to 4 system calls per packet: vm exit for
kick, reentry for kick, iothread wakeup for packet, interrupt
injection for packet. We tried the single video scenario with
vhost-net to see if it improves the performance. We did not
see any difference in the scalability of the number of videos.
The results for VOD server in presence of collocated VM
running UDP/TCP send/recv are shown in Table 4.

We observed an interesting result that the delay and packet
loss are increased in all the cases, especially in the case of
TCP. The throughput in colocated VM running iperf has
also gone up to 72 Mbps in case of TCP and 85 Mbps in
case of UDP, which explains the degradation of performance
of VOD in our case. Vhost-net reduces the number of VM
exits and hence increases the throughput in collocated VM,
leading to more packet losses and high delay in VOD server.
B. colocated Disk workload - different disk/same bus: The
disks we used in this experiment were of different configura-
tion. The results are shown in Figures 10(a) and 10(b). The
values for jitter, delay are reduced and the average of num-
ber of delayed packets is very low (2-3 packets) compared to
scenario 1.
C. colocated Disk workload - different disk/different bus: In
this experiment, we observed what happens if VOD server
and Fileserver disk benchmark are executed on different
disks having their own bus. The motivation behind this ex-
periments was to check if KVM can isolate the performance
for two completely different workloads on different disk and
bus. The disks we used in this experiment were of different
configuration. The results are shown in Figures 11(a) and
11(b). In this case, the VOD server was able to support all
different videos without any delay and jitter. This is due to

hardware isolation removing bus contention, as well as VM
isolation efforts in software.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we performed an evaluation of VOD servers

in virtualized environments and measured the performance
impact when such a server runs in parallel with other re-
source intensive workloads. We found that the VOD per-
formance suffers badly when the collocated VM runs UDP
based outbound traffic and it results in packet losses as high
as 50-60%. This is expected as there is no congestion or flow
control implemented in the collocated VM. For TCP and in-
bound UDP collocated VM workloads, VOD performs well.
High delay and jitter is common when collocated VM runs
the disk bound benchmark. However, the average number of
delayed packets is relatively rare (10-12) and client buffering
capabilities would be sufficient to eliminate this issue.

Software based enhancements like vhost-net can degrade
the performance for latency based workload as we saw in
our results. So, one has to be careful before using them
for any application in cloud environments. Hardware based
solutions like Direct I/O8, VMDQ [3], and SR-IOV [7] can
be efficient but have yet to be tested for multimedia ap-
plications. Using more resources like different disks can be
helpful for multimedia workloads but it defeats the purpose
of cloud, which is efficient resource utilization and cost sav-
ing. We believe that with hardware assisted solutions I/O
Virtualization shall no longer reamin a big issue and many
Tier 1 applications including multimedia workloads will be
consolidated on virtualized servers. Future work may in-
clude experimentation with these hardware-based solutions
as well as comparisons with systems that do not use virtual-

8http://software.intel.com/en-us/articles/intel-
virtualization-technology-for-directed-io-vt-d-enhancing-
intel-platforms-for-efficient-virtualization-of-io-devices/

(a) Jitter (b) Delay

Figure 10: Different disk/same bus (Scenario 2)

(a) Jitter (b) Delay

Figure 11: Different disk/different bus - different videos

ization. Tests in a WAN would allow us to determine if the
delays at the server are masked by the uncertainty in the
network between client and server.

Acknowledgements
The authors would like to acknowledge the financial support
of the National Science and Engineering Research Council
of Canada, as well as feedback on initial versions of this
research from Derek Eager.

7. REFERENCES
[1] S. Appel and I. Petrov. Performance Evaluation of

Multi Machine Virtual Environments. In 2010 SPEC
Benchmark Workshop, pages 1–13, Paderborn,
Germany, Oct. 2010.

[2] S. K. Barker and P. Shenoy. Empirical Evaluation of
Latency-Sensitive Application Performance in the
Cloud. In MMSYS 2010, pages 35–46, Phoenix, AZ,
February 2010.

[3] S. Chinni and R. Hiremane. Virtual Machine Device
Queues. Intel Corp White Paper, 2007.

[4] W. Huang, J. Liu, B. Abali, and D. Panda. A Case for
High Performance Computing with Virtual Machines.
In International Conference on Supercomputing, pages
125–134, Queensland, Australia, June 2006.

[5] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan,
T. Fahringer, and D. Epema. Performance Analysis of
Cloud Computing Services for Many-tasks Scientific
Computing. IEEE Transactions on Parallel and
Distributed Systems, 22(6):931–945, June 2011.

[6] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and
A. Liguori. KVM: The linux Virtual Machine Monitor.

In Linux Symposium, pages 225–230, Ottawa, ON,
Canada, June 2007.

[7] J. Liu. Evaluating Standard-based Self-virtualizing
Devices: A Performance Study on 10 GbE NICs with
SR-IOV Support. In IEEE International Parallel and
Distributed Processing Symposium, pages 1–12,
Atlanta, GA, April 2010.

[8] R. McDougall and J. Anderson. Virtualization
Performance: Perspectives And Challenges Ahead.
SIGOPS Oper. Syst. Rev, 44(4):40–56, 2010.

[9] V. Nae, A. Iosup, R. Prodan, and T. Fahringer. The
Impact of Virtualization on the Pperformance of
Massively Multiplayer Online Games. In NetGames,
pages 1–6, Paris, France, November 2009.

[10] P. Padala, X. Zhu, Z. Wang, S. Singhal, and K. Shin.
Performance Evaluation of Virtualization Technologies
for Server Consolidation. Technical Report
HPL-2007-59, HP Labs, 2007.

[11] R. Russell. Virtio: Towards a De-facto Standard for
Virtual I/O Devices. SIGOPS Oper. Syst. Rev,
42(5):95–103, 2008.

[12] H. Schulzrinne, S. Casner, R. Frederick, and
V. Jacobson. RTP: A Transport Protocol for
Real-Time Applications. RFC 3550 (Standard), July
2003. Updated by RFCs 5506, 5761, 6051, 6222.

[13] F. Boronat Segúı, G. Cebollada, J. Carlos, and
J. Lloret Mauri. An RTP/RTCP based approach for
multimedia group and inter-stream synchronization.
Multimedia Tools Appl., 40(2):285–319, Nov. 2008.

[14] J. Shafer. I/O Virtualization Bottlenecks in Cloud
Computing Today. In USENIX WIOV Workshop,
pages 1–7, Pittsburgh, PA, March 2010.

[15] B. Tarnai and M. Telekom. Requirements and Traffic
Dimensioning for System Concepts and Architecture.
Technical report, OASE/ACCORDANCE, 2010.

[16] G.I. Wang and T. S. Ng. The Impact of Virtualization
on Network Performance of Amazon EC2 Data
Center. In IEEE INFOCOM, pages 1163–1171, San
Diego, CA, March 2010.

