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Abstract—Sensor devices and the emergent networks that they
enable are capable of transmitting information between data
sources and a permanent data sink. Since these devices have
low-power and intermittent connectivity, latency of delivery for
certain classes of data may be tolerated in an effort to save energy.
Several previously developed algorithms employ models which
considers the popularity of individual nodes within communities
and forward messages to nodes with higher probability of
delivery according to some heuristic. In previous work, we
developed Community-Based-Forwarding (CBF) that considers
the interactions between communities as a factor in message
forwarding. Using this information, CBF is able to exploit
intermediate connections between clusters to route messages with
more balanced node participation and higher levels of reliability
and efficiency. One disadvantage of CBF was an increased
delivery latency for some subset of messages that could not
be delivered using other algorithms. In this paper, we extend
the semantics of CBF with the Hybrid CBF algorithm (HCBF)
by optimizing forwarding inside communities by considering the
social diversity (measured by Unique Interactions). We find that
all performance metrics are improved with this heuristic on a
representative set of human mobility traces, but most significantly
the message delivery latency is substantially improved over the
other algorithms studied.

Index Terms—delay-tolerant networks; pocket-switched net-
works; social-based routing; resource-constrained devices

I. INTRODUCTION

Much of the world’s population uses many mobile comput-
ing devices every day. Such devices vary from smart-phones
to personal medical monitors to smart badges. These devices
vary in capabilities, missions, and form factors, but all require
limiting energy consumption to prolong battery lifetime.

Often these devices are required to communicate with each
other (for example a medical device responding to a query
from a particular physician), with a base station (for example
collecting data on human behaviour), or receiving messages
from a base station (for example a smart badge firmware
update). While all of these missions could be accomplished
by transmitting to fixed infrastructure, bridging across existing
networks such as the internet, and transmitting to the recipient,
this may not always be the most efficient solution, particularly
if base stations are rare. Instead many researchers [1], [2],
[3], have looked into sending messages from device to device,

leveraging the contact patterns of humans to make a series of
small energy-efficient hops rather than a larger, more energy
intensive hop to a base station.

Pocket switched networks (PSNs) are a special case of
delay tolerant networks (DTNs) where packets are routed from
person to person in an ad-hoc manner, based on historical data
regarding dynamic, non-uniform contact patterns arising from
human mobility patterns [4], [1], [2]. Significant differences in
contact patterns have been observed in environments for which
datasets are available [5], [6], [7]. These dynamics suggest that
routing based on inter-community contacts may aid routing
performance. However, care must be taken when designing
these kinds of interactions, as maintaining traditional routining
tables can soon become more expensive than routing the data
itself [8]. Device sensing methodology and parameters as well
as associated software for obtaining data (potentially multi-
modal sensor data) may need to adapt in ways impossible
to capture in an a priori manner. As well, other delay-
tolerant message generation paradigms can be anticipated. In
particular, the recording of sensor values from many sensors
to a single node for long-term trend analysis can be tolerant
of delays on the order of days [9].

In previous work, we developed and evaluated a
Community-Based Forwarding algorithm (CBF) [10] that ex-
plicitly uses community structure as well as individual node-
based connections of previous social-based approaches, and
did not use a routing table, minimizing overhead. Leverag-
ing community linkages exploited lower-centrality “bridging
nodes” [11] to reduce buffer and power strain on the pop-
ular nodes, we were able to achieve savings compared to a
well known social-based algorithm (BUBBLE) [2], for all
measured metrics, except for average delivery latency. The
delivery latency distribution showed that most messages had
substantially lower delivery times under CBF, and indeed
a lower average latency for the same delivery ratio. CBF
delivered more messages, but some hard-to-deliver messages
experienced greater latency due to the conservative nature of
the forwarding heuristics utilized.

We also noted that there was a substantial gap between the
performance of CBF and that of the Fastest Oracle, which



routed packets along the minimum latency path given future
knowledge of contact patterns. There are two options that
come to mind when considering latency improvements: 1)
improving the node clustering approach and identifying more
complex community structures (perhaps hierarchical commu-
nities), and 2) optimizing the performance when routing inside
a community. We have chosen the second strategy for the
development of the Hybrid Community-Based Forwarding
(HCBF) algorithm. In particular, we focus on improving the
routing of packets within communities at every stage of the
forwarding path, but most importantly, after a packet has
arrived at a bridge node. This is distinct from general intra-
community routing, as packets may not have to pass through
bridging nodes in general, but do have to pass through bridging
nodes when arriving from other communities. While we expect
that the local routing heuristics employed in HCBF will
improve routing quality in the more general intra-community
routing case, that is not examined in this work.

We make the following contributions in this paper: 1) an
optimized heuristic for intra-community forwarding, and 2)
a quantitative comparison of the impact of limiting node
resources on routing performance of the algorithms.

II. BACKGROUND AND RELATED WORK

The potential benefits and tradeoffs of DTN routing policies
were first examined by Jain et al. [3]. The simplest, Epidemic
routing (ER), [12] where all nodes attempt to deliver all
packets, is useful theoretically by providing minimum delay,
but is horribly inefficient in practice. Constraining the growth
of multiple copies is possible through adaptive limitations on
packet time-to-live (TTL) [13] or limiting copies to privileged
nodes [14], [15]. However, if data is truly delay tolerant the
benefit of multi-copy transmission is unclear.

The single copy case [16] can exhibit high latency and
potentially poor delivery ratio, but is often more efficient due
to a lack of multiple transmissions. Lindgren et al. proposed
PRoPHET [8], which models nodes’ future contacts directly
from contact history. Context-Aware Adaptive Routing (CAR)
[17] forwards packets to nodes with the highest probability of
meeting the destination. Plankton [18] predicts the probability
of future contacts and duration by classifying links based on
the quality of previous contacts.

Other researchers have attempted to gain efficiency by
modelling the overall behaviour of the dynamic contact graph
by segmenting the graph into cliques, which we have called
communities. SimBet [11] employs betweenness centrality and
similarity metrics. Hui et al. [2] developed BUBBLE, which
uses time-variant rankings based on recent history. A node is
a member of at least one community and nodes are locally
ranked, based on the number of contacts with other members
of that community. Likewise, a global ranking is assigned to
a node based on its global contacts.

Peoplerank [19], motivated by Google’s PageRank algo-
rithm [20], uses node-ranking concepts based on social be-
haviour. Fabbri and Verdone utilize metrics for sociability of

individual nodes in a vehicular networks [21]. Higher contact-
rate, lower contact-duration nodes have been shown to play
a major role in efficiently forwarding data [22]. In Lobby-
Influence [23], the influence of the community structure of the
dynamic network dominated the routing protocol employed.

The stochastic processes that underlie human contact pat-
terns have a non-uniform structure when aggregated over time.
The contact probability network formed by summing time in
contact between pairs of nodes in the graph tends to have
small world properties [24]. This structure has been used
in attempts to increase routing efficiency in PSNs [15], [2],
[25] admitting that aggregate representation fails to capture
instantaneous contact pattern dynamics. The periodicity of
contact patterns has also been shown to influence the perfor-
mance of DTN routing algorithms [26]. In particular, small
world networks with highly connected clusters, containing
short paths connecting every pair of nodes provide a promising
means of improving routing [2]. CBF in general and HCBF in
particular is based on the observation that strong paths within
communities should provide fast intra-community routes and
that there is a high probability for messages to be forwarded
through nodes within the same community.

Most PSN performance research uses simulation to compare
algorithms fairly using the same contact patterns, which are
typically generated in three ways: 1) directly from contact
pattern traces [7], [24] datasets; 2) inferred from higher-level
mobility data such as class [27] or transit [14] schedules; or 3)
from synthetic contacts generated directly from theoretically
grounded mobility patterns [28]. The datasets employed in this
work are representative of university environments, and are
among the longest datasets available. Synthetic and mobility
datasets may have different characteristics.

III. ALGORITHM

Previous analysis of the datasets shows that between 62%
and 79% of the encounters occur between nodes in the same
community [29]. This suggests that intra-community features
might be exploitable to improve routing of packets to and
from bridge node within communities. BUBBLE and CBF
define node sociability or local popularity (LP) by the number
of contacts a node has. Diversity, referring to the number of
unique nodes that are encountered by a particular node, is
potentially a more useful metric, as it encodes to propensity
of a node to mix with others. If nodes with more diverse
interaction patterns are considered, then the most diverse nodes
will be selected as carriers, potentially reducing latency [22].
If LP is the only factor considered, there may be highly-
active nodes that form strong subnets within the community,
potentially leading to packets becoming stuck.

The use of community and popularity metrics to allows
nodes to route messages locally, without routing tables. For
intra-community delivery, HCBF uses Unique Interactions
(UI) as opposed to BUBBLE’s LP (Eq. (1)), which is also used
in CBF. The values of UI and LP are not strongly correlated.
For more details, see Rasul [29].



Unique Interactions

∀(x ∈ C) UIx = |Sx| where Sx =
⋃

y∈Cx

s.t. ∃g(x, y, k) = 1, k ≤ K

(1)
A formal representation of HCBF is shown in Algorithm

1. It is identical to the CBF algorithm [10], except for the
use of the intra-community heuristic (UI), based on diversity,
but repeated here for completeness. In each time step, a node
encounters a (possibly empty, but normally small) set of other
nodes and potentially transfers messages to these nodes. Packet
forwarding is accomplished through a set of heuristics. We
never forward outside the community when the carrier is in
the destination community. If the carrier encounters a node
that neither belongs to its own community nor to that of the
destination, community betweenness count (CBC) values with
the destination community are used, selecting the encountered
node with the maximum CBC. Next, when the encountered
node and carrier are in the same non-destination community,
the node with the highest nodal contribution factor (NCF) with
the destination community is used. Otherwise, we choose the
node encountered with the greatest UI value. Finally, LP is
used.

We compare HCBF with BUBBLE as an implementation
of a context-aware forwarding approach. Additionally, we
are interested in determining how both algorithms perform
in comparison to oracles that are optimal with respect to
two of our main metrics: delivery latency and number of
message transmissions. As delay is the primary metric we are
attempting to minimize, we use an oracle that records the first
arrival at the destination using ER with unlimited resources.

IV. EXPERIMENTAL DETAILS

Our first dataset, Flunet [7], contains contact information
for 36 computer science graduate students at the University
of Saskatchewan, as well as staff and undergraduate students
associated with those labs, collected over a period of 3
months. Approximately 70,000 contact records were collected
from wireless sensor motes (MicaZ). Our second data set
is St. Andrews (Sassy) [5] measuring the contacts of 22
undergraduate students, three postgraduate students and two
staff members of the University of St. Andrews for 79 days
(similar to Flunet) with 113,000 contacts. Our last data set -
the Saskatchewan Human Ethology Dataset 1 (SHED1) [6] -
covers 5 weeks of Bluetooth contact records of 39 participants
who were primarily CS graduate students and staff (22721
distinct contacts).

Source and destination were chosen randomly from different
communities to focus on the impact on inter-community
message passing. Twenty experimental runs were performed
for each parameter combination.

The values assigned to each input parameter are described
in Table I. In all experiments, a single parameter was varied.
For all datasets, in the limited resource experiments, 10% of
the number of messages generated was used as the fixed buffer
capacity [10]. Similarly, maximum TTL values were set to 15
days for Flunet/Sassy and 7 days for SHED1. Unless otherwise

Algorithm 1 HCBF (Node me, Node dest, Node met[], int
numEncountered, msgType Msg)
Node maxCBC= me; Node maxNCF=me;
Node maxLP = NULL;
Node maxUI = NULL;
for (i = 1 to numEncountered) do

if (met[i] == dest) then // Destination
addMessageToBuf(dest,Msg); return;

end if
if ((UImet[i] > UIme) & (C(met[i]) == C(me))) then

maxUI = maximumUI(met[i], maxUI);
end if
if (C(met[i]) == C(dest)) then

maxLP = maximumLP(met[i], maxLP);
else if (C(met[i]) 6= C(me)) then

maxCBC = maximumCBC(met[i], dest, maxCBC);
else maxNCF = maximumNCF(met[i], dest, maxNCF);
end if

end for
if ((maxUI 6= NULL) & (C(maxUI) == C(dest))) then //
entering dest. comm.

addMessageToBuf(MaxUI,Msg); return;
end if
if ((maxLP 6= NULL) & (C(maxLP) == C(dest))) then //
entering dest. comm.

addMessageToBuf(MaxLP,Msg); return;
end if
if (maxCBC 6= me) then

addMessageToBuf(maxCBC,Msg); return; // new comm.
end if
if (maxNCF 6= me) then

addMessageToBuf(maxNCF,Msg); return; // same comm.
end if
if ((maxUI 6= NULL) & (UImaxUI > UIme)) then

maxLP.addMessageToBuf(Msg); return; // in any comm.
end if
if ((maxLP 6= NULL) & (LPmaxLP > LPme)) then

maxLP.addMessageToBuf(Msg); return; // else in dest.
comm.
end if

specified, 50K, 40K and 48K messages were generated for
Flunet, Sassy, and SHED1, respectively. A cool-down period
is not used; no algorithm delivers messages generated late in
the simulation. The first epoch’s data is used as a training
session; packets are forwarded starting in the second epoch.

We are primarily concerned with improving routing perfor-
mance in resource limited nodes such as smart badges [10]. To
evaluate the impact of selected resource limitations, we alter
the capabilities of nodes in a series of experiments, starting
with no limitations, then analyzing the effect of limiting TTL
and buffer size. For many of the reported metrics under each
experimental condition, no meaningful differences between
algorithms or heuristics could be found. In the interest of
brevity, those results are not included in this paper. Metric



and conditions which exhibit differential performance over
algorithm are reported. To understand the relative impact of
HCBF over CBF, we also compare results where only the
intra-community portion of an inter-community routing task
is considered.

TABLE I: Experimental Factor Input Ranges

Input Limited Resource
Flunet Sassy SHED1

TTL(hours) 1-336 1-336 1-168
Buffer Capacity 10% msgs 10% msgs 10% msgs
Messages 10-40000 10-50000 10-48000

Unlimited Resource
Flunet Sassy SHED1

TTL(hours) 1-4320 1-4320 1-2160
Buffer Capacity 40-40000 50-50000 48-48000
Messages 10-40000 10-50000 10-48000

V. PERFORMANCE EVALUATION

A. Impact of Low-Diversity Social Nodes.

High-contact nodes are those that have a large number of
contacts per unit time, and social nodes are those that spend
significant amounts of time in a ‘temporal community’ [22];
i.e. repeated contacts with the same smaller set of nodes. Those
with the higher contact rate are considered more diverse. In
the first set of experiments, we compared BUBBLE and CBF
with two versions of HCBF: one that considers diverse social
nodes (HCBF), and one that considers all social nodes (HCBF-
NS, for non-stationary). To test this method, 50000 messages
were generated with fixed TTL and 10% buffer capacity for
each of the three datasets. The average results are shown in
Figure 1; one standard deviation is shown by the whiskers.

HCBF improves the delivery ratio slightly over HCBF-NS,
and both are less than 2% better than CBF. In terms of packet
drops, HCBF-NS has a larger number of dropped packets.
The biggest problem with HCBF-NS is the large number
of transmissions required (Figure 1 (b)), exceeding that of
BUBBLE, and at least twice that of HCBF for all datasets.

Delivery latency is shown in Figure 1 (d). HCBF-NS has
slightly lower delays than HCBF for Fluent and Sassy, but
is slightly higher for SHED1. In all 3 datasets, the delay is
better for both than for BUBBLE and CBF. For the remainder
of the experiments, only HCBF will be used, since the delay
improvement is not worth the increase in the energy required
for the larger number of transmissions. Packets should be
forwarded to highly mobile, high-diversity nodes, or socially
mobile (SM) nodes.

B. Inter-community Routing

Messages are generated such that the source and destination
belong to different communities. Figure 2 shows the delivery
ratios for the SHED1 dataset. The other datasets showed
similar results. The delivery ratio improves slightly over CBF.

When messages have longer TTL values, older undelivered
messages are dropped out of a node’s buffer to make room for
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Fig. 1: HCBF-NS vs. HCBF Performance Measures
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Fig. 2: Delivery Ratio: Inter-community Messages (SHED1)

newer ones. In Table II, drops increase dramatically between
24 and 72 hours, but only slightly between 7 and 14 days.
The number of drops of CBF and HCBF are similar, but the
variability between runs in HCBF is lower.

Change in TTL also has an impact on the transmissions.
Figure 3 shows the transmissions for SHED1, and we can
see that they are reduced dramatically. The socially-diverse
mobile nodes use these characteristics to find the most suitable
carrier in a shorter period of time than BUBBLE or CBF
for the same TTL. The average delay increases as TTL



TABLE II: Packet Drops- HCBF and CBF

TTL Alg. SHED1
(hrs) Mean SD

24 BUBBLE 3693 151
CBF 267 106
HCBF 238 12

72 BUBBLE 11163 648
CBF 6754 322
HCBF 6630 38

168 BUBBLE 17418 5312
CBF 9171 3496
HCBF 9310 56

336 BUBBLE 17658 350
CBF 9210 566
HCBF 10050 62
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Fig. 3: Transmissions: Inter-community Messages (SHED1)

increases, but the difference between CBF and HCBF remains
constant (Figure 4). In our previous work [10], we had
noted that increases in delivery ratio for CBF came at the
expense of additional latency. By improving intra-community
routing through HCBF, we have ameliorated this shortcoming,
consistently outperforming BUBBLE in all measured metrics.
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The next set of experiments consider nodes with limited
buffer space. The delay decrease expected is confirmed by

this set of experiments and shown in Figure 5. Delay increases
as buffer capacity increases, as older packets can stay longer
without being dropped and thus, be delivered eventually. In
each case, the average delay for HCBF is less than that
of BUBBLE for buffer capacities greater than 40 messages.
Further detail on a sample run is described in the next
subsection, along with a comparison with the Fastest Oracle.
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Inter-community hops and intra-community hops have been
traced and post-processed. The results are shown in Table III.
For all delivered messages, CBF has one of these in common
with the other 2 algorithms, so it is not included. HCBF



requires on average at least 2 fewer hops than BUBBLE. The
range of intra-community hops is shorter; allowing messages
on difficult paths to have fewer hops. When compared to other
datasets, messages in SHED1 using HCBF have the tightest
intra-community hop distribution, because SHED1 has more
nodes with higher UI values.

TABLE III: Hop Count

Dataset Alg. Intra-comm. Hop Inter-comm. Hop
Range Quartile Range Quartile

Flunet Oracle 0-6 1,1,1 1-4 1,2,2
Bubble 2-11 2,3,6 2-7 2,3,4
HCBF 1-9 1,3,4 1-5 1,2,3

Sassy Oracle 0-3 1,1,1 1-4 1,2,3
Bubble 1-11 2,4,7 2-9 3,4,6
HCBF 1-8 2,3,5 1-6 3,4,5

SHED1 Oracle 0-4 1,1,1 1-3 1,1,2
Bubble 0-11 2,3,6 2-9 3,4,5
HCBF 0-7 2,3,4 1-6 2,2,3

C. Oracles

Further analysis of HCBF and BUBBLE’s performance is
done by comparing them with the oracles. We define the
Fastest Oracle as the latency of the first packet copy to arrive
at the destination using ER [10]. The Minimum Cost oracle is
the minimum number of hops to reach the destination using
ER before TTL expiry.

Figure 6 shows the distribution of delay for BUBBLE
and HCBF along with the Fastest Oracle. A sample run is
shown, but most of the runs are similar in shape. In all
3 scenarios, when messages are sorted by delivery latency,
HCBF outperforms BUBBLE on every message that both can
deliver. In the experiments with CBF, there were cases where
a message of the same delivery rank (i.e. nth fastest) had
a lower delay with BUBBLE, but the average latency was
less with CBF for the number of messages that both could
deliver. It is very difficult to determine if specific messages had
different relative delivery latencies, but one could imagine that
the heuristics in both CBF and HCBF improve delivery latency
for some messages and degrade it for others. For the fastest
50% of the messages, it appears there is a constant difference
in delay between BUBBLE and HCBF as the corresponding
lines appear close to parallel.

With 500 messages, most of the the message experience a
consistent delay (50-60 hours in BUBBLE, and 30-40 hours
in HCBF) for SHED1. As the number of messages increases,
the delay distribution decreases in all datasets.

With 5000 messages, HCBF for Flunet delivers many more
messages with large latencies that otherwise could not be
delivered at all with BUBBLE. This indicates that buffers can
be emptied with some messages getting delivered very quickly
by HCBF to keep room for the hard-to-deliver messages that
do eventually find the destination.

It is interesting to note that HCBF approaches the Oracle
for the first 30000 messages in the 40000 message case. After
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Fig. 6: Latency Distributions

that, the delay of HCBF increases sharply. This suggests that
HCBF often chooses the best possible node for forwarding,
but when it makes a bad choice, either earlier or later in the
path, the latency increases significantly.

In general, the more stable the communities in the dataset,
the closer the delay distribution is to that of the Oracle for
at least 60% of the messages delivered, but occasionally
sub-optimal choices are made that extend delivery. HCBF
is conservative, but enough appropriate nodes are selected
for forwarding to reduce the average and individual latencies
below those of BUBBLE.

The minimum cost Oracle is used to compare the number
of transmissions made by each algorithm for successfully
delivered messages. Figure 7 shows that the number of hops
is reduced in HCBF, and as more messages are generated,



the number of hops required in HCBF approaches that of
the Oracle. On average, HCBF only takes one additional hop
above the oracle, which is impressive for simple heuristics on
stochastic systems.
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VI. DISCUSSION

While substantial routing performance gains can be made by
intelligently partitioning the dynamic graph into communities,
and passing messages from community to community, most
of the individual message passes happen within a community.
Leveraging recent work in characterizing human contact pat-
terns, we defined a new metric based on contact diversity:
Unique Interactions. We were able to leverage UI through

simple heuristics to address performance shortcomings, and
provide equal to or better than benchmark algorithm perfor-
mance across all measured metrics.

A. Contributions

Metric: We identified a new metric, Unique Interac-
tions, and leveraged it to provide increased perfor-
mance by improving intra-community routing.
Measurement: We validated our modified algorithm
using the new metric against real contact data and
oracles, providing empirical evidence for the exis-
tence improvement and the possible scope of future
improvements.
Modality: By splitting the analysis into intra and
inter community routing we were able to establish
the degree to which each contributed to overall
performance.

B. Limitations and Future Work.

While constituting a significant contribution to the study of
PSN routing, there are several short-comings to be addressed
in future work. Our datasets are strongly biased toward Univer-
sity lifestyles and relationships. Validating this work with other
data or simulated contact patterns could indicate the degree
to which our findings generalize. We have adopted a simple,
stylized message-passing model, consistent with other work.
Our findings could be strengthened with load characteristics
drawn from a specific message-passing problem. Finally, we
have only tested in simulation, and have neglected issues such
as packet drop or collisions. More complete transmission mod-
els might indicate additional areas of strength and weakness
for the approach.

VII. CONCLUSIONS

Social networks often exhibit small world network traits.
For efficient routing in social contexts, forwarding algorithms
can use routing heuristics that encompass small world network
properties. Our algorithm balances the use of resources with
the likelihood of delivery, by employing decision making
metrics that can evaluate arising social structure of a network,
in turn enabling HCBF to preferentially choose nodes with
a greater probability of being in the target community, and
intra-community nodes more likely to get the message to
those bridge nodes. When compared to BUBBLE and CBF,
HCBF’s transmission performance reaches closer to that of
the shortest route oracle and in all cases HCBF transmits
fewer messages, making it more energy-efficient. Quantitative
analysis shows that more stable networks reap the benefits of
HCBF’s enhancements to a greater degree. HCBF is an attrac-
tive lightweight algorithm for resource limited PSN routing.

REFERENCES

[1] P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft, and C. Diot,
“Pocket switched networks and human mobility in conference environ-
ments,” in ACM SIGCOMM Workshop on Delay-tolerant Networking,
Philadelphia, PA, Aug. 2005, pp. 244–251.



[2] P. Hui, J. Crowcroft, and E. Yoneki, “Bubble rap: Social-based Forward-
ing in Delay Tolerant Networks,” in ACM Mobihoc, Hong Kong, China,
May 2008, pp. 241–250.

[3] S. Jain, K. Fall, and R. Patra, “Routing in a delay tolerant network,” in
ACM SIGCOMM, Portland, OR, Sep. 2004, pp. 145–158.

[4] L. Amaral, A. Scala, M. Barthelemy, and H. E. Stanley, “Classes
of Small-world Networks,” Proceedings of the National Academy of
Science USA, vol. 97, pp. 11 149–11 152, 2000.

[5] G. Bigwood, D. Rehunathan, M. Bateman, T. Henderson, and S. Bhatti,
“Exploiting Self-Reported Social Networks for Routing in ubiquitous
Computing Environments,” in WIMOB, Avignon, France, Oct. 2008, pp.
484–489.

[6] M. S. Hashemian, K. G. Stanley, D. L. Knowles, J. Calver, and N. Os-
good, “Human network data collection in the wild: the epidemiological
utility of micro-contact and location data,” in ACM SIGHIT International
Health Informatics Symposium, Miami, FL, Jan. 2012, pp. 255–264.

[7] M. S. Hashemian, K. G. Stanley, and N. Osgood, “Flunet: Automated
tracking of contacts during flu season,” in WiOpt, Avignon, France, May
2010, pp. 348–353.

[8] A. Lindgren, A. Doria, and O. Schelen, “Probabilistic Routing in
Intermittently Connected Networks,” SIGMOBILE Mobile Computing
and Communication Review, vol. 7, no. 3, pp. 19–20, 2004.

[9] V. Pulimi, T. Paul, K. Stanley, and D. Eager, “Near-optimal Routing
for Contour Detection in Wireless Sensor Networks,” in IEEE LCN,
Clearwater, FL, Oct. 2012, pp. 462–469.

[10] K. Rasul, S. A. Chowdhury, D. Makaroff, and K. Stanley, “Community-
Based Forwarding for Low-Capacity Pocket Switched Networks,” in
ACM MSWiM 2014, Montreal, Canada, Sep. 2014, pp. 249–257.

[11] E. M. Daly and M. Haahr, “Social network analysis for routing in
disconnected delay-tolerant MANETs,” in ACM Mobihoc, Montreal,
Canada, Sep. 2007, pp. 32–40.

[12] A. Vahdat and D. Becker, “Epidemic Routing for Partially-connected Ad
Hoc Networks,” Duke University, Tech. Rep. CS-2000-06, Apr. 2000.

[13] Z. J. Haas and T. Small, “A new networking model for biological
applications of ad hoc sensor networks,” IEEE/ACM Trans. Netw.,
vol. 14, no. 1, pp. 27–40, Feb. 2006.

[14] N. Banerjee, M. D. Corner, D. Towsley, and B. N. Levine, “Relays, base
stations, and meshes: enhancing mobile networks with infrastructure,”
in ACM Mobicom, San Francisco, CA, Sep. 2008, pp. 81–91.

[15] M. Hashemian and K. G. Stanley, “Effective utilization of place as a
resource in pocket switched networks,” in IEEE LCN, Bonn, Germany,
Oct. 2011, pp. 247 –250.

[16] T. Spyropoulos, K. Psounis, and C. Raghavendra, “Efficient routing
in intermittently connected mobile networks: The single-copy case,”
IEEE/ACM Trans. Netw., vol. 16, no. 1, pp. 63 –76, Feb. 2008.

[17] M. Musolesi and C. Mascolo, “CAR: Context-Aware Adaptive Routing
for Delay-Tolerant Mobile Networks,” IEEE Trans. on Mobile Comput-
ing, vol. 8, no. 2, pp. 246–260, 2009.

[18] X. F. Guo and M. C. Chan, “Plankton: An efficient DTN routing
algorithm,” in SECON, New Orleans, LA, Jun. 2013, pp. 550–558.

[19] A. Mtibaa, M. May., C. Diot, and M. Ammar, “Peoplerank: Social
opportunistic forwarding,” in IEEE INFOCOM, San Diego, CA, Mar.
2010, pp. 1–5.

[20] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation
ranking: Bringing order to the Web,” in WWW, Brisbane, Australia, Apr.
1998, pp. 161–172.

[21] F. Fabbri and R. Verdone, “A Sociability-Based Routing Scheme for
Delay-Tolerant Networks,” EURASIP Journal on Wireless Communica-
tions and Networking, vol. 2011, pp. 1:1–1:13, 2011.

[22] A. Pietilänen and C. Diot, “Dissemination in Opportunistic Social
Networks: The Role of Temporal Communities,” in ACM MobiHoc,
Hilton Head, SC, Jun. 2012, pp. 165–174.

[23] S. Khan, R. Mondragon, and L. Tokarchuk, “Lobby Influence: Op-
portunistic forwarding algorithm based on human social relationship
patterns,” in IEEE PERCOM Workshops, Lugano, Switzerland, Mar.
2012, pp. 211–216.

[24] T. Hossmann, T. T. Spyropoulos, and F. Legendre, “Putting contacts
into context: mobility modeling beyond inter-contact times,” in ACM
Mobihoc, Paris, France, May 2011, pp. 18:1–18:11.

[25] N. Sastry, K. Sollins, and J. Crowcroft, “Delivery properties of human
social networks,” in IEEE INFOCOM Miniconference, Rio de Janiero,
Brazil, Apr. 2009, pp. 2586–2590.

[26] A. Nguyen, P. Senac, and M. Diaz, “How Disorder Impacts Routing in
Human-centric Disruption Tolerant Networks,” in Workshop on Future

Human-centric Multimedia Networking, Hong Kong, China, Sep. 2013,
pp. 47–52.

[27] V. Srinivasan, M. Motani, and W. T. Ooi, “Analysis and implications
of student contact patterns derived from campus schedules,” in ACM
Mobicom, Los Angeles, CA, Sep. 2006, pp. 86–97.

[28] K. Lee, S. Hong, S. Kim, I. Rhee, and S. Chong, “SLAW: self-similar
least-action human walk,” IEEE/ACM Trans. Netw., vol. 20, no. 2, pp.
515–529, Apr. 2012.

[29] K. Rasul, “Community-Based Forwarding for Low-Capacity Pocket
Switched Networks,” Master’s thesis, University of Saskatchewan, 2013.


