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ABSTRACT
Sensor devices and the emergent networks that they en-
able are capable of transmitting information between data
sources. Since these devices have low-power and intermit-
tent connectivity, latency of delivery for certain classes of
data may be tolerated in an effort to save energy. The BUB-
BLE routing algorithm, proposed by Hui et al., provides
consistent routing, employing a model which considers the
popularity of individual nodes within communities and only
passes messages to nodes with higher probability of deliv-
ery. We have developed an improvement to BUBBLE, called
Community-Based-Forwarding (CBF) that considers the in-
teractions between communities as an additional factor in
message forwarding. By using community information, CBF
is able to exploit intermediate connections between clusters
to route messages with more balanced node participation
and higher levels of reliability and efficiency.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Routing protocols; C.2.1 [Network
Architecture and Design]: Network Topology

Keywords
delay-tolerant networks; pocket-switched networks; social-
based routing; resource-constrained devices; clustering

1. INTRODUCTION
The number and variety of mobile computing/sensing de-

vices is steadily increasing from smartphones, to personal
medical monitors to smart badges. These devices vary in
capabilities, but all desire to minimize energy consumption.
We consider the least powerful class of devices with a sin-
gle radio only capable of short-range transmissions on an
opportunistic basis when other devices are detected.

Device sensing methodology and parameters as well as as-
sociated software may need to adapt in ways impossible to
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capture in an a priori manner. As well, delay-tolerant mes-
sage generation paradigms can be anticipated. In particular,
the recording of sensor values from many sensors to a single
node for long-term trend analysis can be tolerant of delays on
the order of days where message flooding is impractical due
to energy concerns [25]. Individual nodes may communicate
(one-to-one) when an implicit overlay of social connectivity
exists that is unrelated to physical connectivity [16].

Pocket switched networks (PSNs) are a special case of de-
lay tolerant networks (DTNs) where packets are routed from
person to person in an ad-hoc manner, based on historical
data regarding dynamic, non-uniform contact patterns [1,
13, 15]. Significant differences in contact patterns have been
observed in environments for which datasets are available [3,
10, 11]. These dynamics suggest that routing based on inter-
community contacts may aid routing performance.

Ideally, multi-hop routing tables would keep track of each
PSN node’s dynamic path length to all other nodes. This
overhead rapidly outstrips the storage or power capacity of
each node [20]; instead, researchers have leveraged the com-
munity structures that naturally arise from human interac-
tion patterns [15], eliminating routing tables. Naive/greedy
utilization of the network structure can favour nodes with
high centrality measures. Where resources are limited, these
“popular” nodes can experience packet loss due to buffer
overflow and cause network failure through power depletion.

We develop and evaluate a Community-based Forwarding
algorithm (CBF) that explicitly uses community structure as
well as individual node-based connections of previous social-
based approaches. Leveraging community linkages can ex-
ploit lower-centrality “bridging nodes” [6] to reduce buffer
and power strain on the popular nodes. We compare CBF
to a well known social-based algorithm (BUBBLE) [15], and
both to a set of oracles to compare with optimal measures.

The contributions of this paper are threefold: 1) an ap-
proach identifying structures within the dynamic contact
networks that can be leveraged for routing, 2) a new rout-
ing algorithm that provides superior performance in resource
constrained environments, and 3) quantitative comparison
of the impact of limiting key node resources on routing per-
formance/efficiency of the algorithms considered.

2. RELATED WORK
The potential benefits and tradeoffs of DTN routing poli-

cies were first examined using a combination of simple rout-
ing strategies and oracle algorithms [16]. The simplest is
Epidemic routing (ER) [30] where all nodes attempt to de-
liver all packets. While ER with unlimited resources pro-



vides optimal reliability and delay, it is wasteful of band-
width and buffers, forwarding packets to nodes with a low
probability of being on the shortest path. Other researchers
have tried to constrain the growth of multiple copies through
adaptive limitations on packet time-to-live (TTL) [8] or by
only passing additional packets through privileged nodes [2,
9]. While these approaches tend to improve both delivery
ratio and latency, it is unclear whether these tradeoffs are
worthwhile, given the delay tolerant properties of the data.

Many resource-conserving strategies consider the single
copy case [28] which exhibits high latency and potentially
poor delivery ratio, particularly when packet TTL indicates
delay tolerance, but not delay immunity. Lindgren et al. pro-
posed PRoPHET [20], which models nodes’ future contacts
directly from contact history. Context-Aware Adaptive Rout-
ing (CAR) [22] forwards packets to nodes with the highest
probability of seeing the destination. Plankton [7] predicts
the probability of future contacts and duration by classifying
links based on the quantity/burstiness of previous contacts
combined with a replica quota system controlling the num-
ber of copies allowed in the network. Node-level bookkeeping
and communication overhead required can be prohibitively
expensive for large networks or multi-hop routing.

Some researchers have attempted to model the overall be-
haviour of the dynamic graph by segmenting the graph into
cliques, which we call communities in the rest of this paper.
SimBet [6] employs betweenness and similarity metrics to
route packets. Hui et al. [15] developed BUBBLE, which
uses time-variant rankings based on recent history to route
packets. A node is a member of at least one community and
nodes are locally ranked, based on the number of contacts
with other members of that community. Likewise, a global
ranking is assigned to a node based on its global contacts.

Higher contact-rate, lower contact-duration nodes have
been shown to play a major role in efficiently forwarding
data [24]. In Lobby-Influence [18], the influence of the com-
munity structure derived from the dynamic network domi-
nated the routing protocol employed.

The work presented in this paper extends work in PSNs
by identifying the importance of intermediate bridging links
for clusters of nodes, and by proposing a new heuristic-based
routing algorithm which can capitalize on these links.

3. BACKGROUND
The stochastic processes that underlie human contact pat-

terns have a non-uniform structure when aggregated over
time. The contact probability network formed by summing
time in contact between pairs of nodes in the graph tends
to have small world properties [12]. This structure has been
used in attempts to increase routing efficiency in PSNs [9,
15, 27] admitting that aggregate representation fails to cap-
ture instantaneous contact pattern dynamics. Periodicity of
contact patterns has also been shown to influence the perfor-
mance of DTN routing algorithms [23]. In particular, small
world networks with highly connected clusters, containing
short paths connecting every pair of nodes provide a promis-
ing means of improving routing [15]. Determining routing
heuristics can then be reduced to solving two separate per-
formance problems: 1) choosing the graph cluster structure,
and 2) choosing nodes for inter-cluster communications.

Our approach is based on two observations of human con-
tact network properties: 1) strong paths within communi-
ties due to small-world properties should provide fast intra-

community routes, and 2) bridging nodes can be exploited
to transfer packets closer to destination communities.

To use bridging nodes, some understanding of the cluster-
level connectivity is required. For example, consider rout-
ing a packet from community A to community C. A does
not contain any nodes that have strong connections to C,
therefore its community-connection to C is low. However, if
community B has nodes with strong connections to both A
and C, then it could serve as an intermediate community.

Most PSN performance research uses simulation to com-
pare algorithms fairly using the same contact patterns, which
are typically generated in three ways: 1) directly from con-
tact pattern traces [11, 12] datasets; 2) inferred from higher-
level mobility data such as class [29] or bus [2] schedules; or
3) from synthetic contacts generated directly from theoreti-
cally grounded mobility patterns [19]. Our datasets are rep-
resentative of university environments, and are among the
longest datasets available. Synthetic and mobility datasets
are likely to have different characteristics.

4. ALGORITHMS

4.1 Assumptions
We designed our algorithm subject to the following limit-

ing assumptions: 1) PSN devices are Resource Limited in
memory and computational power; energy usage is critical
[16]; 2) packets possess a Delay Tolerant property encoded
in TTL such that packet delivery is successful if delivered
prior to TTL expiry [14]; 3) the contact durations have no
effect on the ability to exchange buffer content metadata
and messages themselves [5], simplifying the analysis; 4)
the system represents a PSN that has non-degenerate Hu-
man Mobility patterns [20]; and 5) nodes are sufficiently
Socially Connected to form quasi-stable cliques [27] with
medium-term dynamics in which contact patterns change
over time, but can be considered stable for an empirically
determined particular amount of time (epoch).

Assuming delay tolerance and resource limitation permits
us to emphasize delivery ratio and resource usage under re-
source constrained profiles. Energy savings and increased
delivery ratio at the cost of latency is a beneficial because
packet delivery prior to TTL is the primary metric.

4.2 Forwarding Algorithm
We employ communities to eliminate the routing table;

community affiliations determine whether a message is to
be forwarded or retained. CBF uses BUBBLE’s local pop-
ularity (Eq. (1)) for intra-community delivery. For ‘inter-
community’ routing, BUBBLE’s global popularity (Eq. (2))
is replaced by community betweenness count (CBC) and nodal
contribution factor (NCF) (Eqs. (3) and (4)). CBC is the
number of contacts between two communities; NCF(n,C) is
a node’s contacts with every other community. In all equa-
tions, g(x, y, k) = 1 if an encounter between nodes x and y
occurs in the kth measurement interval, and 0 otherwise, C
is a node’s community, k is a particular aggregation interval
within the epoch and K is the epoch duration. Epoch e’s
data is used in forwarding decisions in epoch e + 1.

Local Popularity:

∀(x) LPx =
∑
y∈Cx

K∑
k=0

g(x, y, k) (1)



Global Popularity:

∀(x) GPx =
∑
y/∈Cx

K∑
k=0

g(x, y, k) (2)

Community Betweenness Count:

∀(Cx, C
′)s.t.(Cx 6=C′) CBCCx,C′ =

∑
x∈Cx

∑
y∈C′

K∑
k=0

g(x, y, k)

(3)
Nodal Contribution Factor:

∀(x)∀(C′)s.t.(x/∈C′) NCFx,C′ =
∑
y∈C′

K∑
k=0

g(x, y, k) (4)

A formal algorithm representation of CBF is shown in Al-
gorithm 1. In each timestep, a node encounters a (possibly
empty, but normally small) set of other nodes and poten-
tially transfers messages to these nodes. A node may also
receive messages as the encountered nodes simultaneously
execute CBF.

Algorithm 1 CBF (Node me, Node dest, Node metNode[],
int numEncountered, msgType Msg)

Node maxCBC = me; Node maxNCF=me;
Node maxLP = NULL;

for (i = 1 to numEncountered) do
if (metNode[i] == dest) then // Destination

dest.addMessageToBuf(Msg); return;
end if
if (C(metNode[i]) == C(dest)) then

maxLP = maximumLP(metNode[i], maxLP);
else if (C (metNode[i]) 6= C (me)) then

maxCBC = maximumCBC(metNode[i], maxCBC);
else maxNCF = maximumNCF(metNode[i], maxNCF);
end if

end for
if ((maxLP 6= NULL) & (C(me) 6= C(dest))) then //
entering dest. comm.

maxLP.addMessageToBuf(Msg)
else if ((maxLP 6= NULL) & (LPmaxLP > LPme)) then

maxLP.addMessageToBuf(Msg) // in dest. comm.
else if (maxCBC 6= me) then

maxCBC.addMessageToBuf(Msg) // new comm.
else if (maxNCF 6= me) then

maxNCF.addMessageToBuf(Msg) // same comm.
end if

Packet forwarding is accomplished through a set of heuris-
tics. We never forward outside the community when the
carrier is in the destination community, and and choose the
node with the greatest LP value as the next carrier. When
the carrier encounters a node that neither belongs to its own
community nor to that of the destination, CBC values with
the destination community are used, selecting the encoun-
tered node with the maximum CBC. Finally, when the en-
countered node and carrier are in the same non-destination
community, NCF with the destination community is used.

No routing loops are possible during an epoch, as only
nodes with higher delivery metrics are chosen. It is possible
that a carrier node will change communities between epochs.
A message may return to a previous community, as a type of
backtracking. With TTL less than the epoch, at most one

backtracking operation per message is possible for messages
in-transit at epoch end.

4.3 Comparator Algorithms
We compare CBF with BUBBLE as an implementation of

a context-aware forwarding approach and Epidemic Routing
(ER) [30], a commonly considered performance benchmark
algorithm ([15, 20, 21, 22]). Additionally, we are interested
in determining how both algorithms perform in comparison
to oracles that are optimal with respect to two of our main
metrics: delivery latency and number of message transmis-
sions.

We use two oracles: the Minimum Cost Oracle and the
Fastest Oracle. For the minimum cost oracle we take the
shortest of all ER paths that successfully delivered a packet
to the destination. The minimum cost oracle should ap-
proach one hop for a fully connected graph as time goes
to infinity. Values greater than 1 indicate both the small
world nature of the graph and the time horizon on simula-
tion forced by the duration of the datasets considered. The
fastest oracle records the first arrival at the destination using
ER with unlimited resources.

4.4 Clustering Algorithm
The K-Cliques algorithm has been used for detecting com-

munities in different kinds of networks and was used in BUB-
BLE [15]. It requires the minimum size of communities to be
specified prior to forming the communities. Outlier nodes
are placed in communities by K-cliques, but should be left
isolated to avoid poor intracommunity routing decisions.

Inspired by this concern and Pietilänen and Diot’s meth-
ods [24], we used the Louvain algorithm [4] to find commu-
nities characterized by frequent, sustained contacts. Lou-
vain clustering is fast, simple to implement and does not
require a predefined minimum community size. Extensive
evaluation on a variety of datasets shows superior perfor-
mance in terms of modularity/centrality than comparable
techniques, though the communities obtained are not always
identical. We believe the small number of nodes and sim-
ilar contact properties make this an appropriate clustering
algorithm and that Louvain clustering will cause CBF to ig-
nore isolated individuals. Future work will compare routing
performance with different clustering algorithms.

The Louvain algorithm works in multiple iterations, each
consisting of two phases. During the first phase, each node
is considered as a separate community. In each iteration, ev-
ery node is selected and potentially merged with each of its
neighbouring communities to see if the merger improves net-
work modularity. If no potential merges improve the mod-
ularity, the algorithm stops. During the second phase, new
community formed in phase 1 is converted to a single node,
represented by some centroid value. The phases are repeated
until a locally near optimal point or a proscribed number of
iterations is reached. The algorithm is guaranteed to con-
verge, but may not be optimal, as the greedy approach is a
heuristic solution to this NP-hard problem.

Since the graph is dynamic, and evolves over time, com-
munities should be refreshed periodically.1 Community for-
mation based on a very short period or number of contacts
may not reflect the actual graph structure (e.g., when only
day 1’s contacts are used, 33 communities are generated for
SHED1 as few contacts occurred on that day).
1refresh interval depends on stability of contact patterns



5. EXPERIMENTAL DETAILS
Our first dataset, Flunet [11], contains contacts informa-

tion for 36 computer science graduate students at the Uni-
versity of Saskatchewan, as well as staff and undergraduate
students associated with those labs, collected over a period
of 3 months. Approximately 70,000 contact records were
collected from wireless sensor motes (MicaZ). Our second
data set is St. Andrews (Sassy) [3] measuring the contacts
of 22 undergraduate students, three postgraduate students
and two staff members of the University of St. Andrews
for 79 days (similar to Flunet) with 113,000 contacts. Our
last data set - the Saskatchewan Human Ethology Dataset 1
(SHED1) [10] - covers 5 weeks of Bluetooth contact records
of 39 participants who were primarily CS graduate students
and staff (22721 distinct contacts).

A custom simulator was developed for our experiments as
the integration of clustering and routing was simpler and
could be more focussed than existing simulators such as
ONE [17] and OMNET++.2 Source and destination were
chosen randomly from different communities to focus on the
impact on inter-community message passing. Twenty exper-
imental runs were performed for each parameter combina-
tion.

The values assigned to each input parameter are described
in Table 1. In all experiments, a single parameter was var-
ied. For all datasets, in the limited resource experiments,
10% of the number of messages generated was used as the
fixed buffer capacity; trial and error showed that increased
buffer did not provide a proportionate increment in delivery
ratio for either algorithm. Similarly, maximum TTL values
were set to 15 days for Flunet/Sassy and 7 days for SHED1.
Unless otherwise specified, 100K, 80K and 48K messages
were generated for Flunet, Sassy, and SHED1, respectively.

Table 1: Experimental Factor Input Ranges
Input Limited Resource

Flunet Sassy SHED1

TTL(hours) 1-336 1-336 1-168
Buffer Capacity 10% msgs 10% msgs 10% msgs
Messages 10-80000 10-100000 10-480000

Unlimited Resource
Flunet Sassy SHED1

TTL(hours) 1-4320 1-4320 1-2160
Buffer Capacity 10-200000 10-200000 2-100000
Messages 10-80000 10-100000 5-48000

We first investigated algorithm performance without re-
source constraints to establish best case performance base-
lines where one parameter was varied and the others set to
inexhaustible values. The limited resource cases constrained
parameters within a limited range. A cool-down period is
not used; no algorithm delivers messages generated late in
the simulation. The first epoch’s data is used as a training
session; packets are forwarded starting in the second epoch.
More details can be found in Rasul [26].

6. PERFORMANCE EVALUATION

6.1 Community Determination
Our data sets ranged from extremely clustered to more

isolated. Further examination of the datasets shows that

2www.omnetpp.org

between 62% and 79% of the encounters are local encoun-
ters (intra-community) and 21% to 38% are inter-community
(i.e. global encounters). Intra-community message passing
is expected to have short/fast paths for all heuristics, as
nodes are placed communities by contact frequency. This
intuition to optimize inter-community delivery is addition-
ally inspired by the work done by Sastry et al. [27] where
routing performance has a crucial dependence on the less
frequent contacts. In all our datasets, global encounters can
be treated as the somewhat ‘rare’ or ‘novel’ contacts.

Figure 1 shows the total number of membership changes
for different community formation periods for all 3 datasets.
The number of changes decreases with increasing time pe-
riod. Membership changes are frequent for very short peri-
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Figure 1: Membership Changes

ods. We also measured the average number of communities
for different community formation periods. The number of
communities stabilizes for SHED1 and Flunet after 4 and
7 days, respectively. In Sassy, the number of communities
varies slightly, regardless of the measurement period. We
choose 7 days as the epoch duration, since it fits two of the
three datasets well. A notable consequence of an epoch du-
ration of 7 days and a maximum TTL of 15 days (as in the
limited resource experiments) is that messages exist in at
most 3 epochs before expiring, for a maximum of 2 commu-
nity changes for message undelivered during re-clustering.

6.2 Dataset Characteristics
We investigated the overall internal network structure for

each dataset by sending 5000 inter-community messages.
Figure 2 provides an overall idea of the delivery behaviour
of each of the algorithms, visualized in communities formed
over all contacts. For all detailed forwarding experiments,
weekly community membership is used and will not exactly
match the aggregated membership visualized here.3

In particular, we see the underlying network structure,
the contact patterns and the message forwarding behaviour.
Since the same community determination and same contact
patterns are used for both BUBBLE and CBF, network con-
nectivity remains unchanged. Encounters are represented as
edges in the graph where edge thickness is proportional to
the number of encounters between nodes; node size is pro-
portional to the number of packets forwarded. BUBBLE
has nodes that transmit many messages, while load is spread

3e.g. weekly data for Sassy produces 5 communities in each
week, whereas contacts aggregated over the entire dataset
produce only 2 communities.



(a) (Flunet): BUBBLE (b) (Flunet): CBF

(c) (Sassy): BUBBLE (d) (Sassy): CBF

(e) (SHED1): BUBBLE (f) (SHED1): CBF

Figure 2: Internal Network Structure

more evenly in CBF. Further analysis showed that the me-
dian number of messages forwarded per node was similar,
but some nodes transmitted disproportionately many mes-
sages using BUBBLE, especially in Flunet/ SHED1, imply-
ing high energy usage and potential buffer overflow at the
over-utilized nodes. In particular, 25% of the nodes trans-
mit over 45,000/22000 messages, using BUBBLE. CBF has
no node send over 30000/15000 messages.

6.3 Forwarding Results
Delivery Ratio. In the first set of experiments we varied

buffer size, but TTL was unlimited and the number of mes-
sages was generated as in Table 1. Figure 3 shows the mean
(bar) and the standard deviation (whiskers) for the deliv-
ery ratio. The differences between the algorithms were not
significant for unlimited buffer sizes (80%) for Flunet and
SHED1. With large buffer (over 100 KB), ER performed
the best (90%). For Sassy, delivery ratios were worse over-
all, because of the instability of the network, but CBF had
about 5% higher delivery ratio than BUBBLE for buffer sizes
above 2.5 KB. ER with unlimited buffer and TTL delivers
the maximum number packets.

We expect that CBF will deliver more messages than
BUBBLE by having fewer packet deletions due to buffer

overflow. Therefore, we examined the impact of varying
buffer size keeping TTL and number of messages constant.
Figure 4 shows delivery ratio as a function of buffer space.
At moderate buffer space (500 to 1000 msgs), CBF increases
delivery ratio by between 30% and 40% for Flunet/SHED1.
For Sassy, delivery ratio is improved by 16%. At larger
buffer sizes, there was still an almost 20% improvement for
Flunet/SHED1. In the limited environments, ER quickly
saturates all node buffers and its delivery ratio plummets.4

Next, TTL was varied, constraining the buffer and num-
ber of messages as specified above. Increasing TTL in ER
decreases delivery ratio, likely since fewer packets expire,
causing potentially deliverable packets to be dropped. For
BUBBLE and CBF, delivery ratio increases similarly to in-
creasing buffer size as TTL is varied between 24, 72, 168,
and 336 hours. Due to space considerations, the graph is
not shown. The instability of the community associations in
Sassy causes slightly poorer performance for both BUBBLE
and CBF under constrained resources, as the fundamental
assumptions about network structure are violated.

4The remaining graphs omit ER, because messages trans-
mitted and dropped packets are substantially higher.
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Figure 4: Delivery Ratio: Limited Buffer Capacity

Latency. Each subgraph of Figure 5 shows the results for a
sample run at a particular level of load. All runs had a simi-
lar latency profile. As the number of messages increases, the
oracle delivers more messages closer to TTL expiry, increas-
ing the latency profile. For BUBBLE and CBF, however,
the concentration of simultaneous live messages increases;
more messages are delivered to their respective destinations
faster, decreasing average delay.

For the majority of messages successfully delivered, CBF
has a lower delay. In particular, for the sample run of 500
messages with SHED1, 310 out of the fastest 390 messages
had a lower latency for CBF (by between 10 and 15 hours).
Other datasets show a similar trend: CBF slightly outper-
forms BUBBLE for a majority of the low-latency messages,
and then suffers high latency for the hard-to-deliver mes-
sages. In these cases, a high contribution to total delay is
provided by that relatively small proportion of such mes-
sages, plus those that BUBBLE could not deliver, but that
CBF did deliver, albeit slowly.

Over all experimental runs, the CBF median delay is be-
tween 73% and 97% of BUBBLE’s (500 messages), between
66% and 90% (5000 messages) and between 61% and 89%
(40,000 messages). For lower loads, SHED1 has the smallest
relative median delay and Sassy the largest. With 40,000
messages, SHED1 actually had the largest relative median
delay, but the median for BUBBLE was substantially lower
than with 5000 messages (reduced from 53 to 37 hours).

When we consider the average delay of the same num-
ber of messages delivered by BUBBLE and CBF, there is
very little difference between the algorithms (some runs pro-
duce at most 7% difference for the 500 message case). For
SHED1, CBF delay is 7.5% to 12% lower than BUBBLE.
For smaller numbers of messages, BUBBLE outperformed
CBF for Sassy and Flunet by as much as 6%, but with the
40000 message case, Flunet’s CBF delay was only 83% of

BUBBLE’s. When the additional messages that only CBF
could deliver are included, the mean delay increases. For
5000 messages and 40000 messages, we see a similar trend,
but the delay measurements are even closer between CBF
and BUBBLE. Sometimes CBF even surpasses BUBBLE. In
particular, for the SHED1 dataset, the average delay is 1.8
hours less under CBF than BUBBLE with 5000 messages.
The worst performance for CBF was a 21% increase in de-
lay for Flunet (500 messages), though there was only a 6%
increase for the fastest 390 messages delivered.

For CBF with Flunet, messages were continued to be de-
livered until TTL expiry, but not with BUBBLE, whose
longest successful delivery was 230 hours. Similar results are
shown for SHED1. Even more dramatic are the results for
Sassy, where there were no messages delivered close to the
TTL expiry time in either forwarding scheme, the longest
successful latency being 294 hours for CBF. Extending the
TTL does not necessarily allow more messages to be deliv-
ered, even with unlimited buffer space. In the samples, only
Flunet using CBF has a substantial percentage of messages
delivered after 7 days.

Message Transmissions. We next compare the efficiency
of BUBBLE and CBF with the Minimum Cost Oracle, mea-
suring the total number of transmissions required to deliver
the same set of messages unconstrained. Table 2 shows that
CBF uses 2 more hops on average than the oracle in SHED1,
whereas BUBBLE uses 3 more hops. The differences be-
tween CBF and BUBBLE are less for the other 2 datasets.

After comparing with the oracle, we compared the for-
warding cost between the algorithms in a realistic, resource-
constrained environment. Figure 6 shows transmissions as
a function of buffer space, indicating absolute differences of
transmissions between CBF and BUBBLE for larger buffer
sizes. In this scenario, CBF also had a higher delivery ratio
(see Figure 4), so the transmission is more efficient.
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Figure 5: Message Latency (Sample Runs)

By increasing TTL, the lifespans of messages were in-
creased, allowing them undergo more exchanges before get-
ting dropped, shown in Figure 7. Increasing the TTL has a
diminishing effect on the difference between number of mes-
sages sent by each algorithm. For both algorithms, SHED1
has no noticeable increase in transmissions with a TTL longer
than 7 days, and doubling the TTL (from 168 to 336 hours)
for the other 2 datasets has the effect of increasing the av-
erage number of transmissions by only 25-28% in CBF and
only 12-18% in BUBBLE. Doubling it again had less than a
10% effect in any of the algorithms. The fact that SHED1
has a stable number of transmissions indicates that all mes-
sages were delivered before the original TTL, were victims
of buffer overflow, or found no suitable carriers.

For all datasets, CBF outperforms BUBBLE by transfer-
ring more messages with fewer transmissions. Results using
the SHED1 dataset shows the maximum difference, whereas
the least difference is seen in Sassy.

Table 2: Hop Count
Msgs Algorithm Flunet Sassy SHED1

50 Oracle 2 1.6 2
BUBBLE 4.8 4.6 5
CBF 4.6 4 4

500 Oracle 1.2 1.4 2
BUBBLE 4.4 4.3 5.1
CBF 4 4.2 3.5

5000 Oracle 1.1 1.33 2
BUBBLE 4.33 4.2 5.06
CBF 4 4.13 3.67

40000 Oracle 1.06 1 2
BUBBLE 3.83 5 5
CBF 3 4 4

Packets Dropped. As suggested by Figure 2, CBF spreads
traffic more evenly, reducing buffer congestion. Table 3
shows the average and standard deviation of packet drops
when TTL is varied and buffer space is limited. Social nodes
in BUBBLE experience more packet drops. The standard
deviation in packet drops is comparable, but is usually lower
with CBF. Both algorithms have nodes drop older packets to
make space for newer messages. As TTL is increased, more
long-lived packets must be dropped due to congestion. With
short TTL, CBF has close to an order of magnitude fewer
drops for all datasets. This difference drops to less than
twice for the longest TTL. At the default TTL (168 hours),
the differences range from 33% (Flunet) to 60% (Sassy).

Table 3: Packet Drops
TTL Alg. Flunet Sassy SHED1
(hrs) Mean SD Mean SD Mean SD

24 BUBBLE 341 9 208 31 3693 20
CBF 64 18 20 5 267 21

72 BUBBLE 2135 38 1831 68 11163 92
CBF 491 24 785 14 6754 87

168 BUBBLE 12486 52 14080 133 17418 507
CBF 4150 71 8232 102 9171 332

336 BUBBLE 20666 230 26436 784 17658 3650
CBF 12212 191 17384 483 9210 3811

In SHED1, where the top four social nodes belong to
the same community, there is higher packet drop. For all
three datasets, Pearson’s correlation coefficient was calcu-
lated to determine the impact of node GP on the number
of packets dropped. Packets dropped by nodes using BUB-
BLE have a high positive correlation with global popularity,
whereas with CBF packet drop has a low positive correla-
tion with global popularity. In Sassy, nodes using BUBBLE
have a high correlation of +0.85, but using CBF have a
low correlation of +0.41. These values are +0.90/+0.70 and
+0.26/0.30 in SHED1/Flunet, respectively. In a realistic
limited resource environment, the dependency of BUBBLE
on the most social nodes becomes its major drawback rather
than its strength.

Analysis of Forwarding Dynamics. To illustrate the un-
derlying mechanics which lead to the trends observed, we
consider a final experimental scenario. A fixed number of
messages, TTL and and 10% buffer capacity was employed
as in Section 5. With lower packet transmission for CBF
than BUBBLE (Figures 6 and 7), a higher proportion of
passes (12.34% - Flunet, 5.87% - Sassy, 17.91% - SHED1)
were made based on inter-community factors in CBF than in
BUBBLE, indicating that CBF prefers an appropriate node
along a likely path rather than a globally popular node.
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Figure 6: Transmissions: Limited Buffer Capacity
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Figure 7: Transmissions: Limited TTL

7. DISCUSSION
Contributions. Our primary contribution is the CBF al-

gorithm which uses more nuanced information about social
network structures arising from human mobility patterns in
forwarding decisions. We also analyzed the role of network
versus personal interconnectivity in PSNs. Well-connected
nodes may span communities, but nodes close to the desti-
nation bridging relevant communities are important in re-
ducing packet drops in resource constrained systems and
asymmetric resource utilization on globally popular nodes
compared to BUBBLE [15] or PRoPHET [20].

By employing datasets with varying degrees of community
stability, we established that even under varying commu-
nity membership, CBF can provide superior performance to
BUBBLE. Obviously, there are limits to the extent to which
our assumptions apply to degenerate systems: for example
contact networks at immigration points where few people
will ever see each other again, will require different routing
systems. Finally, by comparing the limited and unlimited
cases, we quantified the degree to which resource constraints
impact the performance of PSN algorithms. Severe perfor-
mance degradation for greedier schemes was noted, as ex-
pected. CBF increases the delivery ratio by up to 40% as
the number of messages and TTL were varied in the limited
resource situation. When buffer capacity was varied, deliv-
ery ratio and transmissions were consistently better for CBF
than BUBBLE; packet loss was lower with CBF as well.

Limitations and Future Work. While constituting a sig-
nificant contribution to the study of PSN routing, there are
several short-comings to be addressed in future work. Our
datasets are strongly biased toward University lifestyles and
relationships. Replicating these results with datasets from
other populations or on synthetic data [12] could shed fur-

ther light on design tradeoffs. We also neglected channel
noise, a common assumption in DTN work, as packet drops
are to some extent implicitly encoded in the datasets. Mod-
elling communication channel noise and investigating the
role of packet size would substantially extend our work. Mes-
sage source and destination were generated at random from
different communities. More realistic message generation
scenarios would help quantify the applicability of the re-
sults. In particular, the many-to-one scenario should show
different packet drop profiles. Finally, we only investigated a
single community generation technique. Additional commu-
nity formation techniques and even self-identification may
enhance CBF generalizability.

8. CONCLUSIONS
Social networks often exhibit small world network traits.

For efficient routing in social contexts, forwarding algorithms
can use routing heuristics that encompass small world net-
work properties. Moreover, in a resource constrained PSN
system, the routing algorithm must use available resources
appropriately. Our algorithm balances the use of resources
with the likelihood of delivery, by employing decision making
metrics that can evaluate arising social structure of a net-
work, in turn enabling CBF to preferentially choose nodes
with a greater probability of being in the target community.
When compared to BUBBLE, CBF’s transmission perfor-
mance reaches closer to that of the shortest route oracle and
in all cases CBF transmits fewer messages, making it more
energy-efficient. Quantitative analysis shows that more sta-
ble networks reap the benefits of CBF’s enhancements to a
greater degree. The delivery ratio of CBF is bounded below
by BUBBLE and we experience acceptable additional delay
for a DTN, due to the additional messages delivered.
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