
MT-WAVE: Profiling Multi-Tier Web Applications

Anthony Arkles
Department of Computer Science

University of Saskatchewan
Saskatoon, SK, CANADA

S7N 5C9
aja042@cs.usask.ca

Dwight Makaroff
Department of Computer Science

University of Saskatchewan
Saskatoon, SK, CANADA

S7N 5C9
makaroff@cs.usask.ca

ABSTRACT
Modern web applications consist of many distinct services
that collaborate to provide the full application functional-
ity. To improve application performance, developers need
to be able to identify the root cause of performance prob-
lems; identifying and fixing performance problems in these
distributed, heterogeneous applications can be very difficult.
As web applications become more complicated, the number
of systems involved will continue to grow and full-system
performance tuning will become more difficult.

We postulate that multi-tier profiling, starting at the web
browser, is the appropriate way to solve this problem. In-
strumenting from the web browser, as the user experiences
it, ensures that we can tell what each service in the applica-
tion is contributing to overall page-load time; thus, each tier
must provide instrumentation data that developers can use
to quickly identify the root cause of performance problems.

We have built MT-WAVE, a system that integrates with
the different tiers of a web application (including a browser
extension) and collects light-weight instrumentation to a
central location via X-Trace [13] facilities. The collected
data is presented with our visualization system that provides
varying levels of detail. To validate our approach, we per-
formed case studies of two applications, both showing per-
formance insight. In particular, we identified and fixed a sig-
nificant and unintuitive bottleneck in an open-source project
management application and verified caching behaviour in a
cloud-hosted commercial product. While specific technolo-
gies are used in our case study, we believe that most web
technologies in common use today would require straightfor-
ward modifications to be able to utilize MT-WAVE tracing
facilities.

This tool is designed to be used by application developers
and system administrators while testing new software, or
after deployment when it becomes clear that existing per-
formance is not meeting user needs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’11, March 14–16, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-4503-0519-8/11/03 ...$10.00.

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS]: Measurement
Techniques; C.2.4 [Computer Communication Networks]:
Distributed Systems—distributed applications

General Terms
Measurement, Performance

Keywords
web applications, performance tracing, visualization

1. INTRODUCTION
Modern web applications consist of many independent ser-

vices that collaborate to provide the full application func-
tionality. These services often run on different machines,
sometimes even hosted in separate administrative domains
(e.g. cloud hosting or outsourced services). Further, web
applications often have significant client-side code that runs
in the user’s browser.

This paper describes the problems associated with per-
formance measurement in these distributed systems and a
technique for aggregating performance data from distributed
systems. The system also includes a framework for data ex-
traction and processing, with a sample hierarchical visual-
ization system that provides varying levels of detail (so the
system analyst can switch between high- and low-level views
of system performance).

Several authors have identified the need for full end-to-
end multi-layer tracing. Endo et al. [9] claim throughput-
based measurement of system performance does not accu-
rately capture the user-perceived performance of a system,
explaining that throughput measurements often represent a
heavy workload that does not model user behaviour accu-
rately (for example, a high volume of events very quickly in
time) and does not accurately capture the latency variation
experienced from request-to-request. Fu et al. [14] identi-
fied the utility of distinguishing between server latency and
network overhead when retrieving a web page, along with
information on the actual composition of web pages. Heller-
stein et al. [16] eloquently describe the tracing requirements
as “finger tip to eyeball” performance; measuring from when
the user starts the transaction to when the final results are
presented. Dapper [27] is a multi-layer tracing framework in
use at Google, which shares some similarity to MT-WAVE,
but only performs multi-layer tracing in the back-end. For a
more detailed explanation of our choice of instrumentation
techniques, see the related work.

Jones [19] points out that when solving performance prob-
lems, our intuition about the relative impact of various sys-
tems is often incorrect; this corresponds to the author’s
industrial experience. In fact, industrial experience using
some of the tools described in section 6 was the catalyst for
investigating more powerful techniques for performing web
application performance measurement.

The paper is organized as follows. Section 2 provides
more detailed motivation and Section 3 describes the ap-
proach we’ve used to perform the tracing. In Section 4,
we describe the data collection, storage, and visualization
techniques we’ve used. Section 5 explains our experience
using MT-WAVE on real applications. Section 6 outlines
a number of different related distributed computing tracing
techniques. We conclude in Section 7 including elaborations
on future directions.

2. THE PROBLEM
Distributed web applications often consist of many dis-

joint systems; these can be written in different programming
languages, exist on different servers, or within different ad-
ministrative domains, and provide many different types of
system performance monitoring. Despite the significant het-
erogeneity in these systems, a performance analyst needs to
see how all of the systems behave and interact in order to
understand holistic system performance.

With an understanding of overall system performance, an
analyst still faces a difficult decision: which systems should
be improved in order to improve overall end-user experi-
ence? Traditionally, this problem is solved by identifying
system bottlenecks and investing effort to improve the bot-
tlenecked system. In a complex web application, the concept
of “a single bottleneck” is blurred; there are many different
user actions, and it can be difficult to determine how an im-
provement in an identified bottleneck will actually improve
the overall performance from a user’s point-of-view.

To solve these problems, the analyst needs access to a
very broad set of data to determine which resources are used
most often, which systems are involved in the use of those
resources, how long each of the involved systems takes to
perform data processing, and which data processing, if any,
happens in parallel, etc. Currently, there are tools that pro-
vide portions of this data, but do so independently of the
other systems involved.

To collect and present this data to an analyst, we have
developed MT-WAVE (Multi-Tier Web Application Visu-
alization and Evaluation), which addresses the challenges
in large-scale web application performance monitoring and
analysis. The main characteristics of MT-WAVE are the
following:

• An existing distributed data collection service,
X-Trace [13], has been retrofitted with extensions that
assist with collecting web-based profile data. We have
developed a report collection and retrieval facility that
communicates using JSON [8] for simple JavaScript
integration.

• We implemented a client-side tracing system that as-
sociates all of the requests required to serve a web page
with unique task and operation identifiers, while gath-
ering user-perceived timing information.

• We developed lightweight data collection modules for

Django1 and Google App Engine2 that instrument and
forward X-Trace metadata to other services called from
the application.

• We provide a data visualization system that interacts
with the JSON X-Trace interface to provide analysts
with variable high- and low-level system views to deter-
mine which system components are likely to be causing
the highest-impact performance problems.

• We use MT-WAVE to investigate the page load per-
formance of two sample web applications.

To put the problem in concrete terms, we will consider
two case studies that show the usefulness of MT-WAVE.
First, we instrumented and evaluated Basie [4] (section 5.1),
a student-developed “web-based software project forge” for
managing software development. It presents a web-based
interface to version control systems, project documentation,
(via a Wiki), and an issue tracker (for keeping track of bugs
and features that need to be implemented in a software
system). Basie is built using Python and Django, using
an SQLite database and SVN for version control integra-
tion. Second, we examine MashedIn (section 5.2), a multi-
tiered application that runs on the Google App Engine. The
MashedIn application aggregates data from different social
networks (Twitter, Facebook, etc) and combines the results
to help users find people they may know. Architecturally,
this application makes many calls to third-party services and
relies heavily on the App Engine DataStore and Memcache
services to improve system performance.

To get a better sense of MT-WAVE deployment, we con-
sider a request for a Dashboard that displays recent project
activity and the services that will be used. The browser
first makes a request for “/basie/project/dashboard”, which
the web server directs to the Basie application. To display
all the information on the dashboard page, the application
needs to query the SVN repository (to find recent com-
mits), along with a number of database queries to determine
which milestones there are, how many tickets there are for
the project (open/total), which Wiki pages have been re-
cently modified, what recent activity there has been, which
user is currently logged in and which tickets are assigned to
them, etc. After receiving this first response, the browser
loads other resources (images, CSS, JavaScript, etc). The
overall page load requires 13 total HTTP requests from the
browser and 65 database queries. If this page were perform-
ing slowly, where would a performance analyst start? There
are many different components to the page load/rendering
process; getting a clear big-picture view of the system is
necessary to begin the debugging process.

3. MULTI-TIER PERFORMANCE
TRACING

When a web browser makes a request for a page, it sets
into motion a large number of activities. This request even-
tually reaches a web server that will process the request
and return a response. This response often includes ref-
erences to other resources (for example, the images, CSS,
and JavaScript content required to display the web page).
Each of these requests may required additional server-side

1http://www.djangoproject.com/
2http://code.google.com/appengine/

processing before a response can be generated, and these re-
sponses may lead to further resource requests. Additionally,
when the user clicks an element in the document, there may
be additional requests generated (even though a new page is
not loaded; for example, consider AJAX [25]). All of these
requests are considered to be part of the page response time
and can be investigated using MT-WAVE.

As web applications become more complicated, the num-
ber of systems involved will continue to grow. Tradition-
ally, a web application often consisted of a basic application
(written in a high-level language like Python, PHP, or Java)
and a database server.

Cloud-hosted applications have a different environment
to work in that traditional web applications. Google App
Engine, for example, provides the DataStore, Memcache,
UrlFetch, Offline Task Queue, Image Processing service, and
several other services. On top of the large number of dif-
ferent services provided, web applications can no longer be
expected to run on any particular machine; the serving in-
frastructure dynamically assigns machines to run applica-
tions. The large number of services and dynamic serving
behaviour make it much more challenging to predict how an
application will perform.

For MT-WAVE to trace web applications, each service
used by the application will require source code modifica-
tion. Fonseca et al. [12] say that changing applications for
X-Trace instrumentation is straightforward and has mini-
mal impact; our experiences agree. An alternative approach
to this would be configuration-based tracing; we’ve chosen
source code modification instead, because this gives us the
ability to capture richer application-specifc data. We’ve
found that in most cases, the modifications required are
quite small. When the application cannot be directly mod-
ified, it is often possible to wrap the application in a thin
middleware layer that treats the component as a black box.

3.1 X-Trace Summary
While a full treatment of the X-Trace system is available

elsewhere [13], it is beneficial to refer to the important parts
of it used in the MT-WAVE system. X-Trace fundamentally
consist of two concepts: Tasks and Operations.

An X-Trace Task is the container for an entire “large-
scale” capture; within the context of MT-WAVE, a Task
is associated with the entire page a user is trying to view.
Tasks are identified by a random 8-byte identifier and have
a one-to-many relationship with X-Trace Operations.

X-Trace Operations are the individual events that make
up an X-Trace Task. Each operation has an associated OpId
(which is also a random 8-byte identifier), a timestamp, an
Agent field (to indicate which system is logging the event),
a Label field (to indicate what is actually being logged), an
Edge field, and can contain other fields that the logger adds.

The Edge field is the important part for establishing causal-
ity. Each operation is annotated with the OpId of its causal
parent; using these edges, we can reconstruct the causality
chain to determine which events “caused” other events. The
resulting Event Tree contains all of the causality and timing
information of the events for the entire Task.

While handling each of these incoming requests, the web
application will often need to call other services; this process
can happen recursively, resulting in a chain of requests. To
properly understand the system interactions, it is necessary
to consider this causality chain. To capture the causality,

we take advantage of the X-Trace system; each full page
request has an associated Task ID, each operation has an
Operation ID, and each piece of logged data has an Edge
back to the parent operation event in the causality chain
(which eventually leads back to the initial request in the
web browser). The result is an Event Tree that links every
recorded event with its causal parent.

3.2 Client-Side Tracing
Since we are concerned about“user perceived”system per-

formance, the tracing must start within the web browser on
the client side. We have implemented this as a Firefox exten-
sion. The MT-WAVE extension is responsible for setting the
correct TaskID and OpId for outgoing HTTP requests, mea-
suring specific events during the page load and JavaScript
execution, and reporting this data back to the running X-
Trace server.

The measurement portion of MT-WAVE in the web browser
depends heavily on two Firefox instrumentation systems:
the“observer-service”[24] and the“http-activity-distributor”
[23]. These two services provide us with timestamps for the
following events:

• request is queued and its response is received.

• beginning of DNS resolution.

• TCP socket connection beginning/ establishment.

• each HTTP header is successfully sent.

• browser begins to receive an HTTP response.

These services also provide us with the ability to detect
when a new page is loaded, associate HTTP connections
with page loads, and add custom HTTP headers to the con-
nection. When a new page is loaded, we generate a new
X-Trace Task ID and associate that metadata with the new
page. Any HTTP requests that happen with that page are
annotated with X-Trace headers that indicate the shared
Task ID and unique OpIds that are later used to identify
the causality chains.

3.3 Web Application Tracing
Once a request reaches the HTTP server, it is passed on

to the web application for processing. Django applications
are structured so that a request passes through a series of
Middleware layers and then are processed using “view func-
tions”. Since Django was the first application environment
we instrumented, we explain it in more detail. Other plat-
forms are structured in a similar fashion, so we leveraged
our experience with Django when developing other plugins.

Once a request reaches the HTTP server, it is passed on
to the web application for processing. This web applica-
tion could be fairly simple, or it could involve substantial
computations and even be deployed on a separate applica-
tion server. Thus, at the back end, there could be significant
network communication between the web server, application
server and database server.

Django applications pass requests through a series of mid-
dleware layers and then process them using“view functions”.
To instrument a Django application, we’ve created a custom
Django Middleware layer that captures the X-Trace header
sent by the Firefox extension and sets up tracing state for the
view function and all underlying services. Specifically, this

extracts X-Trace Task and OpIds from the incoming request
and creates a stack to hold further OpIds as the request
propagates through function calls (to maintain the causality
chain as methods are invoked and events are logged).

Currently, the Django tracing framework only logs events
explicitly; in the future, we plan to automatically invoke the
Python cProfile system [26] to capture more detailed infor-
mation about the application behaviour. The event logging,
as implemented, uses Python decorators [28] to provide a
lightweight instrumentation approach.

3.4 Database Tracing
Database tracing is currently implemented at the Django

layer (wrapping the Django database call). This provided
sufficient information to diagnose the query problem in Basie,
but may not provide sufficient information to diagnose more
subtle database problems. Although the Basie example be-
low had a clear and easy fix, it’s possible to imagine cases
where fixing a slow database query can be more challenging.

In the future, we would like to actually instrument the
database to provide more detailed information about query
behaviour. Right now, the information we collect from the
database is minimal: we only measure the latency of each
query; i.e. we answer the question “Is this query slow?” If
the database were instrumented, we could gain more insight
into the question “Why is this query slow?” Most databases
already have instrumentation hooks available; we would just
need to add X-Trace event logging to these hooks.

4. DATA STORAGE, RETRIEVAL, AND VI-
SUALIZATION

There are a variety of requirements for the logging in-
frastructure needed at different tiers in the serving frame-
work. For example, the Django backend should have min-
imal added latency when logging request messages, while
latency is less of a concern for the Firefox logging infras-
tructure (which can log asynchronously). The Firefox log-
ger, though, is constrained by the types of connections that
a browser is able to make.

For low-latency data logging, a simple TCP protocol is
used. Essentially, the X-Trace event is assembled as a text
string and sent in a TCP stream to localhost. Each serving
machine runs an X-Trace proxy which receives these TCP
packets and forwards them to the centralized X-Trace server;
this means that the web application does not need to make
external connections to any machine other than another pro-
cess running on the same machine. To further improve the
performance, we are currently investigating the use of Unix
Domain sockets instead of TCP.

Firefox, unfortunately, is limited to making HTTP con-
nections for logging. To accommodate this, an HTTP+JSON
report service was developed. Using this service, the Firefox
extension records the events to report and sends an HTTP
POST request with all of the event detail directly to the
X-Trace HTTP server, where the events are processed and
combined with the other TCP messages from the backend.
Since each event is explicitly timestamped and has a proper
Edge reference, the order the X-Trace server receives the
messages is irrelevant because it has all of the information
required to reconstruct the time-ascending causality chains.

Google App Engine, like Firefox, is also limited to outgo-
ing HTTP requests; an application cannot make arbitrary

outgoing TCP connections, nor is the developer permitted
to install the X-Trace proxy on the serving machines. To re-
duce MT-WAVE profiling overhead, we use the Task Queue
service; this allows us to collect the trace data and send
it to the X-Trace JSON-over-HTTP report service asyn-
chronously, after the request has completed.

4.1 Django Implementation
The TCP backend for X-Trace came with the package.

For Python/Django to log X-Trace reports to this, we wrote
a Django “app”3, consisting of two classes and a few helper
functions:

XTraceContext: parses X-Trace metadata strings (split-
ting them into the flags, TaskId and OpId fields), builds
X-Trace reports, and assembles them into a flattened
string to send over TCP.

XTraceStack: keeps a stack of nested XTraceContext ob-
jects to properly nest the causal chains of events. For
thread safety, this is stored in thread-local storage.

As the correct state is configured when each incoming re-
quest is processed by our Django Middleware layer, an entire
application can have access to the instrumentation layer by
adding a single line of configuration code.

4.2 X-Trace JSON Implementation
To modify the X-Trace infrastructure to allow for JSON-

over-HTTP event reports, we added two classes: JsonRe-
portSource and JsonReportHandler. JsonReportSource im-
plements X-Trace’s ReportSource interface, which allows it
to add received reports to the general report stream with the
use of an HTTP server. An instance of JsonReportHandler
receives the POSTed reports. When a client sends a prop-
erly formatted POST request to the HTTP server started by
JsonReportSource, JsonReportHandler extracts the X-Trace
report in JSON format, decodes it into the native X-Trace
format, and puts it into the general X-Trace report stream.

To simplify the external client’s requirements for using the
JsonReportSource, the format of the POST data closely mir-
rors the X-Trace event format. While the standard X-Trace
event consists of series of “Key : Value” pairs, the JSON
event format consists of a JSON Object that has the same
set of value pairs. See Figure 1 for a side-by-side comparison.

The advantage to using this format is that many clients
can easily create it using JSON tools; for example, Fire-
fox has a native JSON encoder (“@mozilla.org/dom/json;1”)
that will take a JavaScript object and return it in the JSON
string format. This saves us from having to build up a large
string, worrying about character encoding and escaping, etc.

4.3 Data Retrieval
The Data Retrieval system must accommodate the restric-

tions caused by operating in a web browser. The existing
X-Trace system returns the recorded events in a large text
stream, with the expectation that the receiver is capable of
parsing and manipulating this data.

While it is possible to perform large-scale data manipu-
lation using JavaScript in a web browser, this is incredibly
inconvenient. As an alternative to doing this, we’ve imple-
mented a JSONP-over-HTTP [17] event and report retrieval

3Think of a Django app as a library, rather than an appli-
cation.

X−Trace Report ver 1 .0
X−Trace : 190 fe0c63c83f39864704fabb793d81045

Agent : HttpRequestObserver
Label : Page reques t f o r : http :// l u i . . .
Edge : 0000000000000000
Epoch : 1.269842740663E9
Timestamp : 1.269842740663E9

(a) Standard text-based format

{ ”X−Trace ” : ”190 fe0c63c83f39864704fabb793d81045 ” ,
”Agent ” : ”HttpRequestObserver ” ,
”Label ” : ”Page reques t f o r : http :// l u i . . . ” ,
”Edge ” : ”0000000000000000”,
”Epoch” : ”1 .269842740663E9” ,
”Timestamp ”: ”1.269842740663E9” }

(b) JSON format

Figure 1: Comparison of X-Trace Event formats

system. This allows JavaScript code to retrieve the recorded
events easily, providing them in a format that is ready to use
by the analysis and visualization tools. The data returned
is formatted in JSON form for further processing by the
visualization framework.

To provide access to the data, a “Viz” option is added to
the standard X-Trace Reports list. When clicked, this redi-
rects the user to the Data Visualization system (section 4.4).
To load the X-Trace Reports, the data visualization sys-
tem GETs JSON resources in the form “/traces/{taskId}”.
These resources are formatted similarly to the JSON format
in the Firefox plugin.

4.4 Visualization
This system collects a large volume of data; for the sam-

ple application, a single page request generates around 400
events per request, with some requests generating several
thousand events (when experimenting with Basie, we en-
countered page requests with more than 10,000 events). Or-
ganizing this data into meaningful information requires that
the data be divided into high- and low-level views.

At the high level, each requested resource is displayed with
bounds indicating the start and end time. This allows the
analyst to see how long each resource takes to load, along
with the time-ordering of requests. These bounds are over-
layed with a summary of the events happening inside them;
we can see at a glance how much of the total request time
is occupied by back-end processing.

Once an analyst has identified a candidate for speed im-
provement, clicking on the candidate event zooms in and
shows all of the causal relationships between the recorded
events on a single timeline. This allows the analyst to focus
on the specific events that are likely to point to the bottle-
neck for that resource. For an example, we trace the Basie
Dashboard page load from section 2.

The high-level trace view (Figure 2) shows a timeline of
the entire page load. Often, page loads consist of batches
of requests with large time gaps between them (for exam-
ple, JavaScript code often requests additional resources via
AJAX). By modifying the visible timeline (zooming and
scrolling), the analyst can easily vary the level of detail re-
quired to understand the overall trace behaviour. When a
user moves a mouse pointer over one of the HTTP requests,
the right-hand side displays request summary information.

Once the analyst has chosen a particular HTTP request,
clicking on it displays the low-level request details view (Fig-
ure 3); this view shows every X-Trace event that was logged
while processing the request. In this view, you can see ex-
actly how long is spent processing in each tier (and each
sub-function in those tiers). Events are ordered left-to-right
based on real time, and top-to-bottom based on causal rela-
tionships (events at the bottom are “leaf events”).

5. EXPERIENCE / CASE STUDIES

5.1 Diagnosing and Fixing Problems: Basie
To demonstrate a real deployment of MT-WAVE, we step

through the process of fixing a performance problem in Basie.
While using the software, we noticed that the Tickets page
seemed to get slower and slower as more tickets were added
to a project. We add the Django middleware to the Basie
project and add a few trace points to general places in
the application (SQL queries and commits, view invocation,
middleware invocation, etc). Each one of the instrumenta-
tion points only requires a single line of code.

Figure 4 shows the high-level view of the Ticket page; in
this view, we see that the initial page request takes a long
time to execute. The initial request takes 6 seconds, almost
all of which is spent doing backend processing. This is an
ideal candidate for optimization. Clicking on this page re-
quest leads to Figure 5, which shows the low-level view; in
the low-level view, the thick black bar is actually a large
number of short database queries but we are sufficiently
zoomed out that they do not appear as obvious individual
events. Later on, we will examine those particular events.

Now that it is obvious that there was a problem with the
ticket system, we measured the performance of the Tickets
page as tickets are added. To automate this process, we
used Selenium4, a Firefox extension to generate a series of
requests from the browser and render the page views. This is
similar to a web-crawler, but includes the additional activity
of the page display. In a loop, we added a ticket to the
system and then measured the page load time. Figure 6
shows the results of this. Clearly the system performance
slows as tickets are added. We now had a test suite that we
can re-run after fixing the software to determine whether or
not we have actually improved system performance.

To attempt to fix the ticket page load process, we zoom
in on one of the slow event traces to try to figure out what
is going on. Figure 7 is zoomed in on the thick black bar.
Looking at this, it becomes obvious that there are many
SQL queries happening in the “Rendering HTML” stage of
the page request; this is a place where we do not expect
queries to happen (they should all happen in the view func-
tion before we attempt to generate HTML). We counted the
number of SQL queries per page load and compared against
the number of tickets in the system. The number of queries
increases linearly as tickets are added.

Looking at the HTML template (and using a bit of do-
main knowledge gained from using Django in the past),
we see that the SQL queries are a side-effect of Django’s
Object-Relational Mapping (ORM) library; for each ticket,
the template is displaying information about the creator of

4http://seleniumhq.org/

Figure 2: MT-WAVE showing the high-level view of a page load for the Basie Dashboard.

Figure 3: Low-level view of the HTTP request from Figure 2.

Figure 4: High-level view of the Basie Ticket page.

Figure 5: Low-level view of the initial request from Figure 4.

Figure 6: Request time for the Ticket View page as
tickets are added to Basie.

the ticket and the milestone assigned to the ticket. Unfor-
tunately, because the underlying data model stores these in
different SQL tables, the ORM library automatically per-
forms queries to obtain this information. Figure 8 shows
the SQL summary table in MT-WAVE that highlights the
queries that are being executed most frequently.

An easy way to work around this behaviour is to look up
all of the milestones and users before rendering the template
and filling in this data in the view function of the application;
this means that we only execute one query to get all of the
users and one query to get all of the milestones. Before
making this fix, we ran another Selenium script to retrieve
the ticket page twenty times (with a fixed number of tickets)
to get a feel for the request time distribution.

We then made the“one query”fix to the view function and
load the page in Firefox with MT-WAVE enabled; the first
trace shows significantly fewer SQL queries than the original
trace did. To verify that the performance has improved,
we re-ran the 20-page-loads experiment and compare the
results. Figure 9 shows the before-and-after behaviour.

Finally, to validate that the fix works in the general case,
we re-ran the “add tickets and measure page load time” ex-
periment from the beginning. Figure 10 shows the results;
not only is the new system faster, but the slope of the line
is much smaller–the system should scale to a much larger
number of tickets before it starts to get slow. To verify that
the number of SQL queries has been reduced, Table 1 shows
the original SQL queries and the new SQL queries–there is
now a constant number of queries, even though the num-
ber of tickets are growing. The original code was making 3
database queries per ticket.

5.2 Confirming Solutions: MashedIn
After obtaining confirmation that this technique could be

valuable in identifying and visualizing the time spent in ren-
dering web pages, we instrumented MashedIn5, an applica-
tion developed by a local software company that integrates
with several third-party services and executes on Google
App Engine.

There had been extensive observations of performance dif-

5http://www.mashedin.com/

Tickets
Queries/Request
Before After

1 37 36
100 334 36
200 634 36
300 934 36
400 1234 36
500 1534 36

Table 1: Comparison of SQL queries/request be-
tween the original Basie code and the modified Basie
code

ficulties with this application. When we arrived, many of
these performance problems had been solved by using some
of the tools mentioned in Section 6 and many hours of trial-
and-error with adhoc logging statements sprinkled through-
out the code base. As we started using the tool, a developer
remarked “I wish you’d have been here a few weeks ago, this
would have really helped solve a problem we were having.”

To return results quickly, the MashedIn application relies
heavily on application-level caching through the Memcache
service. We decided to verify the effectiveness of the caching
behaviour using MT-WAVE.

Figure 11 shows a section of the high-level output for a
page in the MashedIn application. The highlighted request
is a key AJAX request in the page load. The requests in
the “blocked requests” section of the trace are created by
JavaScript code that operates on the results from this AJAX
request; until this first request in finished, the browser does
not know what other content it will need to load. By de-
creasing the time required to process this request, we can
improve the overall page load time. Traditional back-end
profiling tools would not have identified that this request
was part of the critical path for page load times, and tradi-
tional front-end profiling tools would not have been able to
explain why this request took so long.

Figure 12 shows the detailed traces obtained from this
request; the trace on the left shows the AJAX request with
a cache miss, the trace on the right shows a subsequent
AJAX request with a cache hit. Effective caching policies
significantly reduce the overall load time (from 8.9s to 3.4s)
by caching the results from request (c). The results from
request (a), though, do not appear to be cached between
page requests; modifying the software to cache the results
from this request could further improve the load time.

While the developers of MashedIn did not have an imme-
diate performance problem to debug while we were working
together, the results provided clear confirmation that their
caching approach was effective in decreasing page load times
and provided insight into further performance enhancements.

5.3 Automated Tracing: Basie
In the Basie case study, we alluded to automated data

collection; here, we elaborate on the mechanisms used and
provide some example use cases. Using Selenium, we set up
a series of browser actions that run in an automated fashion.
To do periodic instrumentation, we also set up a loop and
run the script with a delay; all of the MT-WAVE traces are
saved and are available for post-processing.

A use case for this arose while we were testing Basie; de-
pending on the time of day we were testing it, we would get
significantly different network latency measurements. This
makes sense, of course, because we were doing the testing

Figure 7: Low-level view of the initial request from Figure 4, zoomed in on the thick black bar from Figure 5.

Figure 8: SQL summary view of the initial request from Figure 4.

Figure 9: Before and after view of the Ticket List
performance at a constant number of tickets.

Figure 10: Total page load times: original Basie code
and modified Basie code

Figure 11: High-level view of a MashedIn page load
with cold caches.

on the public University network and network latency would
vary as students came and left campus (they weren’t using
Basie, but just adding additional load to the network).

For this example, we collected data in two batches for
about an hour each. The first batch of data was collected
from off-campus, and the second batch was collected on-
campus during low load. Figure 13 shows the difference
in latency between the two data sets. As expected, page
load times are signicantly larger when network latency is
involved, but back-end processing times remain fixed.

An important thing to note from Figure 13 is that tra-
ditional tools would not clearly explain the measurement
differences. A back-end profiler would simply show that
request times did not have significant variation (indicated
by the “Django processing time” points on the plot), and
a front-end profiler would show that request times had sig-
nificant variation between the two measurements. Neither,
though, could percisely point the finger at network latency.

MT-WAVE’s JSON interface simplifies post-processing of
the data. To analyze the data from this experiment, a small
Python script was used to query the event reports and sum-
marize them into comma-separated (CSV) text. Once the
data is in this format, existing data processing tools can be
used for analysis.

5.4 MT-WAVE Performance Overhead
Monitoring does not come for free. We have to collect

traces and send them to the X-trace server. Table 2 shows
the latency in web page load in the new system and in the old
system. As the number of events increase, the user-perceived
latency increases; for low event volumes, this overhead com-
pares favourably with Dapper, but with higher event vol-
umes, the added latency can become significant.

Before After
with MT-Wave 3.52s (4324 events) 1.05s (216 events)

without MT-Wave 2.03s 0.92s
Overhead 1.49s 0.13s

Overhead (%) 74% 14%
Overhead per event 344µs 602µs

Table 2: MT-Wave Overhead for Basie

Even in circumstances when much more tracing is re-

quired, we can tolerate a slowdown in test environments to
more closely examine all the events taking place. In pro-
duction deployments, a coarser view of the events can be
deployed with very lightweight intensity, reducing the la-
tency impact. Additionally, the Python tracing code would
benefit from optimization; preliminary results tracing PHP
code using a C module indicate that we can reduce the per-
message latency significantly.

6. RELATED WORK
The inspiration for the main mechanism used in MT-Wave

is X-Trace [13], a general-purpose framework for collecting
causal event chains in a distributed system, which we lever-
age heavily for our underlying data collection. Out of the
box, though, X-Trace does not provide any hooks that en-
able web tracing, which we’ve added. Early work on web
tracing was done by the WebMon system [15] and integrated
in a product from HP called Web Transaction Observer.

Other work on client side measurements includes Firebug6

and FirePHP7. Firebug is an open-source project that inte-
grates request tracing into the Firefox browser. Its biggest
limitation is that it only works at the browser-level. Work-
ing at the browser-level is a good first step, but Firebug on
its own does not provide any mechanism to understand the
system holistically. As an extension to Firebug, FirePHP
enables PHP applications to log events into the Firebug sys-
tem. This is one step closer to understanding how the appli-
cation is behaving, but only provides a facility to report log
messages to a client (via HTTP response headers). FirePHP
does not have any facility for instrumenting any other sys-
tems involved (e.g. databases), nor does it do any logging
to a centralized log-collection facility. Another downside to
FirePHP is that the (possibly untrusted) client receives all
of the logging messages, which could contain sensitive data.

YSlow8 is a tool developed at Yahoo to provide recom-
mendations for performance improvements based on their
“rules for high performance web pages”. This tool also inte-
grates with Firebug, monitoring the results that it collects
and comparing the collected data with their rule set. Based
on which rules are violated, advice is given to the user. Like
the other tools above, YSlow is incapable of viewing any-
thing happening beyond what the browser sees; any slow-
downs that are caused by specific things happening at any
layer below the HTTP requests are completely invisible.

Engineers at Google have developed Dapper [27], a multi-
tier tool with similar goals to MT-WAVE, but significantly
different implementation and usage. As they explain, most
of Google’s tiers used a shared RPC library, and Dapper is
tightly integrated into this library. Further, Dapper only
performs back-end measurements (starting at the first web
server, instead of at the browser). A significant advantage of
this approach is that they can collect trace data without re-
quiring clients to install a browser plug-in. A disadvantage,
though, is that the collected traces do not capture user-
experienced latency, but rather the latency experienced by
the front-end web server. To minimize the performance im-
pact, they use sampling – instead of tracing every request,
they only trace a random subset; fortunately, they have a

6http://getfirebug.com/
7http://www.firephp.org/
8http://developer.yahoo.com/yslow/

Figure 12: Detailed view of the MashedIn AJAX request from Figure 11.

high-traffic site and can get statistically-significant data by
only sampling 1-10% of their requests.

Sherlock [2] is a tracing system that identifies failing com-
ponents in large-scale networks. Using passive traffic sniff-
ing, Sherlock builds an Inference Graph that contains the
per-service component dependencies and a model of the net-
work topology. When services start to fail, their Ferret al-
gorithm calculates probabilities for each service and deter-
mines the most-likely faulty service. Sherlock, like many of
the other existing work, is a network monitoring tool based
on black-box service models; while it can identify a failing
service, it has no insight about how to fix the failed ser-
vice. For extremely complicated applications, a Sherlock-
like monitoring service would serve as a good first step into
solving performance problems.

cProfile [26] is the built-in Python profiling system. It
intercepts function calls in a running Python interpreter
and times their executions, resulting in an aggregate report
showing how much time is spent in each function. This is
a very powerful tool for diagnosing back-end performance
problems, but has a few limitations within the context of
web applications; for example, cProfile has no visibility into
any activity above or below the Python level, nor is it ca-
pable of aggregating data across multiple web requests. In
the future, we will likely integrate cProfile output with MT-
WAVE to provide more valuable information to the analyst.

Magpie [3] performs back-end event tracing; instead of es-
tablishing global identifiers (e.g. X-Trace TaskIds), the au-
thors use a fascinating event parsing and correlation frame-
work to reassemble event causality chains. This system
requires application-specific event schemas to be defined,
which are used to try to stitch together event causality chains.
A significant advantage of this system is that it doesn’t re-
quire modifications to the application being measured. Un-
fortunately, for our specific task, this would require client-
side installation of invasive tracing software. While, in gen-
eral, the functionality provided by this system is very useful,
many modern web applications come with the source avail-
able and are amenable to the simple modifications required
by the MT-WAVE software. For applications that do not
have the source available, integrating a Magpie-like system
with MT-WAVE would not likely be difficult.

Aguilera et al. [1] provide an alternative black-box analysis
system that uses RPC-tracing or signal processing to try to
infer causal relationships. The RPC tracing system is based
on identifying nesting within call/return pairs. The signal
processing technique does not require the RPC-style call/re-
turn pairs to exist; instead it determines the probability of

Figure 13: Comparison of page load times off-
campus and on-campus.

causal relationships based on correlation analysis. Neither of
these techniques are 100% accurate and rely on larger collec-
tions of data to produce significant results. These techniques
could be considered for filling in gaps in MT-WAVE trace
data (i.e. for subsystems that are not X-Trace enabled).

Pinpoint [7] is a system to automatically find the root-
cause of system failures. This system, like MT-WAVE, is
based on tagging each request with a unique identifier to
trace the flow of the request through the system. While Pin-
point is not a system specifically designed for performance
analysis, the trace analysis component could be very useful
in conjunction with MT-WAVE.

In Stardust [29], a distributed storage system is designed
from scratch with cross-machine instrumentation in mind.
They use the notion of a “breadcrumb” to track a request
through different systems. The breadcrumb is essentially the
TaskId used in the X-Trace framework; they do not assign
unique identifiers (beyond timestamp and breadcrumb) to
each event, which may make reassembling the event causal-
ity chains slightly more challenging.

Feldmann’s“Bi-layer HTTP and TCP”tracing system [10]
performs a number of analyses based solely on packet sniff-

ing. This system is excellent for gathering a large volume
of information about traffic going to a number of different
servers (for instance, when evaluating whether or not a lo-
cal caching proxy would be suitable for an organization), but
the coarse granularity of the system makes it a poor choice
for tuning a specific application.

Whodunit [6] is an application tracing framework that
captures cross-thread messages that happen over shared mem-
ory. To do this, it adds instrumentation to MOV instruc-
tions and records which pieces of shared memory they affect.
By instrumenting the locks that surround these instructions,
they build up a series of producer/consumer relationships
between the threads in an application. This is a very pow-
erful technique for adding instrumentation within a single
executable. To track transactional flow between layers, the
SEDA system (a middleware system between layers) forms
queues between the systems and sets up the transaction con-
text as items are removed from the queue. Adding and pro-
cessing data from a system like this is potential future work
for MT-WAVE, to perform incredibly detailed application
instrumentation.

7. CONCLUSIONS/FUTURE WORK
Modern web applications are composed of a number of

heterogeneous systems. From a user’s point of view, though,
the performance of these individual systems is irrelevant; the
user experience is based entirely on the system performance
as seen by the web browser. For an analyst to understand
the browser-originated system performance, she needs the
ability to see how the various systems that compose the
application perform while handling requests. Standard in-
dustrial web application performance tracing tools have a
narrow view of this performance that only provides data on
each system independently.

We have built a browser extension and integrated it with a
multi-tier tracing system to provide analysts with a holistic
view of a web application. To demonstrate its utility, we
have taken two sample application, Basie and MashedIn,
and used simple instrumentation to identify precisely which
components of the application add the most latency to the
user’s page load time. This system is still in its infancy, with
many different possible avenues for future work, but we have
concretely shown that it is a useful tool as-is for debugging
performance problems in web applications.

Event timestamps are collected on each machine that is
producing log messages; unfortunately, not every system on
the Internet has perfectly synchronized clocks, and there-
fore the clock offsets between machines can significantly shift
the event data. Fortunately, the Edges of the X-Trace re-
ports still provide a clear causality relationship between the
events, so event timing is still measured properly, but recon-
structing the entire causality chain through time can be chal-
lenging. To properly synchronize the events occurring in dif-
ferent systems, features from Vector Clocks [11] or NTP [22]
should be considered and added to the system.

Collected task data is shown in a one-task-at-a-time in-
terface; however, it will often be beneficial to see aggregated
collections of tasks to assess overall trends. The direction to
go with this is still unclear; as we use the system more and
receive feedback from users, a better picture should appear.

The system, as implemented, is good at collecting data
and visualizing it; it does not, however, provide much assis-
tance for automatically analyzing the data. Since we have

our events structured in a tree, it would likely be possible to
perform some kind of subtree isomorphism analysis on the
various task traces to identify commonly used systems; once
a slow, commonly-used system is identified, it can be fixed to
give significant performance improvements throughout the
application. Because our system operates inward from the
browser, we can track exactly how much time each potential
bottleneck actually contributes to the user’s latency expe-
rience; this not only allows the analyst to focus their effort
on the high-impact systems, but also allows them to quickly
identify which systems do not require investigation.

The instrumentation probes provided with MT-WAVE right
now are quite limited; there are many additional systems
that could benefit from the added instrumentation, and if
Python/Django is a good example then we can expect rel-
atively straightforward integration with other systems. We
are currently working on a PHP port, and a Java/AspectJ
port is a future possibility.

A common trend in web applications is taking advantage
of APIs provided by other systems, often outside of the ap-
plication’s administrative domain. Isaacs & Barham [18]
present a case for the ability to do performance evaluation
across loosely-coupled systems. The MT-WAVE framework
(and X-Trace) provide most of the tools to do this already;
to complete the task would require cross-AD requests to
contain a host identifier where the events should be logged
(along with cooperation between administrative domains).
In any case, by including X-Trace headers in outgoing re-
quests we provide the server operators in the other AD
the opportunity to perform their own performance tracing
within their own application, whether or not they decide to
share that information.

To simplify the process of obtaining more detailed trace
data (especially client-side trace data), a system like AjaxS-
cope [20] could be useful to integrate. The main concept in
AjaxScope is dynamic instrumentation that is added to code
on-the-fly based on current demands. While AjaxScope is
designed to instrument JavaScript code, the use of Aspect-
Oriented Programming (AOP) (for example, AspectJ [21])
provides the ability to easily instrument system behaviour
based on a set of pointcuts. AjaxScope and AOJS [30] both
filter JavaScript code through a proxy that modifies the
outgoing code at request-time; this allows each request to
include different sets of instrumentation. This behaviour
could be driven from the MT-WAVE interface, creating an
interactive loop where the analyst investigates trace data,
determines a component that she would like to learn more
about, and then performs the request again with the new
instrumentation requirements.

While AOP can help considerably with client-side code
(and with server-side code), we often need to record low-
level statistics on the server to determine the root cause
of a performance problem. This is where integration with
systems like DTrace [5] would be valuable. DTrace pro-
vides the ability to instrument user- and kernel-level code
with zero overhead until instrumentation probes are added.
By providing an interface to dynamically modify the set of
probes, the analyst can selectively measure server-side per-
formance metrics while minimizing the amount of overhead
introduced.

Many systems that we will want to instrument have some
form of internal profiling mechanism (for example, cProfile
mentioned above for Python). Since we have infrastructure

in place to receive log messages from these different systems,
collecting and aggregating profiling information will further
help the analyst understand the behaviour in the system,
especially by providing specific insight as to which functions
in the code are adding the significant delays to the system.

8. REFERENCES
[1] Aguilera, M. K., Mogul, J. C., Wiener, J. L.,

Reynolds, P., and Muthitacharoen, A.
Performance Debugging for Distributed Systems of
Black Boxes. In SOSP’03 (Bolton Landing, NY,
2003), pp. 74–89.

[2] Bahl, P., Chandra, R., Greenberg, A., Kandula,
S., Maltz, D. A., and Zhang, M. Towards Highly
Reliable Enterprise Network Services via Inference of
Multi-level Dependencies. In SIGCOMM ’07 (Kyoto,
Japan, 2007), ACM, pp. 13–24.

[3] Barham, P., Donnelly, A., Isaacs, R., and
Mortier, R. Using Magpie for Request Extraction
and Workload Modelling. In OSDI’04 (San Francisco,
CA, 2004), pp. 259–272.

[4] Basie Project. A simpler software project forge.
http://basieproject.org/.

[5] Cantrill, B. M., Shapiro, M. W., and
Leventhal, A. H. Dynamic Instrumentation of
Production Systems. In USENIX’04 (Boston, MA,
June 2004), pp. 15–28.

[6] Chanda, A., Cox, A. L., and Zwaenepoel, W.
Whodunit: Transactional Profiling for Multi-Tier
Applications. In EuroSys’07 (Lisbon, Portugal, 2007),
pp. 17–30.

[7] Chen, M. Y., Kiciman, E., Fratkin, E., Fox, A.,
and Brewer, E. Pinpoint: Problem Determination
in Large, Dynamic Internet Services. In Intl. Conf. on
Dependable Systems and Networks (Bethesda, MD,
June 2002), pp. 595–604.

[8] Crockford, D. Introducing JSON.
http://www.json.org/.

[9] Endo, Y., Wang, Z., Chen, J. B., and Seltzer,
M. Using Latency to Evaluate Interactive System
Performance. In OSDI’96 (Seattle, WA, October
1996), pp. 185–199.

[10] Feldmann, A. BLT: Bi-layer Tracing of HTTP and
TCP/IP. In 9th international World Wide Web
conference on Computer networks (Amsterdam, The
Netherlands, 2000), pp. 321–335.

[11] Fidge, C. J. Timestamps in Message-Passing Systems
That Preserve the Partial Ordering. Australian
Computer Science Communications 10, 1 (February
1998), 56–66.

[12] Fonseca, R., Freedman, M., and Porter, G.
Experiences with Tracing Causality in Networked
Services. In INM/WREN (San Jose, CA, Apr. 2010).

[13] Fonseca, R., Porter, G., Katz, R. H., Shenker,
S., and Stoica, I. X-trace: A Pervasive Network
Tracing Framework. In NSDI’07 (Cambridge, MA,
2007), pp. 271–284.

[14] Fu, Y., Cherkasova, L., Tang, W., and Vahdat,
A. EtE: Passive End-to-End Internet Service
Performance Monitoring. In USENIX’02 (Monterey,
CA, June 2002), pp. 115–130.

[15] Gschwind, T., Eshghi, K., Garg, P. K., and
Wurster, K. Webmon: A Performance Profiler for
Web Transactions. In WECWIS ’02 (Newport Beach,
CA, June 2002), IEEE Computer Society, pp. 171–177.

[16] Hellerstein, J. L., Maccabee, M. M., III, W.
N. M., and Turek, J. J. ETE: A Customizable
Approach to Measuring End-to-End Response Times
and Their Components in Distributed Systems. In
ICDCS’99 (Austin, TX, 1999), pp. 152–162.

[17] Ippolito, B. Remote JSON - JSONP.
http://bob.pythonmac.org/archives/2005/12/05/

remote-json-jsonp/.

[18] Isaacs, R., and Barham, P. Performance Analysis in
Loosely-Coupled Distributed Systems. In 7th Cabernet
Radicals Workshop (Bertinoro, Italy, October 2002).

[19] Jones, M. B., and Regehr, J. The Problems You’re
Having May Not Be the Problems You Think You’re
Having: Results from a Latency Study of Windows
NT. In HOTOS’99 (Rio Rico, AZ, 1999), pp. 96–101.

[20] Kiciman, E., and Livshits, B. AjaxScope: A
Platform for Remotely Monitoring the Client-side
Behavior of Web 2.0 Applications. In SOSP’07
(Stevenson, WA, October 2007), pp. 17–30.

[21] Kiczales, G., Hilsdale, E., Hugunin, J., Palm,
M. K. J., and Griswold, W. G. An Overview of
AspectJ. In ECOOP’01 (Budapest, Hungary, 2001),
pp. 327–353.

[22] Mills, D. L. RFC-1129: Internet Time
Synchronization: the Network Time Protocol, October
1989.

[23] Mozilla Foundation. Mozilla Developer Center /
Monitoring HTTP Activity. https://developer.
mozilla.org/en/Monitoring_HTTP_activity.

[24] Mozilla Foundation. Mozilla Developer Center /
Observer Notifications. https://developer.mozilla.
org/en/Observer_Notifications.

[25] Paulson, L. Building Rich Web Applications with
Ajax. In IEEE Computer (October 2005), vol. 38-10,
pp. 14–17.

[26] Python Software Foundation. The Python
Profilers.
http://docs.python.org/library/profile.html.

[27] Sigelman, B. H., Barroso, L. A., Burrows, M.,
Stephenson, P., Plakal, M., Beaver, D., Jaspan,
S., and Shanbhag, C. Dapper, a Large-Scale
Distributed Systems Tracing Infrastructure. Tech.
rep., Google Research, apr 2010.

[28] Smith, K. D., Jewett, J. J., Montanaro, S., and
Baxter, A. PEP-318 - Decorators for Functions and
Methods.
http://www.python.org/dev/peps/pep-0318/.

[29] Thereska, E., Salmon, B., Strunk, J., Wachs,
M., Abd-El-Malek, M., Lopez, J., and Ganger,
G. R. Stardust: Tracking Activity in a Distributed
Storage System. In SIGMETRICS’06 (Saint Malo,
France, 2006), pp. 3–14.

[30] Washizaki, H., Kubo, A., Mizumachi, T., Eguchi,
K., Fukazawa, Y., Yoshioka, N., Kanuka, H.,
Kodaka, T., Sugimoto, N., Nagai, Y., and
Yamamoto, R. AOJS: Aspect-Oriented Javascript
Programming Framework for Web Development. In
ACP4IS’09 (Charlottesville, VA, 2009), pp. 31–36.

