
Storage Management for Large Scale Systems

A Thesis Submitted to the College of

Graduate Studies and Research

in Partial Fulfillment of the Requirements

For the Degree of Doctor of Philosophy

in the Department of Computer Science

University of Saskatchewan

Saskatoon, Saskatchewan

by

Wenguang Wang

c© Copyright Wenguang Wang, December 2004. All rights reserved.

Permission To Use

In presenting this thesis in partial fulfillment of the requirements for a

Postgraduate degree from the University of Saskatchewan, I agree that the

Libraries of this University may make it freely available for inspection. I further

agree that permission for copying of this thesis in any manner, in whole or in part,

for scholarly purposes may be granted by the professor or professors who

supervised my thesis work or, in their absence, by the Head of the Department or

the Dean of the College in which my thesis work was done. It is understood that

any copying or publication or use of this thesis or parts thereof for financial gain

shall not be allowed without my written permission. It is also understood that due

recognition shall be given to me and to the University of Saskatchewan in any

scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis

in whole or part should be addressed to:

Head of the Department of Computer Science

University of Saskatchewan

Saskatoon, Saskatchewan, Canada

S7N 5A9

i

Abstract

Because of the slow access time of disk storage, storage management is crucial
to the performance of many large scale computer systems. This thesis studies
performance issues in buffer cache management and disk layout management, two
important components of storage management.

The buffer cache stores popular disk pages in memory to speed up the access to
them. Buffer cache management algorithms used in real systems often have many
parameters that require careful hand-tuning to get good performance. A self-tuning
algorithm is proposed to automatically tune the page cleaning activity in the buffer
cache management algorithm by monitoring the I/O activities of the buffer cache.
This algorithm achieves performance comparable to the best manually tuned system.

The global data structure used by the buffer cache management algorithm is
protected by a lock. Access to this lock can cause contention which can significantly
reduce system throughput in multi-processor systems. Current solutions to
eliminate lock contention decrease the hit ratio of the buffer cache, which causes
poor performance when the system is I/O-bound. A new approach, called the
multi-region cache, is proposed. This approach eliminates lock contention,
maintains the hit ratio of the buffer cache, and incurs little overhead. Moreover,
this approach can be applied to most buffer cache management algorithms.

Disk layout management arranges the layout of pages on disks to improve the
disk I/O efficiency. The typical disk layout approach, called Overwrite, is
optimized for sequential I/Os from a single file. Interleaved writes from multiple
users can significantly decrease system throughput in large scale systems using
Overwrite. Although the Log-structured File System (LFS) is optimized for such
workloads, its garbage collection overhead can be expensive. In modern and future
disks, because of the much faster improvement of disk transfer bandwidth over disk
positioning time, LFS performs much better than Overwrite in most workloads,
unless the disk is close to full. A new disk layout approach, called HyLog, is
proposed. HyLog achieves performance comparable to the best of existing disk
layout approaches in most cases.

ii

Acknowledgements

The writing of a Ph.D. thesis can be a daunting and tasking experience.

Fortunately, I was lucky to get guidance, friendship and support from many people.

I would like to express my sincere appreciation to my supervisor, Dr. Rick

Bunt, for his tremendous guidance, encouragement, and support for my Ph.D.

research. During my six years of study, he challenged my ideas, encouraged me to

pursue whatever caught my fancy, and gave me the freedom to make my own

discoveries and mistakes. He not only guided my research project, but also taught

me the methodology and ethics of doing research. His way of promoting ideas to a

higher level and handling things in a very organized way also affected me greatly. I

believe what I have learned from him will continue to benefit my career. He

sponsored me to attend many of the best conferences in systems research (such as

SIGMETRICS, SOSP, USENIX, FAST) when I don’t have publications there.

These are opportunities that most graduate students in the world don’t have.

These invaluable experiences greatly opened my mind and inspired new ideas.

This thesis research started from a project supported by IBM’s Centre for

Advanced Studies (CAS). During my eight month stay at the Toronto Lab, I got

tremendous help from many people in the DB2 performance group and the DB2

development group. It was a wonderful place to work and an exciting experience

for me. I am grateful to many people in IBM CAS for their help and support. In

particular I would like to thank Berni Schiefer, Kelly Lyons and Joe Wigglesworth

for providing a nice environment and giving me the support for my research. I

would like to thank Steve Rees, Keri Romanufa, Aamer Sachedina, Yongli An,

John Li, Larry Menard and many other people who answered numerous technical

questions. I am especially thankful to Miso Cilimdzic, Wing Lau, Garfield Lewis

and Peter Shum, for their help on porting a trace package. And I would like to

thank Chantal Buttery for her caring approach to students.

I would like to thank Dr. Derek Eager in my DISCUS research group. As one of

my committee members, he gave me many insightful comments when I encountered

iii

difficulties in the research. His suggestions on my thesis were also very helpful. I

would like to thank my other committee members, Dr. Hanan Lutfiyya (external),

Dr. Raj Srinivasan (cognate) and Dr. Ralph Deters for there valuable comments.

I would like to thank Dr. Dwight Makaroff in my DISCUS research group for

his support and his feedback on my research.

I would like to thank Kevin Froese in my group for developing some initial

tools and simulators, and Lixin Wang for the helpful discussions.

The experimental parts of my research required an enormous amount of

computing resources. I was fortunate to get all the help I needed from the

excellent system administrators of our department and the DISCUS group. I am

especially thankful to Greg Oster, Brian Gallaway, Cary Bernarth and Dave

Bocking. Besides system administration, Greg Oster also answered many technical

questions and gave me helpful feedback on my research.

The office staff members of my department have been wonderful. Their prompt

support to my queries made my life much easier. I especially want to thank Jan

Thompson, our graduate correspondent, for her love and caring during my study.

I am grateful to many people outside of the University for various types of help

in my research. Specially I want to thank Edward Lee from UC Berkeley for his

comments on my paper, Greg Ganger from Carnegie Mellon for answering many of

my questions, Daniel Ellard from Harvard for providing the NFSEmail traces, Said

Elnaffar from Queen’s University for providing the TPC-W benchmark suite, Ken

Bates from the Storage Performance Council for answering questions about the

Financial and WebSearch traces, and Song Jiang from the College of William and

Mary for providing the LIRS simulator and test traces.

The TPC-H and openmail traces were provided by John Wilkes and Hernan

Laffitte from HP Labs.

Financial support for this thesis research came from IBM’s Centre for

Advanced Studies (CAS) and the Natural Sciences and Engineering Research

Council of Canada (NSERC).

Finally, I would like to give my wife, Dr. Yanping Zhao, my deepest

iv

appreciation for her love, support and collaboration with my research. She has

always been my best friend and research partner. I also want to thank my parents

and younger sister for their support of my studies.

v

Table of Contents

Permission To Use i

Abstract ii

Acknowledgements iii

Table of Contents vi

List of Tables xi

List of Figures xii

List of Acronyms xv

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Storage Management Overview . 4

1.2.1 The Buffer Cache Layer . 5

1.2.2 The Disk Layout Layer . 7

1.3 Contributions of the Thesis . 9

1.3.1 Self-tuning of Buffer Cache Management 9

1.3.2 Lock Contention of Buffer Cache Management 10

1.3.3 Disk Layout Management . 11

1.4 Thesis Organization . 12

2 Related Research 13

2.1 The Hardware Layer . 14

2.2 The Firmware Layer . 16

2.2.1 Disk Scheduling . 16

vi

2.2.2 Disk Cache . 18

2.2.3 Redundant Array of Independent Disks (RAID) 18

2.3 The Disk Layout Layer . 19

2.3.1 Disk Layout Optimized for Large Sequential Access 20

2.3.2 Disk Layout Optimized for Metadata Updates 21

2.3.3 Disk Layout Optimized for Small Writes 22

2.4 The Buffer Cache Layer . 24

2.4.1 Characteristics of References to the Buffer Cache 25

2.4.2 Replacement Algorithms . 26

2.4.3 Other Issues of Buffer Cache Management 31

2.5 Mixing the Layers . 31

2.5.1 Using Lower Layer Knowledge 32

2.5.2 Using Upper Layer Knowledge 33

2.5.3 Difficulties of Mixing Layers 34

3 Research Methodology 35

3.1 Typical Workloads . 36

3.1.1 Database Workloads . 36

3.1.1.1 OLTP Workloads . 36

3.1.1.2 Decision Support Workloads 37

3.1.1.3 E-commerce Workloads 38

3.1.2 File Server Workloads . 40

3.1.3 Storage Server Workloads . 40

3.2 TPC-C Workload Characterization 41

3.2.1 Overview of TPC-C . 41

3.2.2 System Configuration and Trace Collection 45

3.2.3 Reference Characteristics in the TPC-C Benchmark 47

3.2.4 Single-user Workload Characteristics 48

3.2.4.1 Overall Characteristics 48

3.2.4.2 Characteristics of Different Tables 49

vii

3.2.4.3 Characteristics of Data And Indexes 52

3.2.5 Multi-user Workload Characteristics 53

3.2.6 Summary . 55

4 Self-tuning of Buffer Cache Management 56

4.1 Buffer Cache Management Overview 56

4.2 Methodology . 58

4.2.1 System Configuration and Experimental Setup 59

4.2.2 The Buffer Cache Simulator 60

4.2.3 Simulator Validation . 63

4.3 Experiments with the Page Cleaning Algorithm 64

4.3.1 I/O Activities in the Buffer Cache 64

4.3.2 The Impact of the Number of Page Cleaners 66

4.4 A Self-tuning Algorithm for Page Cleaning 70

4.5 Simulation Results . 72

4.6 Summary . 78

5 Lock Contention in Buffer Cache Management 79

5.1 Motivation . 80

5.2 Context and Definitions . 82

5.3 Methodology . 83

5.3.1 Buffer Cache Simulator . 84

5.3.2 Contention Micro-benchmark 84

5.3.3 Buffer Cache Emulator . 86

5.3.4 Workloads . 86

5.4 Analysis of Contention . 87

5.4.1 Spin Lock and Contention . 87

5.4.2 Factors Impacting Contention 89

5.4.3 Tradeoffs Among Contention, Hit Ratio, and Overhead 90

5.4.3.1 Hit Ratio . 90

5.4.3.2 Overhead . 93

viii

5.5 The Multi-region Cache Approach . 97

5.6 Evaluation of Multi-region Cache . 101

5.6.1 Contention . 101

5.6.2 Miss Ratio . 103

5.6.2.1 Modeling Results . 104

5.6.2.2 Simulation Results 108

5.6.3 Overhead . 111

5.7 Discussion . 112

5.8 Summary . 114

6 Disk Layout Management 115

6.1 Disk Layout Write Cost Model . 116

6.1.1 Assumptions and Definitions 117

6.1.2 Modelling LFS and Overwrite 119

6.1.2.1 The Write Cost Model 119

6.1.2.2 Performance Comparisons 123

6.1.3 The HyLog Model and Performance Potential 125

6.2 The Design of HyLog . 128

6.2.1 Design Assumptions . 128

6.2.2 Separating Algorithm . 129

6.2.3 Segment Cleaning Algorithm 131

6.3 Methodology . 131

6.3.1 The Simulator, Verification, and Validation 131

6.3.2 The Workloads . 134

6.3.3 Experimental Setup . 135

6.4 Performance Evaluation . 137

6.4.1 Validation of the Cost Model 137

6.4.2 Impact of Disk Space Utilization and Disk Type 138

6.4.3 Impact of Number of Users and Number of Disks 141

6.4.4 Impact of Disk Array Type 144

ix

6.4.5 Impact of Workload . 145

6.5 Summary . 146

7 Conclusions 147

7.1 Thesis Summary . 147

7.2 Thesis Contributions . 149

7.3 Future Work . 149

References 152

x

List of Tables

2.1 Categories of Replacement Algorithms 27

3.1 TPC-C Transactions . 42

3.2 Logical OR of Two Bits . 43

3.3 Important Fields of the Trace . 47

3.4 Tables with Different LRU Stack Depth Distributions 49

4.1 Comparison of Measurement and Simulation Results 64

4.2 Number of Page Cleaners That Achieves Peak Throughput 70

4.3 Notation for the Self-tuning Algorithm 71

4.4 The Parameter Values . 73

5.1 Trace Characteristics . 88

5.2 Comparison of Cache Speedup and Measured Throughput 92

5.3 Notation for the Analysis of the Multi-region Cache 104

5.4 Miss Ratio of Multi-region Cache . 108

6.1 Notation for the Disk Layout Write Cost Model 117

6.2 Disk Parameters . 119

6.3 Disk Comparison for Simulator Validation 133

6.4 Throughput Validation (Disk Space Utilization is 50%) 134

6.5 Trace Characteristics . 134

6.6 Disk Specifications . 136

6.7 Experimental Parameters . 137

6.8 Cost Model Validation . 138

xi

List of Figures

1.1 Storage Management in DBMS . 4

3.1 Architecture of an OLTP Application 37

3.2 E-commerce Environment . 39

3.3 TPC-C Business Environment . 41

3.4 TPC-C Tables and their Relationships [124] 42

3.5 Access Skewness of Last Names . 44

3.6 Access Skewness of Item IDs and Client IDs 45

3.7 Trace Collection Point . 46

3.8 The LRU Stack Depth for a Single User 48

3.9 The LRU Stack Depth of the Warehouse and OrderLine Tables 49

3.10 The LRU Stack Depth of the Item, Stock and Order Tables 50

3.11 The LRU Stack Depth of the History and Customer Tables 51

3.12 The LRU Stack Depth of Data and Indexes 53

3.13 The LRU Stack Depth of the Customer Table 54

3.14 The LRU Stack Depth for Sixty Users 55

4.1 The Structure of the Buffer Cache . 57

4.2 The Structure of the Simulator . 61

4.3 Simulation vs. Measurement . 63

4.4 Pages in the Buffer Cache in the Untuned Configuration 65

4.5 I/O Activities of the Buffer Cache in the Untuned Configuration . . . 66

4.6 Impact of Multiple Page Cleaners . 67

4.7 Effect of Number of Page Cleaners 69

4.8 I/O Activities with 44 Page Cleaners 69

4.9 Throughput Comparison . 73

4.10 I/O Activities with the Self-tuning Algorithm 74

xii

4.11 How Page Cleaning Speed is Adjusted 74

4.12 Comparison of Self-tuned and Manually Tuned Algorithms 75

4.13 Impact of the Adjustment Interval . 76

4.14 Impact of Small Adjustment Interval 77

4.15 The Effect of Parameter wd . 77

4.16 Impact of the Scale Parameter ∆ . 78

5.1 Workload Model of a “Typical” User 83

5.2 Thread Computation Model . 85

5.3 Impact of Contention on Throughput 90

5.4 Hit Ratio of Replacement Algorithms with the TPC-C Trace 91

5.5 Cache Speedup of Replacement Algorithms with the TPC-C Trace . . 93

5.6 Normalized Cache Speedups . 94

5.7 Lock Proportion in a Decision Support Workload 96

5.8 Impact of Replacement Algorithm Overhead on Throughput 98

5.9 Effect of Number of Mutexes on Reducing Contention 102

5.10 Effect of Number of Regions . 103

5.11 Distribution of Miss Ratio . 107

5.12 Effect of Number of Regions . 109

5.13 Effect of Number of Regions – More Workloads 110

5.14 Overhead of Multi-region Cache . 111

6.1 Segment I/O Efficiency of Different Disks 119

6.2 Disk Space and Cleaning Space Utilization 121

6.3 Segment Sizes of Different Disks . 123

6.4 Write Costs of Different Layouts . 124

6.5 Cumulative Distribution Functions 127

6.6 Performance Potential of HyLog . 128

6.7 Validation of Overall Write Cost of LFS 133

6.8 The Impact of Disk Space Utilization on System Throughput 140

6.9 The System Throughput using the Atlas10k Disk 141

xiii

6.10 Sensitivity to Separating Criteria . 142

6.11 Impact of Number of Users and Number of Disks (ud = 90%) 142

6.12 Impact of Number of Users and Number of Disks (ud = 98%) 143

6.13 Throughput under RAID-0 and RAID-5 Arrays 145

6.14 Normalized Throughput under Real Workloads 146

xiv

List of Acronyms

2Q – Two queue replacement algorithm

DBMS – Database management system

DGCLOCK – Dynamic generalized clock replacement algorithm

DMA – Direct memory access

DSS – Decision support system, also called OLAP system

E-commerce – Electronic commerce

EELRU – Early eviction least recently used replacement algorithm

FBR – Frequency-based replacement algorithm

FFS – Fast file system

GB – Gigabytes (230 bytes)

GCLOCK – Generalized clock replacement algorithm

HyLog – Hybrid log-structured disk layout

ILRU – Inverse least recently used replacement algorithm (for caching B+-tree

pages in DBMS indexes)

IRR – Inter-reference recency, used by the LIRS replacement algorithm

KB – Kilobytes (210 bytes)

LFS – Log-structured file system

LFU – Least frequently used replacement algorithm

LRFU – Least recently/frequently used replacement algorithm

LIRS – Low inter-reference recency set replacement algorithm

LRU – Least recently used replacement algorithm

MB – Megabytes (220 bytes)

MRU – Most recently used replacement algorithm

OLAP – On-line analytical processing, also called decision support

OLTP – On-line transaction processing

OLRU – Optimal least recently used replacement algorithm (for caching B+-tree

pages in DBMS indexes)

xv

QLSM – Query locality set model

SCSI – Small computer systems interface

SMP – Symmetric multi-processor

TPC – Transaction Processing Performance Council

TPC-B – TPC benchmark B, a database stress test benchmark with OLTP-like

workload (obsolete as of June 6, 1995)

TPC-C – TPC benchmark C, an OLTP benchmark

TPC-H – TPC benchmark H, an ad-hoc decision support benchmark

TPC-W – TPC benchmark W, a transactional web e-commerce benchmark

xvi

Chapter 1

Introduction

1.1 Background and Motivation

Storage is an important part of all large computer systems. Storage is where data

are stored persistently over a long period of time. It represents 40%-60% of total

hardware cost, and its management cost comprises 60%-80% of the total cost of

ownership [2]. Storage is often the performance bottleneck of the system,

especially for large scale systems accessing large amounts of data, such as storage

servers, file servers, web servers, email servers, and database servers.

Storage servers, such as the EMC Symmetrix series [118], provide disk storage

to other systems. A storage server typically divides the storage into volumes, and

provides an abstraction of pages with linear addresses in each volume. Storage

servers often provide raw storage services to file servers and database servers. File

servers, such as the FAS series of NetApp Inc. [81], provide file services to other

systems. A file server maintains the metadata of a file system (bitmaps for space

allocation, directories for data organization, etc.) and provides security and data

access consistency. File servers often provide file services to other systems, such as

web servers, email servers, and database servers.

In all these systems, data are stored on magnetic disks which are cheap but

slow to access. Storage management is used in these systems to speed up accesses

to data on disks. Storage management employs an in-memory buffer to cache

popular disk pages, and also manages how data are placed on disks. The part of

the system controlled by storage management is called the storage subsystem,

whose performance is often crucial to the performance of the whole system.

1

Recent years have seen the capacity and the bandwidth of memory and disks

increase dramatically, with their prices dropping greatly [43]. As a result, the

performance of the storage subsystem in small systems is much less an issue, since

adequate performance can usually be achieved by provisioning more advanced

hardware. However, large enterprise systems are supporting more users, larger data

sets, and new applications, as the storage technology improves. The demand for

high performance of storage subsystems in enterprise systems continues to increase.

Many of the performance requirements cannot be met simply by deploying more

hardware because the cost would become unbearably high or no existing hardware

could satisfy the needs. The goal of this thesis research is to investigate techniques

to improve the performance of storage subsystems in large scale systems.

A good understanding of the characteristics of workloads running on the

storage subsystem is a prerequisite to its performance study. The workloads

running on the storage subsystem vary substantially. Typical types of workload

include research workloads [32], email workloads [32], web server workloads [113],

and database workloads [52, 113].

Studies on file server and email server workloads [32, 94, 129] have found that:

• A large proportion of the requests to the storage subsystem are writes,

because many reads can be cached at the client side.

• Many reads and writes are random.

• Sequential reads and writes do not typically span a large number of pages,

since most files are small.

These are also the workload characteristics of storage servers which reside

below file servers and email servers [113, 137, 138, 141].

Database workload is an important class of workload in the storage subsystem.

Typical database systems can be roughly divided into two categories: on-line

transaction processing (OLTP) and decision support. As a new way of doing

business through the Internet, e-commerce applications play an increasingly

2

important role in database applications. The workload characteristics to the

database server of an e-commerce system lie between that of OLTP and decision

support [33].

In a typical decision support system (DSS), the user queries the data in the

database to search for certain patterns, answer some business questions, or predict

future business patterns. The results of these queries can help managers to make

better decisions. Typically these queries are complex. They read a large amount of

data in the database. Normally, queries are read-only, and only one user runs the

query. Since a large amount of data is often read sequentially from the disks, the

storage subsystem can easily achieve its maximum transfer throughput. The

performance bottleneck of a DSS is often the CPU instead of the storage

subsystem.

OLTP is a class of application that manages data entry retrieval transactions in

many industries, including banking, supermarkets, airlines, rental services, and

manufacturing. A typical OLTP workload contains simple transactions from many

terminals with strict response time requirements (several seconds). Many of these

transactions update the database. In OLTP workloads, traffic to disks is

characterized by small random reads and writes but few sequential I/Os. Storage

is often the bottleneck in such a system.

The workload of the storage subsystem in many large scale systems, such as

storage servers, file servers, email servers, and OLTP systems, is characterized by

small reads and updates to a large amount of data on disks. Effective management

in the storage subsystem can significantly improve the overall performance of such

systems. These workloads are the main focus of this thesis research.

Since the storage subsystem is often complex, studying it directly in the

context of a real system is difficult. A combination of analysis, trace-driven

simulation, and measurement approaches is used in this research. First, direct

measurement experiments are performed on real systems to understand the

important behavioural elements of a real system. Then, analytical models and

trace-driven simulators are developed (and verified) to study key parts of the

3

storage subsystem. Next, new algorithms are designed and evaluated using

analytical models and simulation. Finally, the new algorithms are implemented

and evaluated in real systems to confirm the modelling and simulation results. Use

of analytical models and simulations dramatically reduces the effort that would be

needed to handle complex real systems.

1.2 Storage Management Overview

Data are placed on secondary storage (i.e., the disks) and managed by the storage

subsystem. An important design objective of storage subsystems is to provide fast

access to the data that are stored. Disks have different performance characteristics

than memory. Although disks are cheap and large (e.g., many giga-bytes or

tera-bytes), their access time is slow (e.g., orders of milliseconds) compared with

that of memory (e.g., orders of nanoseconds). Disk has high maximum transfer

bandwidth, but it is achievable only when accessing large chunks of data

sequentially. These disk characteristics determine the common approaches used in

storage management to improve performance.

Storage management can be divided into four functional layers, as illustrated in

Figure 1.1:

Buffer Cache Layer

Disk Layout Layer

Storage Subsystem

Application

Disk Firmware Layer

Disk Hardware Layer

Disks and
I/O Controllers

Figure 1.1: Storage Management in DBMS

[The two layers within bold boxes are the focus of this thesis study.]

4

1. The buffer cache layer dedicates an in-memory buffer called the buffer

cache to store popular disk pages. A buffer cache management algorithm is

used to decide what pages are kept in the buffer cache. The performance of

the buffer cache layer is crucial to that of a large scale system.

2. The disk layout layer manages the on-disk data structures and data

placement strategies. The goal of this layer is to improve the I/O efficiency

by reducing the mechanical movement of the disk arms. This layer has been

studied extensively in the design of file systems [40, 74, 75, 96, 140].

3. The disk firmware layer utilizes the physical properties of a disk to reduce

the average data access time. A number of approaches, such as disk cache,

disk scheduling, and Redundant Array of Independent Disks (RAID) [89],

have been proposed for this layer. This layer often resides in disk firmware or

RAID controllers, where the designers of large scale systems typically do not

have control. Moreover, it is difficult to improve the disk I/O efficiency

within the physical disk layer if the upper layers are not properly designed.

This layer is not studied in this thesis research.

4. The disk hardware layer is the actual hardware of the disk, including

platters, disk arms, magnetic surfaces, etc. The hardware technology,

especially the storage density of the disk has been constantly improving in

the past. However, because of engineering and manufacturing constraints,

this improvement is taking place at a slower rate than that predicted by

Moore’s Law (the speed or capacity doubles every 18 months), which

predicts the improvement of silicon chips (memory and CPU).

1.2.1 The Buffer Cache Layer

The buffer cache layer plays a critical role in a storage management subsystem. A

buffer cache management algorithm is used to manage the pages in the buffer

cache. The access to data often exhibits temporal locality, i.e., a small amount of

5

data are frequently re-referenced during a short interval [29]. By exploiting this

locality, a buffer cache with a relatively small size compared to that of the disks

can absorb most I/O requests to the disks. As a result, the storage subsystem can

achieve an average access time close to that of the memory while keeping the

average storage cost close to that of the disks.

The main functions of the buffer cache management algorithm include the

standard functions – fetch, placement, and replacement. The fetch algorithm

brings new pages into the buffer cache. Normally, fetch on demand is used, but

when there are sequential accesses to pages, prefetch can be a helpful supplement

to fetch on demand. The placement algorithm determines where a page is placed

in the buffer cache. Its decision is often determined by the replacement algorithm

that decides how the free pool of the buffer is maintained. Replacement on

demand makes a free space only when needed. Pre-replacement tries to always

keep some spaces available by writing back to disk the changed pages that are

deemed not to be needed. Since the replacement function is crucial to buffer cache

management, a buffer cache management algorithm is often called a buffer cache

replacement algorithm.

Although many replacement algorithms have been described in the literature1,

real systems tend to use very simple algorithms such as LRU [80, 91, 105, 119] or

CLOCK [46] for the following reasons:

• Tuning difficulties. Most advanced algorithms require the proper setting of

one or more parameters. The tuning of these parameters is often done by

trial and error. Since real systems already have many parameters to tune,

simple replacement algorithms like LRU or CLOCK are often selected to

simplify the tuning of the buffer cache layer.

• Unclear advantage under large buffer cache sizes. Previous studies of

replacement algorithms show that the hit ratios of all replacement algorithms

1For example, CAR and CART [8], ARC [76], LIRS [59], LRFU [66], EELRU [112], SEQ
[41], 2Q [60], LRU-K [84], FBR [93], Application/File-level Characterization [20], Unified Buffer
Management [64], ILRU and OLRU [98], HotSet [99], QLSM and its variants [15, 21, 34, 67], Page
Fault Frequency [22], Working Set [29], and Cache Partitioning [116]

6

converge on large buffer caches, which are used in large scale systems. One

may be tempted to conclude that the performance benefit of advanced

algorithms over simple algorithms becomes small under large buffer caches,

which reduces the incentive of adopting advanced algorithms in real systems.

• Access contention for concurrent accesses. Large database servers running

OLTP or e-commerce applications often support a large number of

concurrent users. When multiple users access the buffer cache at the same

time, the global data structure that the buffer cache replacement algorithm

employs must be locked to avoid corruption. This lock may become a

contention point which limits the system throughput dramatically. Although

the buffer cache management in DBMSs are managed by software and any

replacement algorithms can be used, systems such as SQL Server 7.0 use

CLOCK-based replacement algorithms, which do not change the global data

structure on buffer cache hits, in spite of hit ratios that are lower than other

replacement algorithms [25].

• Limitation of hardware support. In virtual memory management, buffer

cache hits must be managed by hardware. For every buffer cache hit, current

hardware sets the reference bit and the changed bit if this page is modified.

Modern operating systems, such as FreeBSD, NetBSD, Linux, Mac OS X,

and Windows 2000/XP, employ unified buffer caching [109], which unifies

virtual memory management and the file system buffer cache. Only

CLOCK-based algorithms can be used in these systems to cache the file

system data in the unified buffer cache.

1.2.2 The Disk Layout Layer

Disks have very different access characteristics from memory. Disks have high

maximum transfer bandwidth, which can be achieved only when transferring large

blocks of data sequentially. When accessing data scattered over the disk, a great

deal of time is spent on the mechanical movements of disk arms and rotations of

7

disk platters, resulting in less than 10% disk transfer bandwidth being utilized.

Disk layout management decides where data are placed on the disks to improve

the utilized disk transfer bandwidth. With efficient disk layout management, many

small data transfers on different locations of the disk can be merged into a few

large transfers, and the mechanical delay between accesses can be significantly

reduced. As a result, the access performance can be dramatically improved.

Many disk layout approaches are optimized for sequential read within a file or

files of one directory [40, 74, 75, 140]. Data belonging to one file or one directory

are placed close to each other on disks. Since changed data are overwritten on top

of old copies (called Overwrite), the write performance is also improved when the

I/O pattern of writes resembles that of reads. Such disk layout approaches work

well in systems with a small number of active applications. Large scale systems

need to support many users who access multiple files at the same time. The

interleaved requests from different users generate disk I/Os scattered over the disk,

which dramatically reduces the disk performance. These disk I/O requests appear

to be random at the disk level. Since read requests can be effectively cached by the

buffer cache layer, these random I/Os are mainly write requests [88].

The Log-structured File System (LFS) [96, 106] was designed to improve the

write performance for workloads with random updates while maintaining

comparable read performance. Instead of using Overwrite to handle updates, LFS

accumulates small random writes and writes them to the disk in a large contiguous

write. LFS has the potential to achieve good write performance [96], but, since the

data are written to a new location every time they are updated, their old copies

must be reclaimed by a garbage collection process called segment cleaning. In

OLTP-like workloads, segment cleaning results in high overhead and severely

decreases the overall system performance [108].

8

1.3 Contributions of the Thesis

This thesis studies the storage subsystem on large scale systems, addressing several

performance issues of the buffer cache layer and the disk layout layer. This

includes analyzing the characteristics of typical workloads running on large scale

systems, identifying the performance bottleneck of the storage subsystem,

modeling and simulating key components of the storage subsystem, and designing

and evaluating new algorithms which can ease the tuning task or achieve better

performance. Direct experimentation, trace-driven simulation, and mathematical

modeling are used in this study. The main contributions of the thesis are:

• A new algorithm is proposed to automatically tune parameters of buffer

cache management in order to achieve good performance. Its effectiveness is

comparable to the best manually tuned algorithm.

• The problem of lock contention in buffer cache management is investigated.

A new approach called the multi-region cache is proposed to eliminate the

lock contention of the buffer cache. This approach can work together with

most buffer cache replacement algorithms. It does not compromise the

overall hit ratio of the buffer cache, and incurs little overhead.

• Different disk layout management approaches are modeled and their

performance characteristics are analyzed. A new approach called HyLog is

proposed. HyLog achieves performance close to the best of existing

approaches in most configurations.

1.3.1 Self-tuning of Buffer Cache Management

A buffer cache management algorithm in a real system often has many parameters

that need to be tuned for the particular workload and system configuration at

hand. However, such tuning is often not easy. The buffer cache management

algorithm in IBM’s DB2 database management system employs page cleaners to

write the changed pages (dirty pages) in the buffer cache asynchronously so that

9

expensive synchronous writes can be avoided when the space occupied by these

pages are needed. Through measurement and trace-driven simulation, it was found

that the number of page cleaners is important to the throughput of the overall

system, but it is difficult to tune this parameter manually. A self-tuning algorithm

is proposed to automatically tune the page cleaning speed. Simulation results show

that this algorithm can achieve throughput comparable to the best manually tuned

system.

1.3.2 Lock Contention of Buffer Cache Management

Most buffer cache replacement algorithms use a global data structure to manage

all pages in the buffer cache. In large scale systems with many processors and

threads, different threads may access the buffer cache simultaneously. The global

data structure of the replacement algorithm must be protected by a lock to avoid

corruption. This lock may become the contention point (called lock contention)

and limit the system throughput. Real systems solve the contention problem in

different ways, depending on their particular requirements. SQL Server 7.0 uses a

CLOCK-based algorithm to reduce contention [25], since this kind of algorithm

does not modify the global data structure on buffer cache hits. However, a

CLOCK-based algorithm typically has a lower hit ratio than other replacement

algorithms and may cause poor system performance. Berkeley DB and ADABAS

use different variations of LRU without global data structures [10, 105], but these

approaches either have high overhead or cannot be applied to other replacement

algorithms. These current practices in buffer cache management motivate the

search for a better approach to reduce lock contention without compromising the

overall hit ratio.

A new buffer cache management approach, called the multi-region cache, is

proposed for this purpose. The multi-region approach divides the buffer cache into

many fixed-size regions, each of which is managed by an instance of a replacement

algorithm. Each page is mapped into a unique region. Since lock contention

10

happens only when pages within the same region are accessed at the same time,

and there are a large number of regions, lock contention almost never happens in

the multi-region cache. Both analysis and simulation results show that a large

buffer cache with hundreds of thousands of regions has almost the same overall hit

ratio as the traditional approach, and the overhead is negligible. Multi-region

cache can be applied to most replacement algorithms.

1.3.3 Disk Layout Management

With a large buffer cache, most disk reads can be resolved in memory [88]. As a

result, in many systems, write requests make up a large portion of the total traffic

to the disks [32, 113]. These write requests are from many users and often scatter

over the disks, which results in low utilization of the disk transfer bandwidth when

the disk layout is managed by the commonly used Overwrite approach. LFS was

designed to provide good write performance while maintaining comparable read

performance in such systems, but, the high segment cleaning overhead of LFS

decreases its performance dramatically [108].

The write performance of Overwrite and LFS is modeled and the impact of

changing disk technology on their performance is investigated. Because of the

much faster improvement in disk transfer bandwidth than disk positioning

time [43], it is found that LFS significantly outperforms Overwrite under modern

and future disks over a wide range of system configurations and workloads.

LFS performs worse than Overwrite, however, when the disk space utilization

is very high because of the high segment cleaning cost. A new approach, the

Hybrid Log-structured (HyLog) disk layout, is proposed to overcome this problem.

HyLog uses a log-structured approach for hot pages to achieve good write

performance, and Overwrite for cold pages to reduce the segment cleaning cost.

An adaptive separating algorithm is designed to separate hot pages from cold

pages under various workloads and system configurations. This algorithm works in

real time and incurs little overhead. Simulation results under a range of system

11

configurations and workloads show that, in most cases, HyLog performs

comparably to the best of the existing disk layout approaches.

1.4 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 discusses related research

pertaining to the storage subsystem. Chapter 3 describes the methodology, the

typical workloads, and the characteristics of the workloads. Chapter 4 studies the

self-tuning of buffer cache management. The design and evaluation of a self-tuning

algorithm for buffer cache management are presented. Chapter 5 discusses lock

contention in buffer cache management. The problem of lock contention is

identified and analyzed. A new approach called multi-region cache is proposed and

evaluated. Chapter 6 investigates performance issues of disk layout management.

The performance of existing approaches is modeled and analyzed. A new disk

layout approach called HyLog is proposed and its performance is studied by

analysis and simulation. Finally, Chapter 7 summarizes the thesis and gives

directions for future work.

12

Chapter 2

Related Research

Magnetic disk remains the dominant medium for secondary storage. In large scale

systems, large amounts of data (from many giga-bytes to many tera-bytes) reside

in disk storage. Since the access time of disks is much slower than memory, disk

access is a performance bottleneck in many large systems. Numerous approaches

have been proposed to improve the performance of the storage subsystem. They

can be categorized roughly into four layers:

• The Hardware Layer includes the hardware of the disks. Improvements in

hardware architecture and engineering make the disks faster, which improves

the overall performance of the system.

• The Firmware Layer resides in either disks or disk controllers. This layer

organizes the disk I/O requests to achieve good disk I/O performance.

Typically the firmware layer does not have knowledge of the data semantics

of the application layer.

• The Disk Layout Layer organizes the data placement strategies on disks to

improve disk I/O efficiency. This layer normally has some knowledge of the

semantics of the application data.

• The Buffer Cache Layer uses a fast in-memory buffer cache to store popular

disk requests so that the number of requests to disks is reduced.

Previous research on improving the performance of the storage subsystem is

organized into these layers and briefly discussed in Section 2.1, 2.2, 2.3 and 2.4.

Some approaches that exploit the knowledge of different layers are discussed in

13

Section 2.5. Since the hardware and firmware layers reside in the storage

hardware, typically they cannot be controlled by designers of large scale systems.

Therefore, the other two layers, the disk layout layer and the buffer cache layer,

are the focus of this thesis study.

2.1 The Hardware Layer

A magnetic disk consists mainly of a set of parallel platters constantly rotating

around a fixed axle and a movable read/write head on each surface of the platter.

Data are stored in concentric tracks on the platters. In each track, data are stored

in fixed size sectors, each of which typically contain 512 bytes data. All read/write

heads are attached to a disk arm, which can move to different tracks. Once the

disk arm moves to the desired track, it waits until the desired sector rotates under

the read/write head before data on this sector can be accessed. The same tracks

on all platters compromise a cylinder.

The latency of a disk access can be broken down into three main parts: seek

time, rotational latency, and transfer time. Seek time is the time that the disk arm

takes to move to the desired track. This may involve a mechanical movement of

the disk arm. Rotational latency is the time that the read/write head waits for the

desired sector to rotate under it. The sum of seek time and rotational latency is

called the positioning time. Transfer time is the time it takes for the desired

sectors to pass under the read/write head, which is affected by the rotational

speed, the circumference and storage density.

Since three components of the disk access time all involve mechanical

movements, reducing them is constrained by engineering and manufacturing

limitations. Memory capacity and CPU speed improve about 60% every year,

following Moore’s Law (i.e., doubling every 18 months). Thanks to the fast

improvement of storage density, disk capacity increases at the same rate (60%

every year) [43], and sequential transfer bandwidth improves 28% every year [43].

The average seek time decreases 12% every year [101], and the rotational speed

14

increases 10% every year [3]. Under this technology trend, the performance

difference between disks and silicon chips (memory and CPU) becomes larger and

larger. The performance advantage of conducting sequential disk I/Os over

random disk I/Os also becomes larger and larger. Because of this characteristic,

most strategies to improve the performance of disk storage attempt to reduce the

seek time and rotational latency between requests.

Since accessing data sequentially on a cylinder is the fastest, the sectors are

numbered in a way so that when all sectors in the disk are accessed sequentially,

sectors in the outermost cylinder are accessed first, sectors in the second outermost

cylinder are accessed next, and so on. Under this sector addressing scheme, the

performance specification of the disks can be summarized as the unwritten contract

between hosts and disks [103]:

• Sequential accesses have the best performance, much better than

non-sequential.

• Accessing a sector with an address close to the previously accessed sector is

usually faster than accessing a sector with an address that’s far away.

• Ranges of sector addresses are interchangeable, and the absolute sector

addresses do not affect performance.

This unwritten contract is used by system designers to improve the

performance of disk storage.

Several new secondary storage technologies are being actively researched. A

new storage technology based on microelectromechanical systems (MEMS), for

example, employs many small mechanical probe tips to access magnetic surfaces.

MEMS-based storage could provide access times 6.5X faster than disks [44], and

storage systems partially using MEMS-based storage could provide dramatically

better performance and cost/performance [128].

15

2.2 The Firmware Layer

The firmware layer resides in disks or disk controllers. It organizes disk requests to

achieve better performance. The common approaches used in the firmware layer

include disk scheduling, disk cache, and disk array.

2.2.1 Disk Scheduling

In large scale systems, typically many requests are pending at the disk. Without

disk scheduling, these requests are served in a first-in-first-out order. When the

requests are scattered over the disk, most of the access time is spent in the seek

time and the rotational latency. A disk scheduling algorithm reorders the requests

to achieve good I/O throughput [115]. Since algorithms generating high I/O

throughput often increase the maximum response time by delaying some requests,

tradeoffs between these two factors should be considered.

The simplest scheduling algorithm is first-in-first-out (FIFO), which does not

conduct any scheduling. Many scheduling algorithms attempt to reduce the seek

time. The Shortest Seek Time First (SSTF) algorithm always serves the first

request which incurs the shortest seek time [28]. The problem of SSTF is that it

may always select requests close to the current disk head position and starve other

requests. The SCAN algorithm can prevent this kind of starvation [28]. In the

SCAN policy, the disk head moves in one direction to satisfy all waiting requests.

It changes the direction of head movement only at the innermost and outermost

cylinder. The disk head then moves in the reverse direction and again picking up

all requests in order. LOOK, a variant of SCAN, changes direction if no more

requests exist in the current direction [79]. SCAN and LOOK favour requests in

the middle of the disk and requests on the outer and inner cylinders have low

priority. Cyclical SCAN (C-SCAN) and cyclical LOOK (C-LOOK) treat all

cylinders equally by fulfilling requests only when the head is moving in one

direction. VSCAN(R) gives a continuum of algorithms between SSTF and

LOOK [39]. R denotes how likely the scheduler wants to maintain the current

16

direction of travel. VSCAN(0) is SSTF, and VSCAN(1) is LOOK. VSCAN(0.2)

was suggested to be a good balance between the average response time and

starvation resistance [39].

The Shortest Positioning Time First (SPTF) algorithm [56, 107, 139] takes into

account both seek time and rotational latency when selecting the next request. It

gives better performance than algorithms considering only seek time [107, 139],

but the performance advantage of SPTF over other algorithms is limited under

modern and future disks [54]. Moreover, the computation overhead of SPTF is

high [54, 139] and must recognize the existence of disk cache and optimize for

it [139].

All the above algorithms may favour the latest arriving jobs and starvation

may happen if requests for the same cylinder keep coming. The N-step strategy

can be applied to these algorithms to address this problem [115]. This strategy

segments the disk request queue into sub-queues of length N . Only one sub-queue

can be processed at a time. All new incoming requests are added to other queues.

Similar to the N-step strategy, the aging strategy [107, 139] can also be applied to

the scheduling algorithms to avoid starvation. In the aging strategy, requests that

have longer waiting time receive higher priority so that they will not be delayed

indefinitely. Both the N-step strategy and the aging strategy increase fairness at

the expense of reduced throughput [107, 139].

In MEMS-based storage devices, because the access times depend on the

relative locations of the data, scheduling algorithms can be used to reduce access

times. Simulation results show that most of the algorithms and insights from

previous disk scheduling research have similar benefits to systems with

MEMS-based storage devices [44, 45]. There are also scheduling algorithms

designed specifically for MEMS-based storage [49].

17

2.2.2 Disk Cache

Most disks employ an on-board fast cache to match the speed between the bus and

the disk media and cache disk blocks. If the write back of the disk cache is

enabled, the write request is considered finished by the host once all data are

transfered to the disk cache. Disk cache can be used to store prefetched data of

the same track to decrease the access time of sequential requests.

The zero-latency access employed in many modern disks can eliminate

rotational latency when reading or writing all sectors on the same track [101]. In

zero-latency access, the disk firmware can start reading or writing these sectors in

any order. As a result, when all sectors of a track are accessed in one sequential

request (called a track-aligned extent), the rotational latency and the time that the

disk arm switches tracks can be avoided [101]. If the data are allocated on disk

regardless of the track boundary (called a track-unaware extent), the access may

span two tracks and incurs much longer access time. Track-aligned extents can be

used to optimize disk accesses for certain workloads [101, 102].

Because the requests to the disk are often filtered by upper layer buffer caches,

these requests exhibit poor locality [137]. When this happens, the benefit of a

large disk cache is limited [142].

2.2.3 Redundant Array of Independent Disks (RAID)

Since one disk cannot provide the capacity, performance, and reliability required

by large scale systems, it is now common to organize many disks together to form

a Redundant Array of Independent Disks (RAID) [89]. RAID is a set of disks (also

called a disk array) managed by a controller and viewed by the host as a single

logical drive.

RAID has several levels that provide different I/O characteristics and

redundancy methods. The most commonly used levels are RAID-0

(non-redundant), RAID-1 (mirrored), and RAID-5 (block-interleaved distributed

parity).

18

In RAID-0, the data are distributed across all the disks in the array. It

provides good performance but does not contain redundancy information. In

RAID-1, all data are duplicated on different disks. It provides good performance

and redundancy is achieved. The problem of RAID-1 is that only half of the disk

space can be used to store user data.

RAID-5 uses an extra disk worth of space to store parity information, so that a

single disk failure does not cause data loss. Row-Diagonal Parity (RDP) uses two

extra disks worth of space to protect RAID against double disk failure [24]. Both

RAID-5 and RDP provide good read performance. Their write performance is also

good when writing large blocks since new parity information can be calculated

without extra disk I/Os. When writing small blocks of data, however, the

performance of RAID-5 and RDP is poor because of the extra disk I/Os required

to calculate parity. This is called the write penalty for small writes.

It is difficult to select and manage the levels of RAID in a disk array. RAID

levels can be programmatically selected given characteristics of workloads [4].

AutoRAID [136] dynamically configures the disk array using a two-level storage

hierarchy. The higher level uses RAID-1 to store actively updated data, while the

lower level uses RAID-5 to reduce the space overhead of redundant information.

Data migrates between these two levels automatically depending on the available

space and the activity of the data.

2.3 The Disk Layout Layer

The disk layout layer uses disk layout management approaches to decide the

placement of data on disks. The design objective of disk layout management is to

improve the disk I/O performance by reducing the mechanical movement of disk

arms. Disk layout management approaches have been studied extensively in the

context of file systems [40, 74, 96, 140].

19

2.3.1 Disk Layout Optimized for Large Sequential Access

The traditional UNIX file system [122] is an ancestor of many modern file systems,

such as FFS, UFS, and ext2. The basic data structures used in the traditional

UNIX file system are still popular in those modern file systems. In the traditional

UNIX file system, a tree structure called inode is used to control the allocation of

disk pages belonging to a file or a directory. All inodes are stored in the beginning

of the disk. A free block list is used to manage the free space of the disk. A block

size of 1KB is used as the unit of space allocation.

Since the traditional UNIX file system does not consider the placement of data

on disks, it has several performance problems. When accessing a file, both its

inode and the data blocks need to be accessed. However, since all inodes are stored

at the beginning of the disk and the data blocks may be stored far away from their

inodes, long seek time is involved when the disk arm moves back and forth

between the file data and its inode. The free block list manages all free blocks as a

stack. After many files are created and deleted, the blocks stored in the free block

list become randomly organized. When creating a new file, these blocks are taken

off from the free block list and assigned to the file. Therefore, the blocks belonging

to new files scatter over the disk and are not allocated sequentially. When these

files are accessed sequentially, which happens very often [87], the disk must spend

most time to position the disk head on the desired block of the file. Finally, the

1KB block size is small (i.e., a file contains many blocks), which exacerbates the

above performance problems. As a result, less than 2% of the disk bandwidth can

be achieved when accessing a file sequentially after the file system has been used

for some time [73, p. 269].

The Fast File System (FFS) [74] was designed to overcome these performance

problems. FFS uses a larger page size (4KB to 16KB) to reduce the number of

pages and thus the disk seeks. FFS divides the whole disk into one or more areas,

each of which is called a cylinder group. Each cylinder group consists of one or

more consecutive cylinders on the disk. For each file, FFS attempts to allocate

20

space close to its inodes, and it tries to allocate all data pages belonging to the

same file contiguously in one cylinder group. FFS was further improved using I/O

clustering so that small requests to the same track on the disk are merged into

large accesses [75].

Modern file systems, such as BeFS [40], NTFS [97], XFS [117], ext3 [127], and

yFS [140], employ similar disk layout approaches to support the sequential access

of a single file effectively.

2.3.2 Disk Layout Optimized for Metadata Updates

FFS uses carefully ordered synchronous writes to maintain the integrity of the

on-disk metadata structure in the event of system failure. These synchronous

writes are the bottleneck of the file system in metadata-intensive workloads [86]. A

disk check program is used to restore the integrity of metadata after a failure.

Since the whole disk needs to be scanned, the check may require hours for large file

systems.

NVRAM (non-volatile RAM) is used in many storage systems to speed up

synchronous writes and cache bursts of writes [118]. The use of NVRAM also

eliminates the need of a full file system scan after system failure. Since NVRAM is

constrained in size due to its high price, Disk Caching Disk (DCD) [53] employs a

log disk to substitute for NVRAM and achieves similar write performance. The

problem with these two approaches is that they require special hardware, and they

achieve high write performance only in systems with many idle periods.

The Soft Updates approach [37] uses in-memory ordering to eliminate

synchronous writes to metadata while preserving their on-disk consistency.

However, Soft Updates cannot support sophisticated data structures such as

B-trees which are often used in block allocation [117, 140] and

directories [40, 97, 117, 140].

Journaling file systems, such as Be File System [40], ext3 [127], GPFS [104],

JFS [58], NTFS [97], ReiserFS [92], XFS [117], and yFS [140] use a write-ahead log

21

to record metadata updates so that the synchronous writes can be eliminated.

Sophisticated data structures such as B-tree can be supported by journaling.

Journaling file systems improve the performance of metadata writes and support

fast recovery after system failure.

Journaling file systems do not speed up the I/O performance for file data. The

writing to the log generates extra disk traffic than Soft Updates since each

metadata update is written twice: one in the write ahead log, one in the original

location of the metadata.

2.3.3 Disk Layout Optimized for Small Writes

FFS and journaling file systems are designed to provide efficient access to

sequential I/O of a single large file. However, most files are small. Moreover, when

multiple users access many files simultaneously in large scale systems, requests

from different users interleave with each other. As a result, requests to disks are

often small I/Os scattered over the disks. This kind of disk I/Os is called random

I/Os. The disk spends most time in moving the disk head to the desired locations

when processing random I/Os. Since most of the read operations can be absorbed

by the file buffer, writes constitute a large proportion of these random I/Os

[32, 113]. Efficiently handling these random writes is crucial to the overall

performance of the system.

The Log-structured File System (LFS) [88, 95, 106] was designed to achieve

good write performance in systems with such random writes. In LFS, the whole

disk is viewed as an append-only log, containing a linked list of segments. Each

segment is a large fixed-size contiguous disk space, typically larger than 0.5MB for

a single disk system1. LFS accumulates individual writes, regardless of which files

they belong to, into a segment-sized contiguous block, which is then written to a

free segment found in the list of available segments. Since data are always written

to new locations, LFS is also called a non-overwrite approach, while the traditional

1In a disk array, a segment should span all disks, and the stripe size on each disk is typically
larger than 0.5MB

22

approaches are called Overwrite. Because the disk seek time and rotational latency

are dominated by the long data transfer time when writing large contiguous

segments, the write performance of LFS is better than Overwrite. Moreover,

accumulating small writes into large writes can avoid the write penalty of small

writes in RAID-5 and RDP disk arrays [24, 89].

Since the data are written to the end of the log instead of their original

locations, their old copies are invalidated (called dead pages). As new data are

written to the disk, the disk space can be used up eventually, if these dead pages

are not reclaimed periodically for reuse. The process of reclaiming dead pages is

called segment cleaning, which is performed by a cleaner. The cleaner first selects

some candidate segments for cleaning, then reads these segments into memory, and

finally writes the alive pages of these segments out to empty segments. The space

occupied by the candidate segments can be marked as free after the cleaning. The

selection of segments for cleaning is crucial for the performance of LFS [78, 96].

Segments with an old age and many free spaces are good candidates for cleaning.

Another method to reclaim space from dead pages is called hole-plugging [136]. In

hole-plugging, the cleaner reads the candidate segments into memory, and writes

the alive pages into holes found in other segments. The cost of normal segment

cleaning increases quickly as the disk space utilization becomes high [96], where

hole-plugging becomes the preferred method to reclaim free space [72]. Segment

cleaning can be done as a background activity when the file system is lightly

utilized or has bursty behaviour (background cleaning). This cleaning can also be

performed on-demand when the free segments are almost used up (on-demand

cleaning).

Previous research [106, 108] found that on-demand cleaning adversely impacts

system performance, especially in OLTP environments. Because updated data are

randomly distributed on the disks in such workloads, most segments are fairly full

before cleaning. This makes the segment cleaning overhead very high. Cleaning

has been observed to cause performance degradation of 35%-50% under these

workloads, which makes LFS perform comparably to or sometimes worse than FFS

23

with I/O clustering [108].

A number of cleaning strategies have been proposed to improve the

performance of LFS. The adaptive cleaning approach [72] selects between cleaning

and hole-plugging based on current free space presented and workload

characteristics. The heuristic cleaning algorithm [12] determines disk idle periods

and attempts to perform all cleaning during these periods. PROFS [130] attempts

to improve the performance of LFS by placing hot data in the faster zones of the

disks and cold data in the slower zones during the cleaning. Write Anywhere File

Layout (WAFL) [48] and Log-Structured Array (LSA) [77] use LFS and NVRAM

to manage disk layouts. WAFL also maintains multiple snapshots of the file

system. WAFL avoids doing cleaning by plugging data into holes found in

segments. However, when free spaces are not contiguous, the write performance is

compromised. Although NVRAM eliminates writes for keeping the metadata

integrity and improves write performance by absorbing bursts of writes, the high

cleaning cost of LFS is not addressed.

WOLF [131] is a recent proposal to reducing LFS cleaning overhead. WOLF

separates hot and cold pages when they are written to the disks. It usually writes

two segments of data to the disks at one time. Pages are sorted based on their

update frequencies before being inserted into the segment buffers. The rationale is

that the segments containing pages with higher update frequencies will soon

become low-utilized since the pages in them are likely to be updated again in a

short time, thus reducing the cleaning overhead. This approach works well only

when about half of the pages are hot and half are cold, so that they can be written

into separate segments. In other cases, WOLF has little advantage over LFS, as

shown in Section 6.4 (page 137).

2.4 The Buffer Cache Layer

In the buffer cache layer, disk pages are cached in the buffer cache and managed

by a buffer cache management algorithm. The objective of buffer cache

24

management is to reduce the number of disk accesses by keeping popular pages in

the buffer cache, thereby reducing the average access time of disk pages.

The buffer cache replacement algorithm is the most crucial part of buffer cache

management. The design of buffer cache replacement algorithms is based on

anticipated characteristics of page reference patterns in the buffer cache, such as

temporal locality, spatial locality, etc. The general reference characteristics and

some specific reference characteristics of typical applications are discussed in

Section 2.4.1. Some existing replacement algorithms are reviewed in Section 2.4.2.

Other issues for buffer cache management are discussed in Section 2.4.3.

2.4.1 Characteristics of References to the Buffer Cache

Understanding the characteristics of references to pages in the buffer cache is a

prerequisite to the design of effective buffer cache replacement algorithms. One or

more of the following typical reference characteristics may be observed in real

workloads:

• Temporal locality : To the extent to which reference patterns exhibit temporal

locality, pages that have been referenced recently tend to be referenced again

in the near future. Temporal locality is observed in many access patterns,

such as program page accesses [29], database accesses [61], CPU cache

accesses [115], and file buffers. Temporal locality is the main design

assumption of many replacement algorithms, which are called locality-based

algorithms.

• Spatial locality : To the extent to which reference patterns exhibit spatial

locality, pages whose addresses are close to recently referenced pages are

likely to be referenced in the near future. This is a common reference pattern

in buffer cache management. Spatial locality can be utilized by using a large

page size. When an item in a page is referenced, the whole page is loaded

into the buffer cache so that references to other items in the same page can

be satisfied without additional disk I/Os. When references exhibit spatial

25

locality, it is likely that there will be repeated references to a page once it is

brought into the buffer cache. These references are called correlated

references [8, 60, 84].

• Sequential accesses: In sequential references, pages are referenced once from

the beginning to the end. If the addresses of these pages are consecutive,

prefetching can be used to improve performance. Normally prefetching is not

part of a buffer cache replacement algorithm, but it can be applied to any

replacement algorithm.

• Looping accesses. In looping references, the same set of pages is referenced in

the same order repeatedly. Contrary to the temporal locality pattern, the

most recently accessed page is the one that will be accessed again farthest in

the future. This pattern could cause locality-based algorithms such as LRU

to perform poorly if the loop cannot fit in the buffer cache. For this pattern,

the Most Recently Used (MRU) algorithm, which selects the most recently

accessed page as replacement, achieves the optimal hit ratio.

None of the above assumptions alone can describe well all the reference

patterns that occur in real applications. Algorithms that are designed based on a

single assumption work well only when this assumption holds. To overcome this

problem, some algorithms have been designed based on a combination of several

assumptions.

2.4.2 Replacement Algorithms

Locality-based replacement algorithms make extensive use of the notion of recency

of reference. The recency of reference to a page refers to the “time” that has

passed since the previous reference to the page, where each page reference is

considered as one unit of time. The recency is often used to predict the time when

this page will be referenced next.

26

The LRU (Least Recently Used) algorithm is the simplest locality-based

algorithm. When the buffer cache is full and room is needed for a new page, the

page with the largest recency is selected for replacement. LRU can be efficiently

implemented using a linked list with constant time overhead.

LRU performs well in common workloads and is the most popular replacement

algorithm in real systems (e.g., LRU is used in Database 2 [119], ADABAS [105],

MySQL [80], and PostgreSQL [91]). LRU performs poorly, however, when the

temporal locality assumption does not hold. For example:

• When the number of pages in a loop is larger than the size of the buffer,

LRU always replaces the page that will be used the soonest. A better

replacement algorithm would select the page that has just been referenced,

since it will be used the farthest in the future.

• After a burst of accesses to some infrequently used pages, e.g., a sequential

scan, these pages will replace many commonly used pages in the buffer cache.

Many algorithms have been designed to overcome these problems of LRU.

These algorithms use additional information to make better replacement decisions.

Some algorithms use the recency of several past references to a page. Some

algorithms detect the sequential scan and loop patterns and handle them

differently. Some algorithms use frequency of references. Some algorithms detect

or use application-level knowledge. These algorithms are listed in Table 2.1.

Table 2.1: Categories of Replacement Algorithms

Additional Information Used Replacement Algorithms
Recency of more than one past
references

LRU-K, 2Q, LIRS, ARC, CAR, CART

Sequential scan and loop SEQ, EELRU
Reference frequency LFU, FBR, LRFU
Application knowledge Application Controlled Caching, DEAR,

AFC, UBM, ILRU, OLRU, Hot Set, QLSM

The LRU-K algorithm [84] replaces the page whose kth last reference has the

largest recency. The suggested value of K is 2 [84] and LRU-K is called LRU-2.

27

LRU-2 has O(log n) overhead, where n is the size of the buffer cache. 2Q [60] is an

approximation of LRU-2 with constant overhead. LIRS [59] replaces the page

whose difference of recency between the last two references is the largest. ARC [76]

has a similar data structure and idea as 2Q but can dynamically adjust itself

according to workload changes. Since the information of the last several references

of a page is retained in these algorithms, the correlated references to a page caused

by spatial locality can let these algorithms erroneously decide that such a page is

popular in the long term [84]. Tunable parameters are used in LRU-K and 2Q to

filter out correlated references. ARC does not consider correlated references, and

thus its performance can be adversely impacted when correlated references exist.

CART [8] is an improvement of ARC which filters correlated references. LIRS

utilizes the recency of the last reference instead of the reference difference between

the last two references when the former is larger. This mechanism filters correlated

references automatically after the correlated references to a page finish. All these

algorithms can handle sequential access patterns well. LIRS can handle large loops

well, but LRU-2, 2Q, ARC, and CART have similar problems to LRU when

handling large loops.

The SEQ algorithm [41] detects long sequences of access patterns with

consecutive addresses and applies a different replacement algorithm to these

sequences. The early-evict LRU (EELRU) [112] algorithm use the recency

distribution of referenced pages to decide whether to evict a page from some

pre-defined early eviction points, so that pages with smaller recency could be

evicted. Both algorithms can handle the sequential scan and large loop patterns

that LRU cannot handle well.

The Least Frequently Used (LFU) algorithm replaces the page that has been

referenced the least number of times. One problem with LFU is that some pages

may have built very high reference frequency, and therefore cannot be replaced

even after they have not been referenced for a long time. Some variations of LFU

(e.g., LFU∗, LFU-Aging, and LFU∗-Aging) have been proposed to overcome this

problem [6, 93, 137]. Frequency Based Replacement (FBR) [93] is a variant of LFU

28

in which recently referenced pages do not accumulate reference counts so that the

correlated references are filtered out. FBR has several parameters that can affect

performance but cannot be tuned easily. The LRFU (Least Recently/Frequently

Used) algorithm [66] combines both the recency and the frequency information of

past references when making replacement decisions. It is like a LFU algorithm

which continuously ages its frequency values. A parameter can be used to control

how fast this aging is, which must be tuned to suit different workloads. All these

frequency based algorithms cannot handle large loops well, because the frequency

information does not help to select the best replacements for looping references.

Since a priority queue is often needed to maintain the frequencies of all pages in

these algorithms, the overhead of LFU and its variants is O(logn), where n is the

size of the buffer cache.

Application-controlled caching [16] uses application-specific knowledge to

improve buffer cache performance. In this algorithm, each application explicitly

specifies the replacement policy and priority of its data. The problem with this

approach is that all applications must be modified to give the hints explicitly. This

increases the burden to application developers and may not be feasible for some

applications. DEAR (DEtection-based Adaptive Replacement) [19] and its

variants Application/File-level Characterization (AFC) [20] and Unified Buffer

Management (UBM) [64] detect typical reference patterns and apply different

replacement policies to different patterns. Four typical reference patterns, i.e.,

sequential pattern, looping pattern, temporal localized pattern, and probabilistic

pattern, can be detected in real time. The DEAR/AFC/UBM approach works well

in applications where each file has a clear reference pattern. A simple reference

pattern does not exist if a file is shared by many processes/threads (which is

typical in database systems).

Because of the regularity of data references in database applications [61, 62],

many replacement algorithms have been proposed for the DBMS buffer cache.

Two replacement algorithms, Inverse LRU (ILRU) and Optimal LRU (OLRU),

were designed to manage index pages which are stored as B+-trees [98]. The level

29

of the page in the B+-tree is used to determine how pages are placed in the buffer

cache. ILRU works well in small buffers or when the access to the leaf pages of the

B+-tree are skewed. OLRU works well when the access to the leaf pages of the

B+-tree are evenly distributed. The Hot Set model [99] analyzes the execution plan

of a query to find the amount of buffers required to fit the looping pattern, which

is called the Hot Set. The Query Locality Set Model (QLSM) model [21] advances

the idea of Hot Set and identifies several access patterns found in the query

execution plan. Different replacement policies are used for different access patterns.

The Hot Set model and the QLSM model can be used to make load control and

prefetch decisions for the buffer cache [15, 34, 67]. In many database workloads,

multiple concurrent queries access shared data and their reference behaviours

overlap in complex ways. These algorithms do not work well in such a situation.

In virtual memory, the buffer cache hit must be handled by hardware. The

overhead of the replacement algorithms discussed above is too high to be used

directly in virtual memory management. The CLOCK algorithm is an

approximation of LRU that can be used in virtual memory. CLOCK uses a

reference bit to remember whether a page is referenced recently. Some variants of

the CLOCK algorithms, such as the Generalized CLOCK (GCLOCK) and the

Dynamic GCLOCK (DGCLOCK), use more than one bit for each page to help

make better replacement decisions [31, 82], but workload-specific tuning is often

required for such algorithms. CLOCK performs similarly to LRU and suffers the

same problems as LRU. Clock with Adaptive Replacement (CAR) [8] uses

CLOCK to approximate ARC. CAR with Temporal filtering (CART) is a variant

of CAR that filters correlated references [8]. CAR and CART perform similarly to

ARC and, like ARC, cannot handle large loops well. CLOCK can be modified to

approximate LFU with much lower overhead. The basic idea is to associate each

page with a counter to record the number of times the page is referenced. Linux

uses this algorithm to manage its virtual memory [30].

30

2.4.3 Other Issues of Buffer Cache Management

Cache Partitioning

Traditional algorithms such as LRU consider all pages in the buffer when selecting

a candidate for replacement. These algorithms are called global algorithms.

Another category of algorithm divides the buffer cache into several partitions.

When a replacement is needed, only pages in the same partition are considered,

and so the behaviour of one partition does not affect the other partitions. Optimal

sizes for all partitions can be selected based on the marginal gain of each buffer

cache [116]. Marginal gain is the increase of number of hits of a partition when a

buffer is added to this partition. When the marginal gains of all partitions are the

same, the partition allocation is optimal. Cache partitioning needs to work

together with a global algorithm (or several global algorithms) to manage each

partition.

Self-tuning in Buffer Cache Management

Because of the complexity of real systems, the effective configuration and tuning of

any management algorithm is a significant challenge for the administrators. Some

goal-oriented self-tuning algorithms have been proposed to ease the task. In a

DBMS, response time goals are first specified by the administrator. The buffer

cache is then partitioned. Goal-oriented self-tuning algorithms can be used to

dynamically adjust the partition sizes to meet the response time goal [13, 23]. The

algorithm collects system states periodically and adjusts the buffer cache allocated

for each transaction class. Response time goals of different transaction classes must

be specified by the administrator, which could be difficult in complex systems.

2.5 Mixing the Layers

The storage subsystem is divided into different layers. The lower layer hides its

implementation details and provides a simple interface to the upper layer. Each

31

layer cannot make assumptions about how other layers work beyond the given

interface. This design philosophy is commonly seen in the design of network

protocol stacks and complex software systems. The cost of a layered design is

somewhat compromised performance. If the higher layer knows more details about

the lower layer, or vice versa, informed decisions can often be made to achieve

better performance. Many approaches were proposed in storage management to

utilize information of other layers. They are discussed in Section 2.5.1 and 2.5.2.

The difficulties of mixing layers are discussed in Section 2.5.3.

2.5.1 Using Lower Layer Knowledge

Disks communicate with the upper layer using a simple protocol. The starting

logical block number and the number of blocks to be read or written are given to

the disks, and the notification of operation completion and the data (if this is a

read request) are returned to the upper layer. Disks are highly sophisticated and

intelligent under this simple interface [3, 54, 100].

Static information such as track boundaries, and dynamic information such as

disk head position, seek time and rotational latency of the next request, can help

the upper layer utilize the disk more effectively. If an extent is placed within a disk

track (called a track-aligned extent), the access to it is much faster than

track-unaware extents [101]. Carefully placement of data with the knowledge of

track boundaries also allows efficient access to both contiguous and certain

non-contiguous blocks [102]. As a result, dramatic performance improvements can

be achieved in certain applications [101, 102].

The freeblock scheduling algorithm uses detailed dynamic information of the

disk to effectively utilize unused disk bandwidth for background requests without

affecting foreground requests [70, 71, 120]. This algorithm utilizes the rotational

latency between foreground requests opportunistically to serve background

requests. These background requests may be served out-of-order. The detailed

characteristics of some disks can be automatically extracted [100] and utilized for

32

freeblock scheduling outside of disk firmware [70].

Virtual log utilizes the head position to improve performance of small

synchronous writes [132]. Similar to LFS, virtual log writes data to a new location.

Unlike LFS, it selects the new location based on the current position of the disk

head to minimize seek time and rotational latency. Since virtual log can utilize any

free space on the disk, no garbage collection activity is required.

When the information inside a disk array is exposed, the file system can be

built to utilize this information to achieve better flexibility, reliability,

manageability, and performance [27].

2.5.2 Using Upper Layer Knowledge

Data that appears to be the same in the lower layer may represent different

entities in the upper layer. For example, a disk block in a storage server (the lower

layer) may represent file data, a directory, an inode, a bitmap or a free block in a

file server (the upper layer). This extra information is called the semantics of the

upper layer. When these semantics are known, the lower layer can often act

appropriately to achieve better performance and functionality. The

semantically-smart disk [111] infers the on-disk structures of the file system

running in the upper layer, and detects the semantics of the file system operations

automatically. These semantics can then be used to make better decisions, such as

allocating files within track-aligned extents, caching the metadata of files, or

securely delete files. When the disk array understands the on-disk structures of the

file system, the key metadata and the frequently used files of the file system can be

duplicated to a high degree to achieve high availability [110].

Multiple levels of buffer caches are often used in storage management. The

upper level buffer cache greatly changes the characteristics of the references to the

lower level buffer cache [137]. The DEMOTE approach was proposed to let the

two buffer caches work together, so that the lower level cache knows what pages

have been evicted from the upper level cache [138]. DEMOTE requires changes to

33

the communication protocol between the upper level and lower level.

The approaches discussed in Section 2.5.1 can be implemented inside the disks.

Disks containing these extra logic are called active disks [1] or intelligent disks [63].

This kind of smart storage can be used to perform general processing, such as

database queries [50] and image filtering [55].

2.5.3 Difficulties of Mixing Layers

Although mixing the layers can bring dramatic performance improvement, these

approaches have their difficulties. The first difficulty is the increased complexity.

Mixing the layers somewhat compromises the main advantage of using layered

design: reducing complexity. Increased complexity translates to higher

development and test cost. Since the layers depend on each other’s internal details,

one change within a layer may break components in other layers. Some approaches

for mixing the layers use other than standard protocol between layers, which

increases the difficulty of deployment.

Knowledge of static elements of the other layer, such as the track boundary in

a disk, is relatively easy and safe to obtain. However, knowledge of dynamic

elements, such as the disk head position, is much harder to get. As modern disks

become more and more sophisticated, predicting the activity of disks outside of

disk firmware is becoming a challenge [54]. One difficulty for embedding extra logic

in disk firmware to utilize the knowledge of dynamic elements of the disk is that a

disk may be used stand-alone, or may be part of a disk array. When a disk is part

of a disk array, the array controller is a better place to embed this extra logic, but

the knowledge of the dynamic elements of the disk, such as the disk head position,

is again not available at the array controller.

34

Chapter 3

Research Methodology

Storage management in large scale systems is complex. It is difficult to analyze an

existing algorithm, let alone implement a new one and evaluate it, in a real system.

Modeling and simulation are two cost-effective alternatives. By modeling the key

components of a system mathematically, important insights can be gained, and

this can also shed light on possible solutions. A wide range of workloads and

system configurations can be tested easily in a simulator, and various algorithms

can be implemented and evaluated with much less effort than in a real system.

For this thesis research, a blend of direct experimentation, trace-driven

simulation, and modeling was used. First, direct experimentation was used to

understand how the real system behaves. Analytical models and simulators were

then built to simulate key parts of the storage subsystem. The models and

simulators were validated against the real system, and new algorithms were

analyzed in the models and evaluated in the simulators. Different simulators, and

analytical models were used to study different aspects of the storage subsystem.

The validation and verification of them are discussed separately in Chapters 4, 5,

and 6.

In the rest of this chapter, Section 3.1 describes the basic characteristics of

typical workloads studied in this thesis. Section 3.2 discusses the characteristics of

the TPC-C benchmark, which is an important workload in this research.

35

3.1 Typical Workloads

Understanding the basic workload characteristics of the storage subsystem is a

prerequisite to studying its performance. The workloads presented to the storage

subsystem can be classified roughly into database workloads and file server

workloads. Since storage servers often sit below other applications which already

employ large buffer caches, such as database servers or file servers, the requests to

a storage server may already have been filtered by upper layer buffer caches, and

so may exhibit different characteristics [137, 138, 141]. These three categories of

workloads are discussed separately in the following subsections.

3.1.1 Database Workloads

Database servers support a wide range of applications. They can be classified

roughly into two classes: on-line transaction processing (OLTP) systems and

decision support systems (DSS). DSSs are also called on-line analytical processing

(OLAP) systems. Real database applications have the properties of both [51]. As

a new way of doing business through the Internet, e-commerce applications play an

increasingly important role in database applications. The database workloads in

e-commerce applications can be viewed as a mix of OLTP and decision support

workloads [33].

Since real database workloads are hard to obtain, benchmarks were used as the

database workloads in this research. The TPC benchmarks developed by the

Transaction Processing Performance Council (TPC) [124] are widely accepted for

testing the performance of database systems under various benchmarks.

3.1.1.1 OLTP Workloads

OLTP workload is important in large database systems. OLTP applications are

used in many industries for data entry and data retrieval transactions. OLTP is

the cornerstone by which a great deal of modern business is done.

Most OLTP transactions are quite simple. The execution time of each

36

transaction is short (typically within a second), and there are upper bound

requirements for response time. An OLTP application has many terminals

connected to one or more central database servers through a network as shown in

Figure 3.1. The client/server model is typically used for OLTP applications.

Different terminals initiate various transactions to the server independently. The

database on the server is updated frequently by these transactions. These updates

are typically small and to random places of the disks. Because of the I/O-intensive

nature of OLTP applications, the storage subsystem is often the performance

bottleneck. The two major design challenges for the storage subsystem to achieve

good performance for OLTP applications lie in the buffer cache layer and the disk

layout layer. The buffer cache of the DBMS must be managed effectively to reduce

the number of disk accesses. Since most reads are absorbed by the buffer cache,

random updates make up a large proportion of requests to disks. The disk layout

must be organized to handle the random updates efficiently. The TPC-C

benchmark [124], which is a standard benchmark representing OLTP workloads, is

used in this thesis to study the performance of storage management under OLTP

workloads.

Network

TerminalTerminal Terminal

Database Server

OLTP transactions

Figure 3.1: Architecture of an OLTP Application

3.1.1.2 Decision Support Workloads

In a DSS, users query business data to get answers to critical business questions.

In decision support workloads, complex queries are used to search a large amount

of data in the database. The execution time of each query is long (from tens of

seconds to several hours), and the queries mainly read the database sequentially.

37

The storage subsystem can easily achieve its maximum transfer bandwidth under

such I/O patterns. The performance bottleneck of DSS is often the CPU

computation power instead of the storage. The TPC-H benchmark [124] represents

an ad hoc decision support workload, which means no advance knowledge of the

queries is available. The DBT3 benchmark developed by the Open Source

Development Lab [26] is a simplified implementation of the TPC-H benchmark,

and this is used as the workload when studying the performance of the buffer

cache layer.

3.1.1.3 E-commerce Workloads

E-commerce is a new way of selling products or services through the Internet.

Customers access an e-commerce web site from their web browsers. A typical

e-commerce system contains a back-end database server and several front-end

servers, including web servers, web caches, and image servers. Figure 3.2 shows a

typical structure of an e-commerce environment. The web servers provide web

pages to browsers. The image servers provide images to browsers. The web cache

servers cache the search results of client requests to reduce the load on the

database server. The back-end database server stores the information of customers

and products and processes user transactions.

Current network load-balancing technology makes it very easy to add front-end

servers when they become a bottleneck of the system [17]. It is much more difficult

to use more than one database server, however, since distributed database systems

are hard to build and manage. In a typical e-commerce system, front-end servers

are built on many cheap machines, while the database server is built on a very

expensive machine. In many large e-commerce configurations [126], the cost of the

database server hardware represents 30% to 65% of the total hardware cost,

although there is one database server but several dozens of front-end servers.

Therefore, improving the performance of the database server can greatly reduce

the total cost of the system.

The primary function of the web cache is to reduce the load on the database

38

Browser
Web

Network

Database Server

Front-end

Server
Back-end

Payment

Servers

Authorization
Server

Third Party

Server
Web

Server
Web

Cache
Web

Cache
Web Image

Server
Image
Server

Browser
Web

Browser
Web

Figure 3.2: E-commerce Environment

server. In e-commerce web sites, customers can search for products or services by

sending complex queries to the database server. The search results of these queries

are cached in the web cache after being generated by the database server. These

cached results can satisfy some subsequent search requests (even from other users)

without contacting the database server again. Without dynamic caches, the

database server can easily become a performance bottleneck. When customers buy

products or services, the transactions sent to the database server are not

cacheable, since they contain updates to the database, which cannot be used by

other customers and must be processed by the database server within a strict

response time bound. These simple transactions are similar to the transactions in

OLTP workloads. As dynamic cache technology improves, more query results can

be cached at web caches, and the workload seen by the database server is more like

OLTP. The TPC-W benchmark [124] is designed to represent such workloads and

is used as the e-commerce workload when studying the buffer cache layer.

39

3.1.2 File Server Workloads

File servers support a wide range of applications. The characteristics of file system

activities depend on the type of applications running on it. File servers are

supporting more users, higher data rates, more files, and more space as time goes

on [7, 87]. Studies of file system workloads exhibit some common characteristics

despite these changes [7, 32, 87, 94, 129]:

• Most accesses are to small files, while most bytes are from big files.

• A large proportion of file blocks die quickly (within seconds or several

minutes).

• Most accesses to files are sequential accesses, but are to small files.

• A large proportion of bytes are accessed randomly.

• As the file client employs larger caches, significantly more writes are observed

at the file server [32].

The presence of client cache increases the proportion of writes in the server and

changes the temporal locality characteristics of requests to the file server buffer

cache [36], which affects the design of the buffer cache replacement algorithm used

in file servers.

3.1.3 Storage Server Workloads

Storage servers typically run under file servers and/or database servers. Because of

the use of buffer cache in the file servers and database servers, the requests to

storage servers exhibit different characteristics [36, 113, 137, 138, 141]:

• Since many reads are cached by upper level buffer caches, write requests

make up a large proportion of the total requests. Some traces contain more

writes than reads [113].

40

• Much less temporal locality is observed in the requests to the buffer cache of

storage servers than is observed in upper level buffer caches, since these

requests are misses of upper level caches. Recency-based algorithms such as

LRU that are designed to utilize temporal locality, will therefore perform

poorly, while frequency based algorithms show advantages [137].

3.2 TPC-C Workload Characterization

3.2.1 Overview of TPC-C

The TPC-C benchmark models the order processing operations of a wholesale

supplier with some geographically distributed sales districts and associated

warehouses. The business environment is illustrated in Figure 3.3. In the TPC-C

benchmark, the number of warehouses is a variable which determines the scale of

the benchmark. Each warehouse has 10 sales districts and each district serves 3000

customers. The supplier has 100,000 items for sale. The initial size of one

warehouse is about 100M bytes data.

100,000 items

Customer
1, 2, ..., 3000

Customer
1, 2, ..., 3000

Customer
1, 2, ..., 3000

Customer
1, 2, ..., 3000

Customer
1, 2, ..., 3000

Customer
1, 2, ..., 3000

District 1 District 10 District 1 District 10District 1 District 10

Warehouse 2 Warehouse WWarehouse 1

Figure 3.3: TPC-C Business Environment

41

Five basic transactions that represent essential features of the application are

defined by the benchmark. These are listed in Table 3.1. When the benchmark is

run, performance is expressed in terms of transactions per minute, defined as the

number of New Order transactions completed per minute.

Table 3.1: TPC-C Transactions

Transaction Characteristic Percentage

New Order read-write, mid-weight 45%
Payment read-write, light-weight 43%
Order Status read only, mid-weight 4%
Delivery read-write 4%
Stock Level read only 4%

The database of the TPC-C benchmark consists of nine tables. The

relationships among these tables are defined in the entity-relationship diagram in

Figure 3.4 [124].

���������
	��

��
� ���

����
����������
��� ���

����� � � ��
���	��� ���"! � �$# � #
! �

% ��	&� �
��� ����� � ' ��(*)�+���,
������.- �$#

/ �

���	�01�2�
���.! � �� ! # �) � � #

34����0
����� �

+���,
����)657��8
�
���.! ��� �$#

+���,
���
���"! � �$#

9) � 9

Figure 3.4: TPC-C Tables and their Relationships [124]

The numbers in the entity blocks represent the number of rows of that table.

The size of most tables scales with the number of warehouses W . The number

next to each relationship arrow represents the cardinality of that relationship

(average number of children per parent). The plus (+) symbol indicates more rows

will be added to the table as the benchmark runs.

42

In order to simulate the skewness of the distribution of accesses in real

applications, a non-uniformly distributed random number generator is used to

populate the database and generate transactions. This non-uniform random

function NURandA(x, y) is defined as:

NURandA(x, y) = ((rnd(0, 2A − 1)|rnd(x, y)) + C) mod (y − x + 1) + x,

where:

1. a|b stands for the bitwise logical OR operation between a and b.

2. a mod b stands for a modulo b.

3. rnd(a, b) stands for a randomly selected uniformly distributed number within

[a, b].

4. C is a random constant in the interval [0, A] that does not affect the

distribution of the numbers but affects the “hot” values of the generated

numbers. The TPC-C documentation states that C must be selected so that

it does not alter performance.

5. A is a constant that can affect the skewness of the distribution of the random

numbers generated. The logical OR of rnd(0, 2A − 1) affects the lowest A

bits of the value returned by rnd(x, y). Each of these affected bits is the

logical OR of two bits from two uniformly distributed random numbers

(rnd(0, 2A − 1) and rnd(x, y)). Table 3.2 shows that the probability of value

“1” is 75%, and the probability of value “0” is 25%, which makes the numbers

generated by NURand non-uniformly distributed. The larger the value of A,

the more skewed the distribution that the NURand function generates.

Table 3.2: Logical OR of Two Bits

a b a|b
0 0 0
0 1 1
1 0 1
1 1 1

43

When each district is populated with 3,000 customers, 1000 unique random last

names are used for the first 1000 customers and the NURand8(0, 999) function is

used to select a name from these 1000 names for the remaining 2000 customers.

Figure 3.5 shows the cumulative distribution function (CDF) of the access

skewness of the last names after the initial database population. The most popular

last name is used by 60 customers. The cross in the figure shows that 21% of the

last names are used by 60% of the customers.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Proportion of Unique Last Names

(0.21, 0.6)

Figure 3.5: Access Skewness of Last Names

During the execution of the benchmark, when the Item table is accessed by the

New Order, Payment, and Order Status transactions, the item ID is selected using

the NURand13(1, 100000) function. When a customer is selected from the

Customer table by a New Order transaction, the NURand10(1, 3000) function is

used to select a random customer ID. When a customer is selected by the

Payment or Order Status transaction, it is selected by the last name generated by

the NURand8(0, 999) function 60% of the time, and selected by the customer id

generated by the NURand10(1, 3000) function 40% of the time. The distributions

of the access skewness of customers and items referenced by the TPC-C

transactions are shown in Figure 3.6. The item ID distribution is more skewed

than the customer ID distribution. As shown in the figure, 16% of the item IDs

contribute 80% of the references, and 33% of the customer IDs contribute 80% of

44

the references.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Proportion of Unique IDs

(0.16,0.8)
(0.33,0.8)

Item ID
Client ID

Figure 3.6: Access Skewness of Item IDs and Client IDs

3.2.2 System Configuration and Trace Collection

In order to measure performance results and collect traces, TPC-C was configured

to run on an IBM PC Server 704 in the DISCUS laboratory at the University of

Saskatchewan. At the time this research was done, this machine was configured

with 4 PentiumPro 200MHz processors, 512 MB of memory and 12 4.3GB hard

disks attached to two PCI Wide Ultra SCSI-2 buses. The data transfer rate of

each SCSI bus was 40MB per second. 10 disks were IBM ST34571WC, and 2 disks

were IBM DCHS04Y. All these disks have a rotational speed of 7200RPM, and an

average seek time of 7.5ms (DCHS04Y) or 10ms (ST34571WC). The DBMS was

IBM DB2 for Windows, version 7.1.0. The number of warehouses in the TPC-C

database was 50.

The buffer cache in DB2 employs a fix/unfix mechanism for requesting

pages [31]. When the upper layer needs to access a page, it sends a fix request to

the buffer cache. The page is read from the disk if it is not yet in the buffer cache.

The address of the page in the buffer cache is returned to the upper layer as the

result of the fix request. After a page is fixed, it cannot be evicted from the buffer

cache until an unfix request of this page is received. As shown in Figure 3.7, a

45

trace point was placed between the upper layer of the DBMS and the buffer cache

to catch all buffer cache fix/unfix requests when running the TPC-C benchmark.

The tracing package was ported from one developed by Hsu [51, 52].

Fix/Unfix
Trace point

Buffer Cache

TPC−C

Upper DBMS Layer

DBMS

Disks

Figure 3.7: Trace Collection Point

All necessary information related to buffer cache requests was recorded in the

trace file. Table 3.3 presents the important fields of a trace record. The fix mode

defines two kinds of fix: exclusive and shared. If a page is fixed in the exclusive

mode, it can be read and updated during the fix period. A page can have at most

one exclusive fix at any time. If a page is fixed in the shared mode, it can be read

but not updated during the fix period. A page can be fixed in shared mode by

many threads at the same time. The collected trace has about 200 million

requests, 84% of which are reads. About 1 million distinct pages (page size is

4KB) are referenced in the trace. 60 users were used for the TPC-C benchmark

when collecting the trace.

Since temporal locality is one of the most important properties for the design

of buffer cache replacement algorithms, the temporal locality in the TPC-C

workload is analyzed in the rest of this chapter.

46

Table 3.3: Important Fields of the Trace

Field Value

type the type of the request, must be either fix or unfix
user id the user who sends the request
object type the type of the requested page, must be either

index or data
table id the id of the table to which the requested page

belongs
page number the logical page number of the requested page
fix mode (only for fix) exclusive or share
modified (only for unfix) whether or not this page has been modified

3.2.3 Reference Characteristics in the TPC-C Benchmark

The reference characteristics of different tables and objects (data and indexes)

were studied. The LRU stack depth was used to study the reference characteristics

of a particular trace. To measure the LRU stack depth, all referenced pages are

ordered by their recency of reference. For each reference, the LRU stack is

searched for the requested page. If it is found, the LRU stack depth of this

reference is the number of pages that have smaller recency than this page. This

page is then moved to the top of the stack. If the referenced page is not found in

the stack, the LRU stack depth of this reference is infinite, which happens only

when the page is first referenced.

If a page is referenced twice in succession, an immediate re-reference is noted.

For most buffer cache replacement algorithm, immediate re-references are always

cache hits and so they do not change the behaviour of the buffer cache. Immediate

re-references make the temporal locality of the trace appear better than it actually

is. Therefore, immediate re-references were removed from the trace before the

following analysis was done.

The cumulative distribution function of the LRU stack-depth probability F (x)

is used to describe the reference behaviour of the trace, where x is the LRU stack

depth. For a buffer cache of size x, F (x) is also the buffer cache hit ratio if the

buffer cache is managed by the LRU algorithm. A more skewed F (x) distribution

47

implies higher buffer cache hit ratio of the trace. The skewness of F (x) can be

caused either by the temporal locality of references, or by the skewed access

probability of references.

3.2.4 Single-user Workload Characteristics

In the TPC-C benchmark, reference characteristics do not change over time, and

all users have identical characteristics. There are about 3.3 million trace records

for every user. Preliminary analyses of the traces found that the first 250,000

records of a user have similar characteristics as the whole trace of this user. Thus

only the first 250,000 trace records of the first user are used for the analyses

presented in this subsection to reduce the computation resources required.

3.2.4.1 Overall Characteristics

Figure 3.8 shows the LRU stack depth distribution of a single user referencing

about 10,000 pages. The cumulative LRU stack depth is about 80% when the

buffer cache size is only 1000. This implies that the overall trace can achieve high

hit ratio on a small buffer cache. The rightmost point of the line in the figure

indicates that about 85% of the page references have finite LRU stack depth.

0

0.2

0.4

0.6

0.8

1

 1 10 100 1000 10000

C
D

F

LRU Stack Depth

Figure 3.8: The LRU Stack Depth for a Single User

48

3.2.4.2 Characteristics of Different Tables

There are nine tables in the TPC-C benchmark (see Figure 3.4 on page 42). The

references to each table are extracted from the trace so that their LRU stack depth

distribution can be studied separately. The results show that different tables

exhibit different degrees of skewness in their cumulative LRU stack depth

distributions. The nine tables are organized into three categories in Table 3.4 to

focus the following discussions.

Table 3.4: Tables with Different LRU Stack Depth Distributions

Table Skewness of Cumulative LRU Stack
Depth Distribution

Warehouse, OrderLine High
District, Item, NewOrder, Order, Stock Medium
History, Customer Low

Figure 3.9 shows the LRU stack depth of the Warehouse and OrderLine tables,

which have high skewness in their cumulative LRU stack depth distribution.

0

0.2

0.4

0.6

0.8

1

 1 10 100 1000 10000

C
D

F

LRU Stack Depth

Warehouse
OrderLine

Figure 3.9: The LRU Stack Depth of the Warehouse and OrderLine Tables

For Warehouse, no stack depth greater than 50 was found, because this table

has only 50 pages. Many transactions access the same record of the warehouse

table for many times during its execution, which makes the cumulative LRU stack

depth distribution of this table highly skewed.

49

In OrderLine, more than 80% of the references have stack depth less than 5. In

one New-Order transaction, several new records are inserted into OrderLine. These

records might be searched in several other transactions. As a result, OrderLine has

highly skewed cumulative LRU stack depth distribution.

Five tables (District, Item, NewOrder, Order, and Stock) have medium

skewness in their cumulative LRU stack depth distribution. Their LRU stack

depth plots have similar shape. For clarity, the data for only three tables (Item,

Order and Stock) are plotted in Figure 3.10. The references to the Item table are

non-uniformly distributed random accesses. Its skewed cumulative LRU stack

depth distribution is due to the skewed distribution of the accesses as shown in

Figure 3.6 (page 45).

0

0.2

0.4

0.6

0.8

1

 1 10 100 1000 10000

C
D

F

LRU Stack Depth

Item
Stock
Order

Figure 3.10: The LRU Stack Depth of the Item, Stock and Order Tables

Figure 3.11 shows the cumulative LRU stack depth distribution of History and

Customer, both of which have low skewness in their cumulative LRU stack depth

distribution. This figure shows that in the History table, about 80% of its

references have infinite stack depth. This is because data are appended at the end

of the History table and are not accessed again in the TPC-C benchmark. 45% of

the references to Customer have infinite stack depth. Customer is characterized by

non-uniformly distributed references. It exhibits low skewness in the cumulative

LRU stack depth distribution because the non-uniform random function used for

50

the Customer table has low skewness (see Figure 3.6) and the Customer table is

very big.

0

0.2

0.4

0.6

0.8

1

 1 10 100 1000 10000

C
D

F

LRU Stack Depth

History
Customer

Figure 3.11: The LRU Stack Depth of the History and Customer Tables

Figures 3.9, 3.10, and 3.11 show a sharp increase in the cumulative LRU stack

depth for almost all tables when the buffer size is less than 5 pages, which is

reflected as the “knee” in the figures. Since one page contains many table rows or

index values, the upper layer of a DBMS typically accesses a database page several

times during a short interval. These references are correlated references, and the

period that correlated references occur is called the period of correlated references.

The sharp increase in the cumulative LRU stack depth is caused by correlated

references. This sharp increase does not reflect the real access probability of the

page references in the long term. Therefore, it is important to treat the correlated

references differently than other references when designing buffer cache

replacement algorithms. In the LRU-K algorithm [84], a parameter is used to

define the period of correlated references so that re-references occurring in this

period are not counted as the kth last reference to the page. In the 2Q

algorithm [60], the length of the short term queue reflects the estimation of the

period of correlated references. In the CART algorithm [8], the length of the L1

queue reflects the estimation of the period of correlated references.

As shown in figures of this subsection, different tables often have different

51

reference characteristics. This is caused by the different ways the applications

operate on the tables. If the data in a table are accessed in a highly skewed manner

(as in Item), the high popularity of references to the hot data can cause highly

skewed cumulative LRU stack depth distribution. The reference behaviour of each

table can guide the partitioning of the buffer cache. Tables with similar skewness

of their cumulative LRU stack depth distribution can get a high hit ratio with a

small buffer cache. The hit ratio will not increase much if more buffer cache space

is given to these tables. On the other hand, the hit ratio of tables with less skewed

cumulative LRU stack depth distribution will keep increasing even when the buffer

cache is large. This suggests that tables with skewed cumulative LRU stack depth

distribution should be put into a small partition, and tables with less skewed

cumulative LRU stack depth distribution should be put into a large partition.

3.2.4.3 Characteristics of Data And Indexes

The structures of data pages and index pages are different. Data pages have a

linear structure, and are often stored sequentially on disks. Index pages employ

the B+ tree structure to facilitate fast search by key values. Accesses to index

pages always start from the root and go through all levels of the tree until either

the search fails or the appropriate leaf is reached. Therefore, different referencing

behaviour is expected on data pages and index pages.

Figure 3.12 shows the stack depth distribution for references to data pages and

index pages. 70% of references to data pages have infinite stack depth, while the

cumulative LRU stack depth distribution of the index pages is much more skewed.

Analysis of the reference behaviour for data pages and index pages can guide

the partitioning of the buffer cache. Because data pages and index pages have

different reference behaviour, they could be put into different partitions of a buffer

cache and managed separately.

Recall that Figure 3.11 shows that references to the Customer table have low

skewness in their cumulative LRU stack depth distribution. The data pages and

the index pages are studied separately and their LRU stack depth distributions are

52

0

0.2

0.4

0.6

0.8

1

 1 10 100 1000 10000 100000

C
D

F

LRU Stack Depth

Index
Data

Figure 3.12: The LRU Stack Depth of Data and Indexes

shown in Figure 3.13. Nearly all the data pages have infinite stack depth while the

index pages have shape similar to that of all index pages. In fact, all index pages

have similar access patterns regardless the table they belong to. Note that if a

larger size of the sample is studied, the percentage of data pages that have infinite

stack depth may decrease, although the shape of the line is expected to be similar.

3.2.5 Multi-user Workload Characteristics

All the above analyses are based on the requests generated by a single user. When

many users use the DBMS at the same time, as in the case of the TPC-C

benchmark, different users share pages of the same database. The aggregate

reference behaviour is affected by this sharing. Since the workload does not change

over time, the first 100,000 requests sent by each user formed the basis of the

following analyses.

Figure 3.14 shows the LRU stack depth of the overall reference trace for 1 user

and 60 users. When the buffer cache is larger than 125 pages, the hit ratio of the

trace with 60 users is similar to that of the trace with 1 user. This is because all

users in the TPC-C benchmark access the database in the same pattern as defined

by the non-uniform random generator.

As in the single user case, the sharp increase in the buffer cache hit ratio at

53

0

0.2

0.4

0.6

0.8

1

 1 10 100 1000

C
D

F

LRU Stack Depth

Customer(Data)
Customer(Index)

(a) Data and Index

0.001

0.0015

0.002

0.0025

0.003

0.0035

 1 10 100 1000

C
D

F

LRU Stack Depth

Customer(Data)

(b) Zooming in on the Data line

Figure 3.13: The LRU Stack Depth of the Customer Table

[Figure 3.13(b) is a zoom in of Figure 3.13(a) so that the line of Customer(Data)
is visible.]

small buffer cache sizes (less than 125 pages) in Figure 3.14 indicates that there

are correlated references. Since the correlated references from different users

interleave with each other, the period of correlated references increases when the

number of users increases. This can be seen in the figure where the knee occurs at

a larger buffer cache size. If the buffer cache replacement algorithm needs to

estimate the period of correlated references (e.g., LRU-K and 2Q), this parameter

should be tuned according to the workload to get good performance.

54

0

0.2

0.4

0.6

0.8

1

 1 10 100 1000 10000 100000

C
D

F

LRU Stack Depth

All (60 users)
All (1 user)

Figure 3.14: The LRU Stack Depth for Sixty Users

3.2.6 Summary

This section presents the results from an analysis of the reference behaviour of the

TPC-C benchmark. Correlated references exist in most tables. The period of

correlated references is affected by the type of references to tables, type of objects

(data or index), and number of users. If the period of correlated references is used

as a parameter in the buffer cache replacement algorithm (as it is in LRU-K and

2Q), this parameter should be tuned according to these factors.

Different tables exhibit different reference behaviour, depending on how the

data are accessed by the applications. The data pages and index pages also exhibit

different reference behaviour. The index pages of all tables have similar reference

behaviour. The reference behaviour of different tables and the data/index pages

suggest that the buffer cache can be partitioned to group pages with similar

properties into one partition.

55

Chapter 4

Self-tuning of Buffer Cache Management

Tuning a buffer cache management algorithm to achieve good performance in a

real system is often complex. Many parameters must be turned according to the

workload and system configuration. Such tuning is often difficult, however, and in

many cases can be done only by trial and error.

This chapter investigates the tuning of buffer cache management in the context

of a specific DBMS, IBM DB2 7.1.0 for Windows. Because OLTP workloads have

high I/O demand, buffer cache management is crucial to the performance in OLTP

systems. The TPC-C benchmark, which represents an OLTP workload, is used as

the workload. Although a specific system and benchmark workload were used in

this study, the methodology used is generalizable and can be applied to other

systems and workloads.

The remainder of this chapter is organized as follows. Section 4.1 discusses the

buffer cache management algorithm being studied. Section 4.2 presents the

methodology used. Sections 4.3 studies the I/O activities in the buffer cache and

the impact of important parameters in buffer cache management. Section 4.4

describe a new self-tuning algorithm to automatically tune the page cleaning

activity of buffer cache management. Section 4.5 presents simulation results of the

performance of the new algorithm. Section 4.6 summarizes the chapter.

4.1 Buffer Cache Management Overview

Figure 4.1 shows the structure of the DB2 buffer cache, which is managed by a

replacement algorithm and a page cleaning algorithm. Since many users can use

56

DB2 simultaneously, there is one database clerk (a thread or a process)

corresponding to each active user. Each clerk processes that user’s queries and

accesses database pages in the buffer cache.

Cleaner
Page

Cleaner
Page

Reads

I/O Controller

Asynchronous Writes

Page

Page Requests

Synchronous Writes

Cleaner

Disk Disk Disk Disk Disk Disk

B
uf

fe
r

C
ac

he

Clerk Clerk Clerk

Page Requests Page Requests

Dirty
PagesClean Pages

Figure 4.1: The Structure of the Buffer Cache

When a new page needs to be read into a full buffer cache, the replacement

algorithm must select a page for replacement. When a page is selected, its status is

checked; if it is clean (i.e., unchanged since it was fetched into cache), the space it

occupies can be used immediately, but if it is dirty (i.e., changed), a synchronous

write must take place before the user clerk can fetch the new page. This is a

blocking activity that seriously impacts performance.

In addition to synchronous writes, DB2 also uses page cleaners to perform

asynchronous writes to maintain a pool of free pages for replacement. It does this

to avoid the blocking inherent in synchronous writes. Each page cleaner manages a

subset of the dirty pages as shown in Figure 4.1. All page cleaners are asleep

initially. When a page cleaner wakes up, it collects some dirty pages and writes

them to disk. Since the writes generated by page cleaners are performed

57

asynchronously, the user clerks are not blocked for the writes. Thus the user clerks

can continue to request buffer cache pages from the buffer cache while

asynchronous writing is taking place.

Because read latency is reduced when free pages are available for incoming

pages, the page cleaning speed can affect system throughput significantly. The

page cleaning speed can be controlled by the number of page cleaners, which can

be set by the database administrator before the database application starts.

Simulation results presented later in this section show that tuning the number of

page cleaners to a proper value can improve system throughput by as much as

19%. If this parameter is manually tuned, when the system configuration or

workload changes (e.g., more disks or memory are used, the database becomes

larger, or more users are using the system), the tuning must be performed again.

Moreover, because of the complexity of different workloads, manual tuning usually

is done by experiments, which is difficult for the following reasons:

• A workload of sufficient length must be available to determine how the

system performs under a particular setting.

• Each performance “experiment” must run long enough to skip the buffer

cache warmup period and to eliminate statistical fluctuations resulting from

short-term transient effects.

• The database must contain enough data to provide a realistic operating

environment.

4.2 Methodology

Both simulation and measurement were used to study the tuning of the buffer

cache management. As was stated in Section 3.2.1 (page 41), the performance

metric of interest is throughput, measured as the number of New Order

transactions completed per minute.

58

4.2.1 System Configuration and Experimental Setup

A TPC-C test environment was configured on the PC Server 704 described in

Section 3.2.2 (page 45). A TPC-C database with 50 warehouses was created with a

size of about 5GB. One dedicated disk of the machine is used for the log file of

DB2. The buffer cache of DB2 can be configured up to 440MB, which is large

compared to the size of the database used. The database can be created across

from 3 to 11 physical disks. To get the best performance, software RAID-0

managed by Windows NT instead of RAID-5 was used to organize multiple disks.

In the experiments, the number of disks used by the TPC-C database was 11 and

the size of the buffer cache was 380MB, unless otherwise stated.

When the TPC-C benchmark is running, new data are appended to the

database. Therefore, the database becomes larger which impacts the system

throughput adversely. In order to fairly compare the throughput under different

configurations, the database was backed up after the TPC-C database is first

populated, and was restored to the initial state before each measurement session.

Each measurement session lasted for 30 minutes. Only the throughput values when

the system enters stable state were used to calculate the average throughput. The

coefficient of variance of the throughput values, i.e., the ratio of the standard

deviation over the average, is less than 0.03.

Since the focus of this study is server performance, remote terminal emulators

required by TPC-C were not used to generate the transactions. Instead, all

transactions were generated on the DBMS server by a TPC-C driver program. The

think time between transactions was removed to test the maximum throughput

that the DBMS can achieve. A TPC-C driver program developed by IBM’s

Toronto Software Laboratory was used. When the TPC-C benchmark is running,

60 users send OLTP transactions to the DBMS.

59

4.2.2 The Buffer Cache Simulator

A buffer cache simulator was written to simulate DB2’s buffer cache management

algorithm and the disk subsystem [133]. An event-driven architecture was used in

the simulator. Different components of the simulator communicate through events.

Figure 4.2 shows the components and the main event types. The four basic

components are:

• The Buffer Cache Manager contains the basic buffer cache management

algorithm. It manages the placement and replacement of the buffer cache

pages. It accepts the fix and unfix events, and sends out the read and

synchronous write (SyncWrite) I/O events. It also notifies Page Cleaners to

start cleaning by sending StartCleaning events.

• The Page Cleaner manages the page cleaning of the buffer cache. It accepts

StartCleaning events and performs page cleaning on the dirty pages of the

buffer cache. There can be more than one page cleaner in the simulator. Both

the Buffer Cache Manager and the Page Cleaner can access Buffer Cache

Pages which is the data structure holding all the pages of the buffer cache.

• An Clerk represents a client that sends requests to the Buffer Cache.

Requests belonging to each client are organized into a separate Trace File.

Each Clerk simply reads a record (either fix or unfix) from its trace file and

sends it to the Buffer Cache Manager. The number of Clerks is equal to the

number of clients when running TPC-C.

• The Disk accepts disk I/O events (Read, SyncWrite, and AsyncWrite) and

returns IOFinish events. Because the I/O requests in TPC-C are random

reads and writes of one page, a simple disk model with a fixed disk access

time is used. Unprocessed requests to a disk are queued and served in a

first-in-first-out order. When there are multiple disks in the simulator,

different disks can perform reads and writes simultaneously.

60

AsyncWrite(Page#)

Unfix(Page#)

AsyncWrite(Page#)
SyncWrite(Page#)

Read(Page#)

Page

Fix(Page#)

Trace File

Fix(Page#)
Unfix(Page#)

IOFinish(Page#)
StartCleaning()

NextRecord(clientId)
Read(Page#)

SyncWrite(Page#)

StartCleaning()

IOFinish(Page#)

Buffer Cache
Manager

Dispatcher
Event

Disk

IOFinish(Page#)

Clerk

Read

NextRecord()

Pages
Buffer Cache

Cleaner

Figure 4.2: The Structure of the Simulator

61

A timestamp is associated with each event. All events are sent to the event

queue and sorted by their timestamps. The Event Dispatcher selects the event

with the minimum timestamp and sends it to the corresponding component. The

typical event flow when fixing a page is as follows: a fix event is read from the

Clerk and sent to the Buffer Cache Manager. If the page is in the buffer cache, the

fix finishes, and the Buffer Cache Manager sends a NextRecord event to the Clerk

for the next record. If the page is not in the buffer cache, and a clean page is found

for the replacement, a Read event is sent to the Disk, and when the Buffer Cache

Manager receives an IOFinish event, it sends a NextRecord event to the Clerk

asking for the next record.

Some initial experiments confirmed that neither the log disk nor the CPU is

the bottleneck under the hardware configuration used. Instead, the performance

bottleneck is the disks storing the TPC-C database. Therefore, only the disk

access time was modeled in the simulator. The disk access time was set to 9ms,

which is close to the disk access time of the real disks used when many requests

are queued at each disk.

Since DB2 is the particular DBMS studied in this thesis, special attention was

taken to implement the DB2 replacement algorithm. The source code of DB2 was

studied during the summer of 1999 in the IBM Toronto Software Laboratory to

understand its buffer cache management algorithm. The DB2 source code related

to buffer cache management is about 100,000 lines of C code. There are about

2,500 lines of C++ code related to the DB2 buffer cache management algorithm

after it is implemented in the simulator, since only the key parts of the algorithm

were simulated. The components that do not significantly affect the performance

of the system under the OLTP workload, such as error handling, prefetch, and

logging, were not simulated.

The simulator reports the number of transactions finished per minute as the

throughput of the system. Other quantities related to page activities, I/O channel,

and the buffer cache management algorithms are also reported. Because TPC

prohibits the disclosure of TPC-C performance results that have not been audited

62

by independent auditing agencies, the absolute values of any simulation or

experimental results are withheld, and only normalized values are presented in this

chapter. This does not compromise the performance comparisons.

4.2.3 Simulator Validation

A number of measurement and simulation experiments were performed to validate

the simulator. Some internal statistics from the measurements are also compared

with that from the simulator.

Figure 4.3 shows the system throughput measured in both the simulator and

DB2 under the untuned configuration. The simulation results are quite close to

those obtained from measurement. Both begin with an empty cache. Throughput

improves as pages are cached until the cache is full, at which time replacement

decisions must be made. The throughput spike marks the point when the page

cleaners of the buffer cache begin to write dirty pages back to the disk. After that,

the system performance stabilizes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Normalized Time

DB2 measurement results
Simulation results

Figure 4.3: Simulation vs. Measurement

[The configuration is untuned, with 2 page cleaners. The database spans over
11 disks. The throughput is normalized relative to the average throughput of the
measurement results after the system enters the stable state. The running time is
normalized relative to the total running time of the measurement experiment.]

Some other outputs of the simulator were also compared to measurement

63

results as shown in Table 4.1. After the system throughput becomes stable, the

percentage of dirty pages in the buffer cache from simulation (87%) closely

matches the measurement result (85%). The buffer cache hit ratio from simulation

(96.6%) is also very close to the measurement result (96.5%). Later results on the

impact of the number of page cleaners (see Section 4.3.2 in page 66) also show a

close match between the simulator and the real system.

Table 4.1: Comparison of Measurement and Simulation Results

Measurement Simulation Relative difference

Percentage of Dirty Pages 85% 87% 2.4%
Buffer Cache Hit Ratio 96.5% 96.6% 0.1%

These comparisons confirm that the simulator has behaviour very similar to the

real system, indicating that conclusions drawn from simulation results are valid for

the real system. New algorithms designed in the simulator should have similar

effects if applied to the real system.

4.3 Experiments with the Page Cleaning

Algorithm

4.3.1 I/O Activities in the Buffer Cache

A number of simulation and measurement experiments were conducted to

investigate I/O behaviour in the buffer cache and the impact of the page cleaning

algorithm on performance.

In initial experiments, it was found that about 90% of the pages in the buffer

cache were dirty, which seemed high. This motivated more experiments to

investigate the distribution of pages in the buffer cache. Figure 4.4 shows the

evolution of pages in the buffer cache over the first 30% of the simulation. At the

beginning, all pages in the buffer cache are free pages. Both the number of dirty

pages and the number of clean pages increase as time goes on. After the buffer

64

cache is full, the number of dirty pages continues to increase, but the number of

clean pages drops. At the same time, the throughput drops. When 90% of the

buffer cache pages are dirty, the system enters steady state. At this point the

number of clean pages is much lower than it is when the buffer cache is just full,

implying that there are too many dirty pages in the buffer cache in steady state.

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3

P
ro

po
rt

io
n

of
 p

ag
es

Normalized Time

Dirty pages
Scaled throughput

Clean pages
Free pages

Figure 4.4: Pages in the Buffer Cache in the Untuned Configuration

[The untuned configuration has 2 page cleaners. The throughput is scaled so that
its shape can be compared easily with the other curves plotted. The number of
pages is normalized relative to the buffer cache size.]

To investigate the reason for this, the I/O activities of the buffer cache were

examined in more detail, and the results are shown in Figure 4.5. When the buffer

cache is almost full, the page cleaners begin to clean out dirty pages by

asynchronous writes. However, asynchronous writes cannot clean out pages fast

enough in this untuned configuration, so dirty pages must be selected for

replacement. This means that synchronous writes occur. The synchronous writes

not only delay the reads directly (since a read cannot proceed before the

synchronous write finishes), but also compete for I/O bandwidth with other

activities. Therefore, the read speed is slowed down (and read latency is increased)

by the need to write in order to create space for the incoming pages. When the

read speed becomes slower, the throughput drops and dirty pages are generated

more slowly (i.e., fewer pages in the buffer cache are changed per unit time).

65

When the number of dirty pages generated by the TPC-C requests equals the

number of dirty pages cleaned by writes in the same time interval, the system

enters steady state.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

P
ro

po
rt

io
n

Normalized Time

Proportion of dirty pages

Proportion of reads

Proportion of sync writes

Proportion of async writes

Figure 4.5: I/O Activities of the Buffer Cache in the Untuned Configuration

[The untuned configuration has 2 page cleaners.]

As Figure 4.5 shows, the proportion of synchronous writes is high (close to 40%

of all I/O activity) in this configuration, which implies that the page cleaning

speed is too low. The number of asynchronous writes should be increased in order

to decrease the number of synchronous writes. To do this, the aggregate page

cleaning speed must be increased, and this can be done by using more page

cleaners.

4.3.2 The Impact of the Number of Page Cleaners

Figure 4.6 shows the effect of varying the number of page cleaners from 1 to 100.

Figure 4.6(a) shows the effect of the number of page cleaners on throughput. The

simulation results match the measurement results quite closely. When the number

of page cleaners is an integral multiple of the number of physical disks, which is 11

in this case, better load balance across disks can be achieved. Therefore, the

performance spikes occur on these specific points.

When the number of page cleaners is less than 44, the throughput generally

66

0.95

1.00

1.05

1.10

1.15

1.20

1.25

 0 10 20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of Page Cleaners

Measurement results
Simulation results

(a) Impact on Throughput

0.00

0.20

0.40

0.60

0.80

1.00

 0 10 20 30 40 50 60 70 80 90 100

P
ro

po
rt

io
n

Number of Page Cleaners

Normalized disk I/O

Dirty page proportion

Fraction of disk reads

Fraction of disk writes

Proportion of sync writes

(b) Impact on Dirty Pages, Synchronous Writes, and Disk
I/Os

Figure 4.6: Impact of Multiple Page Cleaners

[In Figure 4.6(a), all throughput values are normalized relative to the throughput
under the untuned configuration. In Figure 4.6(b), the number of disk I/Os is
normalized relative to the disk I/Os under the untuned configuration.]

67

increases with more page cleaners. After that point, however, putting more page

cleaners to work does not improve performance any further. More is not always

better. The selection of the appropriate number of page cleaners is clearly

important in tuning such a system.

Figure 4.6(b) shows the effect of the number of page cleaners on various buffer

cache characteristics: dirty pages, synchronous writes, disk reads, disk writes, and

total I/Os. When the number of page cleaners increases, the number of read

misses drops and the number of write misses increases. The number of disk I/Os

first decreases then increases. Increasing the number of page cleaners reduces both

the proportion of dirty pages and the proportion of synchronous writes. Further

increasing the number of page cleaners after the proportion of synchronous writes

is close to 0 brings no additional benefits: the number of read misses becomes

almost flat; the decrease of dirty pages slows down; the number of disk I/Os starts

to increase; and throughput drops. Figure 4.6(b) shows a criterion for tuning the

page cleaning activity: the number of page cleaners should be tuned to the

minimum number so that the synchronous writes are just eliminated. A self-tuning

algorithm for changing the page cleaning speed based on this principle is described

in the next section.

The number of page cleaners in the untuned configuration is 2. The system

achieves peak throughput when the number of page cleaners is 44. Figure 4.7

shows the peak throughput and the throughput under the untuned configuration.

Figure 4.8 shows the I/O activities and the proportion of dirty pages with 44 page

cleaners: there are very few synchronous writes left and the proportion of dirty

pages drops significantly.

Other simulation experiments were performed on systems with different

numbers of disks and different buffer cache sizes, and the effect of the number of

page cleaners on throughput is very similar to Figure 4.6(a), although the

locations of the spikes are different because the number of disks is different. The

number of page cleaners that achieve peak throughput for each system

configuration is shown in Table 4.2. This value is always an integral multiple of the

68

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Normalized Time

44 page cleaners
2 page cleaners

Figure 4.7: Effect of Number of Page Cleaners

[The run time on the x-axis and the throughput on the y-axis are normalized relative
to the run time and average throughput with 2 page cleaners. The line with 44 page
cleaners finishes earlier since it has higher throughput and finishes processing the
trace in shorter simulated time.]

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
ro

po
rt

io
n

Normalized Time

Proportion of dirty pages

Proportion of reads

Proportion of async writes

Proportion of sync writes

Figure 4.8: I/O Activities with 44 Page Cleaners

69

number of physical disks, but it is different under different configurations, which

increases the difficulty of tuning the number of page cleaners.

Table 4.2: Number of Page Cleaners That Achieves Peak Throughput

Number of Disks 7 8 11 15
Buffer Cache=380MB 49 48 44 45
Buffer Cache=440MB 49 56 44 45

4.4 A Self-tuning Algorithm for Page Cleaning

The number of page cleaners that maximizes system performance is different for

different workloads or different configurations. Tuning this parameter manually is

difficult and time-consuming. A new self-tuning page cleaning algorithm was

designed to overcome this problem [134], the objective of which is to maximize

throughput by dynamically changing the page cleaning speed.

In the page cleaning algorithm used in DB2 7.1.0 for Windows, each page

cleaner collects many pages and sends out one page at a time for cleaning. One

more page is sent out after the previous write is done.

The number of page cleaners is fixed in the self-tuning algorithm to keep the

algorithm simple. In order to change the page cleaning speed without changing the

number of page cleaners, each page cleaner keeps more than one outstanding

asynchronous write. A parameter N is introduced for this purpose – a real number

whose integral part bNc indicates the number of outstanding asynchronous writes

kept by each page cleaner. The page cleaner compares the number of outstanding

asynchronous writes with bNc whenever an asynchronous write sent by this page

cleaner finishes. If there are more than bNc asynchronous writes outstanding, the

page cleaner stops sending new writes to the disks; otherwise, more writes are sent

to the disks until the number of outstanding asynchronous writes sent by this

cleaner equals bNc. N thus has the same effect as the number of page cleaners in

the current algorithm: the bigger the N value, the faster the page cleaning speed.

70

The initial value of N is its minimum value 1. N is adjusted periodically in

order to dynamically tune the page cleaning speed to its desired value. An

adjustment interval is defined for this purpose. Some statistics of the buffer cache

and the disk activities are collected during each adjustment interval. N is adjusted

at the end of each adjustment interval based on the data collected.

An adjustment goal must be defined so that N can be adjusted to make the

system achieve the goal. The results presented in Section 4.3.2 show that the page

cleaning speed should be increased to the point where the number of synchronous

writes just reaches zero. It is easy to determine the number of synchronous writes

that occur in any adjustment interval, but it is hard to tell whether the page

cleaning speed is too high if the observed number of synchronous writes is zero. As

Figure 4.6(b) shows, the number of synchronous writes is zero when the number of

page cleaners is more than necessary. Therefore, adjusting the number of

synchronous writes to zero may cause unnoticed high cleaning speed which

impacts performance adversely. Instead, the self-tuning algorithm seeks to keep

the proportion of synchronous writes small (say, 5%).

The notation used in describing the adjustment operation performed in each

adjustment interval is summarized in Table 4.3.

Table 4.3: Notation for the Self-tuning Algorithm

Symbol Definition
N Number of outstanding asynchronous writes kept by each page cleaner
wo Proportion of synchronous writes observed in an adjustment interval
wd The desired proportion of synchronous writes
∆ The scale parameter

At the end of each adjustment interval, the following adjustment is performed:

N ← max(1, N + ∆ · (wo − wd)) (4.1)

During each adjustment interval, the number of synchronous writes and total

number of disk I/Os are observed. The ratio between them is the observed

71

proportion of synchronous writes, wo. At the end of every adjustment interval, wo

is compared with the desired proportion of synchronous writes wd. The greater the

difference between wo and wd, the more N needs to be changed. The change to N

should be proportional to |wo − wd|. The value of ∆ · (wo − wd) in Equation 4.1

shows the amount that N needs to be changed. The scale parameter ∆ is used to

amplify the difference between wo and wd. If wo equals wd, the current page

cleaning speed is the desired value and N can remain unchanged. If wo > wd, the

proportion of synchronous writes is more than desired and so N needs to be

increased to clean pages faster. If wo < wd, the proportion of synchronous writes is

less than desired, which indicates that the page cleaning speed is too high. Thus

∆ · (wo − wd) is negative and its absolute value indicates the amount that N

should be decreased. Since the minimum value of N is 1, the use of the max

function guarantees that N ≥ 1 after the adjustment. The use of a real number N

instead of an integer N is important for this algorithm to work. The minimum

possible value of wo is 0, and wd is close to 0, so it is easy to have ∆wd < 1, which

indicates that the maximum amount of adjustment to N is less than 1. If an

integer N is used and N is too large at some point, N would be impossible to

decrease and defeat the purpose of the self-tuning.

4.5 Simulation Results

The results of simulation experiments with the self-tuning algorithm are presented

in this section. The algorithm uses three parameters – Adjustment Interval, ∆, and

wd. The parameter values were arbitrarily choose and listed in Table 4.4. These

values were used to generate the simulation results presented in this section.

Experiments in the latter part of this section indicate that the performance of this

self-tuning algorithm is not sensitive to particular parameter values.

Figure 4.9 shows the throughput of the system under the untuned configuration

(2 page cleaners), the best manually tuned configuration (44 page cleaners), and

the self-tuning algorithm. The performance of the self-tuning algorithm is close to

72

Table 4.4: The Parameter Values

Parameter Value
Adjustment Interval 1 second

wd 5%
∆ 7.5

that of the best manually tuned system. The throughput of the best manually

tuned system is 19.2% higher than that of the untuned configuration, and the

throughput of the self-tuning algorithm is 16.3% higher. This result shows that the

self-tuning algorithm performs comparably to the best manually tuned system.

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Normalized Time

Manually tuned
Self-tuned

Untuned configuration

Figure 4.9: Throughput Comparison

[The throughput values are normalized relative to the average throughput of the
untuned configuration after the system enters the stable state.]

Figure 4.10 shows the system I/O activities when running the self-tuning

algorithm. The proportion of synchronous writes is kept very close to 5%, which is

the value of wd, indicating that the self-tuning algorithm can effectively control the

proportion of synchronous writes. Because of the higher page cleaning speed, the

proportion of dirty pages is lower than that of the untuned configuration.

Figure 4.11 shows how the parameter N is adjusted over a ten-minute period.

The value of N fluctuates in a small range (between 3 and 5), because the

characteristics of the TPC-C workload do not change.

This self-tuning algorithm was tested in several other system configurations

73

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
ro

po
rt

io
n

Normalized Time

Proportion of dirty pages

Proportion of reads

Proportion of async writes

Proportion of sync writes

Figure 4.10: I/O Activities with the Self-tuning Algorithm

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 100 200 300 400 500 600

P
ag

e
C

le
an

in
g

S
pe

ed

Time (second)

Figure 4.11: How Page Cleaning Speed is Adjusted

74

(different numbers of physical disks and different buffer cache sizes). The results

are summarized in Figure 4.12. These results confirm that the self-tuning

algorithm performs close to the best manually tuned algorithm.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

7 8 11 15
Number of Disks

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t

Untuned Manually Tuned Self-tuned

(a) Buffer Cache Size = 380MB

0

0.2

0.4

0.6

0.8

1

1.2

1.4

7 8 11 15
Number of Disks

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t

Untuned Manually Tuned Self-tuned

(b) Buffer Cache Size = 440MB

Figure 4.12: Comparison of Self-tuned and Manually Tuned Algorithms

[All throughput values are normalized relative to the throughput under the untuned
configuration.]

In order for this algorithm to be robust, the performance must not be unduly

sensitive to the selection of values for the three parameters (Adjustment Interval,

wd, and ∆). More simulation experiments were performed to determine the

sensitivity of the results to the values of these parameters. All throughput values

in the following figures are normalized relative to the average throughput under

75

the parameter values shown in Table 4.4.

Figure 4.13 shows the impact of the adjustment interval on performance. Even

though the adjustment interval is varied from 0.1 seconds to 120 seconds (three

orders of magnitude), the system throughput changes by less than 1%. Figure 4.14

shows the system throughput with very small adjustment interval. The system

throughput drops when the adjustment interval is close to the average disk access

time. These results show that as long as the adjustment interval is several times

longer than the average disk access time (10-20ms for typical hard drives), there is

no significant difference in performance. A small interval permits the system to

respond promptly to a workload change, while a large interval can reduce system

overhead. Since the workload of TPC-C does not change in the simulation

experiments performed, the adjustment interval is not important to throughput.

 0.98

 0.985

 0.99

 0.995

 1

 1.005

 1.01

 1.015

 1.02

 0.1 1 10 100 1000

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Adjustment Interval (seconds)

Figure 4.13: Impact of the Adjustment Interval

Figure 4.15 shows that when the desired synchronous write proportion wd

changes from 0.2% to 10%, the throughput also varies by less than 1%. This

indicates that as long as wd is a small value, performance does not change

significantly.

Figure 4.16 shows the impact of the scale parameter ∆ under two different

adjustment intervals. Again the performance difference is within 1%. The results

of these experiments indicate that the performance of the self-tuning algorithm is

76

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 10 20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Adjustment Interval (milliseconds)

Figure 4.14: Impact of Small Adjustment Interval

 0.98

 0.985

 0.99

 0.995

 1

 1.005

 1.01

 1.015

 1.02

 0 0.02 0.04 0.06 0.08 0.1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

The Desired Proportion of Synchronous Writes

Figure 4.15: The Effect of Parameter wd

77

not sensitive to the parameter values.

 0.98

 0.985

 0.99

 0.995

 1

 1.005

 1.01

 1.015

 1.02

 1 2 3 4 5 6 7 8 9 10

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

The Scale Parameter

Interval = 1 second
Interval = 10 seconds

Figure 4.16: Impact of the Scale Parameter ∆

4.6 Summary

Tuning resource management algorithms for best performance is often difficult in a

large scale system. The analysis of the I/O activities of the buffer cache of DB2

running the TPC-C benchmark shows that properly tuning the number of page

cleaners is important to performance. A new self-tuning algorithm was developed

to automate this tuning task. By monitoring the I/O activities of the buffer cache,

the self-tuning algorithm can achieve throughput comparable to that of the best

manually tuned algorithm. The performance of this algorithm is not sensitive to

the value of its parameters.

78

Chapter 5

Lock Contention in Buffer Cache Management

Most buffer cache replacement algorithms, such as LRU, LRFU [66], EELRU [112],

AFC [20], LIRS [59], ARC [76], and Eviction-Based Replacement [18] have a global

data structure to manage the buffer cache. This data structure is modified on every

cache access, and the accesses must be serialized by a lock to protect its integrity.

In systems with multiple processors and a large number of threads, lock contention

may become an issue when multiple threads access the global data structure, and

this could significantly impact system performance. Lock contention has been

observed in some real systems [10, 105], and no general solution has been proposed.

Some systems use a CLOCK-based algorithm to reduce contention [25], since this

kind of algorithm does not modify the global data structure on buffer cache hits.

However, a CLOCK-based algorithm typically has a lower hit ratio than other

replacement algorithms and may cause poor system performance. Some systems

use a variation of LRU without global data structures [10, 105], but these solutions

either have high overhead or cannot be applied to other replacement algorithms.

This chapter investigates the performance impact of lock contention in buffer

cache replacement algorithms and proposes a new management approach that

eliminates contention without sacrificing hit ratio or increasing the overhead of a

replacement algorithm. Section 5.1 discusses the motivation for this study.

Section 5.2 defines the context and definitions used. Section 5.3 describes the

methodology used to conduct this study. Section 5.4 analyzes the impact of

contention on performance and various design tradeoffs involved. Section 5.5

proposes a multi-region approach to managing the buffer cache. Section 5.6

evaluates the performance of the multi-region approach. Section 5.7 discusses the

79

design tradeoffs in large scale systems. Section 5.8 concludes this study.

5.1 Motivation

A large scale computer system may contain many disks, multiple processors, and

lots of memory. Depending on the configuration and the workload running on it,

different components of the system may become the performance bottleneck. This

study focuses on heavy system load situations because this is where system

performance really matters.

When a system performs simple operations on large amounts of data (e.g., a

file server or a storage server), disks are busy while processors have much idle time.

Disk access is the performance bottleneck in this kind of system, and such a

system is called an I/O-bound system. On the other hand, when a system

performs complex operations on a small amount of data (e.g., 3D image

rendering), the processors are fully utilized while the disks have much idle time.

Such a system is called a CPU-bound system.

When a system has multiple processors and many concurrent threads accessing

the global data structure of the buffer cache frequently, accesses to the global data

structure must be serialized by a lock. This lock may become a contention point

which threads frequently wait for. When lock contention happens, both processors

and disks have much idle time and system resources are wasted. Such a system is

called a contention-bound system.

A large scale system needs to support different kinds of workloads and may

experience different performance bottlenecks. The buffer cache management

algorithm in a large scale system should perform well for all these workloads, no

matter where the performance bottleneck is. Different performance bottlenecks

pose challenges on different aspects of a buffer cache replacement algorithm.

Tradeoffs of these aspects must be considered when designing a robust buffer cache

replacement algorithm.

In an I/O-bound system, disk access is crucial to system performance. Two

80

approaches are often used to improve performance:

• Increasing the buffer cache hit ratio. This can be done by using a buffer

cache management algorithm which has a higher hit ratio, or by using more

memory for the buffer cache. Typically a replacement algorithm with a

higher hit ratio has higher overhead, e.g., LRU-2 has a higher hit ratio and

higher overhead than LRU. If the system has CPU idle time, the higher

overhead of the new replacement algorithm can overlap with disk I/Os, and

thus has no impact on the throughput of the system.

• Increasing disk throughput. This can be done by using faster disks or more

disks.

In a CPU-bound system, the system can replace current processors with faster

processors or use more processors. A buffer cache replacement algorithm with

lower overhead (such as replacing LRU-2 with LRU, or replacing LRU with

CLOCK) is preferred, but these low-overhead algorithms often have lower hit

ratio, which causes more disk I/Os. If these extra disk I/Os cannot be overlapped

with CPU computation, the overall system performance can decrease.

In a contention-bound system, the CPU and disk resources are wasted since

many threads are waiting for the right to access the global data structure

managing the buffer cache. Simply adding more hardware cannot resolve the

bottleneck, while the replacement algorithm needs to be changed. Lock contention

can be avoided by using algorithms without global data structures, such as

Random, but this could severely decrease the hit ratio of the buffer cache, resulting

in poor system performance when the system is I/O bound. The solutions used in

real systems are situational (case-by-case) and ad hoc. SQL Server 7.0 uses a

CLOCK-based algorithm to reduce contention [25], but CLOCK-based algorithms

have lower hit ratio than many other replacement algorithms, and such algorithms

could decrease system performance when the system is I/O-bound. BerkeleyDB

uses a chained hash table to approximate LRU with low contention [10], but this

approach works only for LRU and has high overhead when a page is put back to

81

the hash table, which happens frequently. ADABAS [105] uses many LRU lists to

reduce contention. It accesses each list in a round-robin manner, and so a page can

be on different lists at different times. This approach cannot maintain page

histories for each list, which is a data structure commonly used in many

replacement algorithms, such as LRU-2 [84], 2Q [60], LIRS [59], ARC [76], etc.

To improve cost-effectiveness, many large-scale systems are configured as

balanced systems for the peak workload, where the utilization of processors and

disks is high. Using a contention-free algorithm with lower hit ratio may require

lots of additional memory and/or disks to keep the system balanced.

A buffer cache replacement algorithm with no contention, high hit ratio, and

low overhead is important for large scale systems to achieve good performance at

low cost.

5.2 Context and Definitions

A system with an in-memory buffer cache and an array of disks (RAID) is

considered in this study. Both the cache and the disks are managed in units of

fixed-size pages. Write back is assumed to get good performance.

Because the lock contention of the buffer cache happens only on systems with

multiple users, it is assumed that the cache receives many streams of logical

requests simultaneously and that each stream of requests is sent by one user –

there is no think time between consecutive requests sent by each user. The disks

have the ability to process multiple physical reads and writes concurrently, because

different disks can serve different requests at the same time and each disk can

queue several requests to achieve better disk I/O throughput1. To achieve the

maximum system throughput, it is assumed that different users do not work on the

same page at any time so that there are no data dependencies among users.

Although this assumption is largely true for data pages, it is not true for pages

1Only SCSI disk can queue multiple requests, while most IDE disks can only handle one request
at a time.

82

storing metadata. Special optimizations can often be made in real systems,

however, by using a much smaller lock granularity on the metadata pages.

Without this assumption, the workload would be intrinsically limited by the data

dependencies among concurrent users and would not be able to benefit from

improvement in buffer cache replacement algorithms. The system throughput,

which is measured as the total number of logical requests performed by all users

per unit time, is used to reflect the performance of the system.

It is assumed that a user performs some computation on a page between logical

requests. The behaviour of a “typical” user is illustrated in Figure 5.1. The time

to execute lines 2–4 is called the lock interval Tl, and the time to execute line 5 is

called the work interval Tw. The lock proportion, r, is defined as: r =
Tl

Tl + Tw

. If a

disk I/O or several disk I/Os are required to obtain this page from the buffer

cache, only the pages performing disk I/Os are locked and the global buffer cache

lock is not held during the disk I/O operations. Therefore, the disk I/O time is

considered as part of the work interval instead of the lock interval.

1. while (true) {
2. lock;
3. send a logical request to cache;
4. unlock;
5. work on this page;
6. }

Figure 5.1: Workload Model of a “Typical” User

5.3 Methodology

Analytical modeling, simulation and emulation were used in this study. The

performance of buffer cache management is first investigated in controlled

environments, using a simulator and a micro-benchmark. The proposed approach

is then analyzed by modeling and evaluated by simulation. Finally, the new

approach is tested in a more realistic environment, using a buffer cache emulator.

83

5.3.1 Buffer Cache Simulator

LRU, Random, CLOCK, LRU-2 [84], 2Q [60], LIRS [59], and ARC [76] were

implemented in the buffer cache simulator. These algorithms were selected because

they are either popular (e.g., LRU and CLOCK), simple (e.g., Random, LRU,

CLOCK, and 2Q), or recent research efforts (e.g., LIRS and ARC). LRU-2 was

selected because it is representative of replacement algorithms with O(log n)

overhead.

The implementations of these algorithms were first verified manually using

small artificial traces. The LIRS implementation was verified further by comparing

against Jiang’s LIRS simulator [59]. Two different implementations of each of

LRU, Random, CLOCK, and 2Q were developed independently and compared

against each other. LRU-2 was implemented using two different approaches:

LRU2-F (LRU-2 fast miss) uses a heap, which has O(logn) overhead on both page

hits and page misses; LRU2-S (LRU-2 slow miss) uses an array, which has O(1)

overhead on cache hits and O(n) overhead on cache misses because the whole

cache must be searched to find the victim page. These two LRU-2

implementations were verified against each other.

Some of these algorithms use tunable parameters. All experiments in this study

used the same set of parameter values, as suggested by the authors of the

algorithms. For simplicity, the same parameter values as those of 2Q were used in

LRU-2, because 2Q is a low-overhead approximation of LRU-2. In 2Q, the size of

the short term queue is 0.25c and the size of the history queue is 0.5c, where c is

the cache size; in LRU-2, the correlated reference period is 0.25c and the size of

the history list is 0.5c; in LIRS, the size of the free list is 0.01c and the maximum

size of the LRU stack is unlimited.

5.3.2 Contention Micro-benchmark

A contention micro-benchmark was used to emulate the contention caused by

cache replacement algorithms. This micro-benchmark was designed to make lock

84

contention the bottleneck so that lock contention can be studied by measuring

system throughput. In the micro-benchmark, a controller thread creates one

worker thread for each user to access the cache. Each worker thread performs the

computation shown in Figure 5.2. The mutex is used to emulate the contention

point when accessing the global cache data structure. Simulated overhead and

simulated work represent some computation operations (specifically, string

comparison and copying), the length of which can be controlled. The throughput

of the micro-benchmark is expressed as the total amount of simulated work

performed by all users in a unit time. The contention micro-benchmark can be

configured so that each user accesses a different mutex, in which case the

maximum throughput can be achieved since there is no contention.

1. while (true) {
2. lock(mutex);
3. simulated overhead;
4. unlock(mutex);
5. simulated work;
6. }

Figure 5.2: Thread Computation Model

The micro-benchmark was implemented on Windows 2000 using native threads.

The mutex implementation was ported from BerkeleyDB [11] with a change to

make it work well under high contention situations: the Windows Event object of

the mutex is created during initialization.

The test machine for the contention micro-benchmark was an IBM x255 server

in the DISCUS laboratory at the University of Saskatchewan, with 4 Xeon 1.5

GHz processors with HyperThreading (i.e., each physical processor has two logical

processors), 8GB of memory, and 12 IBM 36.4GB 15k hot swap disks connected to

two UltraSCSI 160 controllers.

85

5.3.3 Buffer Cache Emulator

The simulator can compute only read and write hit ratios, but not overhead. The

contention micro-benchmark can measure the impact of contention on throughput,

but not overhead or hit ratios. Therefore, an emulator was used to provide a more

realistic environment for studying all three aspects. The emulator manages a real

buffer cache in memory and performs real disk I/Os on cache misses. In the

emulator, a trace generator thread can either read a real trace file or generate a

synthetic trace on-the-fly. One or more emulated users (threads) keep reading

requests from the trace generator and sending them to the cache. Each thread

performs some simulated work on the acquired page (specifically, string

comparison and copying). Other than the simulated work, there is no overhead or

think time in between consecutive requests. The 32-bit Xeon processor where the

emulator runs allows a maximum of 4GB of virtual address, where 3GB can be

used by user applications in Windows 2000 Advanced Server. In many real

systems, a typical page size is 4KB or 8KB. In the emulator, a smaller page size of

1KB was used so that a buffer cache with many more pages could be emulated.

In the emulator, the cache data structure is protected using the lock

mechanism, while the integrity of page data is not preserved. This relaxation does

not compromise the performance of the buffer cache replacement algorithm and its

lock contention effect, but greatly simplifies the implementation of the cache

emulator.

5.3.4 Workloads

Traces of different types of workloads were used in this study, including NFS file

servers, email servers, OLTP, decision support, e-commerce, and web search

engines.

A TPC-C trace was collected when running the TPC-C benchmark on IBM

DB2 on Windows NT Server 4.0. As was mentioned previously, TPC-C is an

OLTP benchmark. Three TPC-W traces were collected when running the TPC-W

86

benchmark implementation [125] with the shopping, browsing, and ordering

configurations on IBM DB2 8.1 Open Beta 2 on Windows NT Server 4.0. Dynamic

caching was not used on the web server side. TPC-W is an e-commerce

benchmark. These two categories of traces are not filtered by the upper level cache.

Twenty-six TPC-H traces were collected when running a 300 GB TPC-H

benchmark on Informix Extended Parallel Server 8.30FC2 on HP-UX 11.00 64-bit,

including all tests required by the TPC-H benchmark [124]: 24 single-query power

tests (22 queries and 2 update queries) and 2 multi-query throughput tests.

TPC-H is a decision support benchmark. The six Openmail traces were one-hour

traces collected in 1999 from six EMC 3700 servers running HP’s OpenMail,

collected during the servers’ busy periods. The two Financial traces [113] were

disk I/O traces collected from OLTP applications running in two large financial

institutions. The three WebSearch traces [113] were disk I/O traces collected from

a popular web search engine. These four categories of traces were collected at the

I/O controller level and have been filtered by first level caches.

The NFSEmail trace [32] is an one-day trace collected in October 2001 from an

NFS server at Harvard University. This trace is dominated by email activities.

Since the size of directories is not known from the trace, the metadata operations

(15% of the requests) are discarded and only data read and write requests (85% of

the requests) are used. Requests in this trace have been filtered by the NFS client

caches, but not the NFS server cache.

A representative set of experimental results for these traces is presented. The

characteristics of the traces involved are listed in Table 5.1.

5.4 Analysis of Contention

5.4.1 Spin Lock and Contention

Several locking algorithms can be used to protect the access to global data. A lock

variable shared among threads is used to indicate whether the lock is already held.

87

In the busy wait algorithm, the thread requesting the lock keeps polling the lock

variable value in a tight loop. This algorithm is useful only when there are

multiple processors and the worst case wait time is much shorter than the context

switch overhead. In the typical wait algorithm provided by most operating

systems, the thread requesting the lock goes to sleep if the lock is not available,

and will be woken up by the operating system once the lock is available. At least

two context switches are involved in this procedure. This algorithm is useful when

the expected waiting time is much larger than the overhead of a context switch.

The spin lock algorithm is a combination of the above two algorithms. In spin

lock, the thread requesting the lock first polls the lock variable repeatedly for a

short period of time, then goes to sleep if the lock is still not available. If the lock

becomes available during the polling, the context switch overhead can be avoided.

Spin lock is useful when the average waiting time is much shorter than the

overhead of a context-switch and the worst case waiting time is much longer.

Typically spin lock is used to protect the global data structures of the buffer

cache replacement algorithm in multi-processor systems. When used in

Table 5.1: Trace Characteristics

Trace
Number of
Requests
(×106)

Number
of Reads
(×106)

Number
of Writes
(×106)

Number of
Unique
Pages
(×106)

Page
Size
(Bytes)

NFSEmail 28.69 21.05 7.64 1.18 8K
Financial1 36.11 5.56 30.55 7.69 512
Financial2 17.69 13.88 3.81 2.47 512
OpenMail 1 10.98 4.16 6.82 3.01 1K
OpenMail 2 8.66 2.47 6.19 2.69 1K
OpenMail 3 7.97 1.98 5.99 2.34 1K
OpenMail 6 19.91 11.86 8.05 5.37 1K
TPC-C 209.23 176.46 32.77 0.98 4K
TPC-W Shopping 60.08 60.06 0.02 0.14 4K
TPC-H Query 11 0.57 0.57 0.002 0.30 128K
WebSearch1 2.00 2.00 0.0002 0.80 8K
WebSearch2 8.63 8.63 0.001 1.11 8K
WebSearch3 8.21 8.20 0.004 1.11 8K

88

single-processor systems, the busy wait part of the spin lock is disabled. In a

system supporting many threads, if the lock is not available when a thread

attempts to acquire it, the thread spins a certain time and may go to sleep and be

woken up later. The overhead spent on the spin and the context switches is called

lock contention, which can significantly decrease system throughput.

5.4.2 Factors Impacting Contention

Some replacement algorithms, such as Random, do not need global data structures

to manage the pages in the cache. Some algorithms, such as CLOCK and LRU2-S,

need to update the global data structures only on cache misses. Since cache misses

are often much fewer than cache hits and much higher latency is allowed for misses

(because of the slow disk I/Os required), the lock contention in these algorithms

can be ignored. These algorithms are called contention-free algorithms. Most

other algorithms (such as LRU, LIRS, etc) must update their global data

structures on both hits and misses. The lock contention in these algorithms can

become a performance problem.

For algorithms that update their global data structures on both cache hits and

cache misses, lock contention can be affected by several factors, including the

number of processors, the number of threads, and the lock proportion. Since

higher lock contention causes lower throughput, throughput is used to indicate the

extent of lock contention. The contention micro-benchmark is used to examine the

impact of various factors on contention. Figure 5.3 compares the throughput with

and without lock contention. The figure shows that the lock proportion is the most

significant factor affecting contention, and the number of processors is also an

important factor. Contention happens in two situations: one is that multiple

running threads attempt to acquire the lock simultaneously, which happens more

frequently with more processors and larger lock proportion; another is that a

thread acquires the lock and is preempted by the operating system before releasing

the lock so that all other threads must perform the busy wait and sleep, which

89

causes more contention with more threads and larger lock proportion. In typical

time-sharing systems, threads are preempted every tens to hundreds of

milliseconds, and the time a thread holds the lock is normally hundreds of

thousands of times shorter. The chance that a thread is preempted while holding

the lock is small. Therefore, the number of threads affects contention only slightly.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600 700 800 900 1000

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of Threads

LockProp=1%, 4 Processors
LockProp=1%, 8 Processors

LockProp=10%, 4 Processors
LockProp=10%, 8 Processors

Figure 5.3: Impact of Contention on Throughput

[The throughput values are normalized to the maximum throughput obtained by
letting each user access a different mutex. Lower throughput indicates higher con-
tention.]

5.4.3 Tradeoffs Among Contention, Hit Ratio, and

Overhead

5.4.3.1 Hit Ratio

Using a simple contention-free replacement algorithm such as CLOCK can

eliminate contention while sacrificing the hit ratio. In I/O-bound systems, system

throughput is a monotonously increasing function of the buffer cache hit ratio.

When the buffer cache is large relative to the data size, the hit ratio differences

among different cache replacement algorithms become very small, as shown in

Figure 5.4. It is tempting to conclude from this figure that the selection of

replacement algorithms is not important when the cache is large. It might also be

90

concluded that CLOCK is a good replacement algorithm, since it does not cause

contention on cache hit while the difference of its hit ratio compared to other

algorithms is small.

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 0.1 0.2 0.3 0.4 0.5

H
it

R
at

io

Cache Size / Data Size

LIRS
LRU-2

2Q
ARC
LRU

Clock
Random

Figure 5.4: Hit Ratio of Replacement Algorithms with the TPC-C Trace

A small difference in hit ratio, however, does not necessarily result in a small

difference in system throughput [66, 141]. In an I/O-bound system, CPU

computation time is overlapped by disk I/O time, and the system throughput is

the number of logical I/Os finished per unit time. The execution time is

proportional to the disk I/O time. Therefore, the system throughput can be

defined as
1

Tpg ·R
,

where Tpg is the disk I/O time of one page, and R is the buffer cache miss ratio.
1

R
is called cache speedup, which represents the performance improvement the system

can achieve using the buffer cache as compared to directly accessing the disks

without using buffer cache. The more effective the algorithm, the higher the cache

speedup. The minimum possible cache speedup is 1, which happens when the

overall miss ratio is 1 (i.e., no cache). Cache speedup goes towards infinity and

loses its meaning when the buffer is large and the miss ratio is very close to 0.

This is not a problem since the system is not likely to be I/O-bound when the miss

ratio is very low, where factors other than cache speedup, such as CPU

91

computation or lock contention, determine the system throughput. Emulation

experiments were conducted to confirm that the cache speedup computed from

measured miss ratio varies in proportion to the measured throughput, as shown in

Table 5.2. The system is I/O bound in these emulation experiments. Therefore,

the amount of emulated work per page access only affects the CPU utilization

other than the throughput of the system.

Table 5.2: Comparison of Cache Speedup and Measured Throughput

[The results were measured in the emulator. The numbers in the last two columns
are normalized relative to Random. The trace is TPC-C with 60 users, the number
of processors is 8, the data are on a 10-disk RAID-10 array, the ratio of cache size
to data size is 5%.]

Algorithm
Cache
Speedup

Measured Throughput
(requests / second)

Normalized
Cache Speedup

Normalized
Throughput

Random 10.57 2990.05 1 1
CLOCK 12.89 3627.68 1.22 1.21
LRU 13.71 3858.84 1.30 1.29
LRU2-F 13.72 3929.32 1.30 1.31
2Q 14.85 4150.44 1.41 1.39
LIRS 14.02 3957.59 1.33 1.32
ARC 13.48 3823.02 1.28 1.28

Figure 5.5 shows the cache speedup of the different replacement algorithms on

the same trace as Figure 5.4. The results were obtained from the buffer cache

simulator. The figure shows that the absolute differences in throughput among

different replacement algorithms become larger when larger caches are used, which

is contrary to the trend shown in Figure 5.4. Simulation results on other traces

had similar trends and are not shown here.

Figure 5.6 shows the cache speedups of a number of replacement algorithms as

a function of cache size under various traces. The y-axis is the cache speedup

normalized to that of the Random algorithm under the same cache size. As shown

in the figure, when the cache size is less than 30% of the data size, the normalized

cache speedups show larger differences on larger caches, while the practical cache

size in most large systems is less than 25% of data size. Since the WebSearch1 and

Openmail6 traces are already filtered by the first level cache, the performance of

92

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 0.1 0.2 0.3 0.4 0.5

C
ac

he
 S

pe
ed

up

Cache Size / Data Size

LIRS
LRU-2

2Q
ARC
LRU

Clock
Random

Figure 5.5: Cache Speedup of Replacement Algorithms with the TPC-C Trace

LRU and CLOCK are worse than Random at small caches because of poor

temporal locality [137]. Based on the points where the cache speedup quickly

increases, the size of the first level cache is about 25% of the data size for the

WebSearch1 trace (Figure 5.6(b)) and 20% for the Openmail6 trace

(Figure 5.6(c)). The results shown in Figure 5.6 imply that the selection of

replacement algorithms has a larger impact on system throughput under large

cache sizes than under small cache sizes, which runs contrary to the common belief

that replacement algorithms perform similarly under large cache sizes. The figures

show that CLOCK performs worse than all algorithms except Random, and so

using CLOCK to reduce lock contention may significantly decrease the system

throughput when the system is I/O-bound.

5.4.3.2 Overhead

Every replacement algorithm suffers some CPU overhead when managing buffer

cache. The overhead to handle a buffer cache hit is called the hit overhead, and the

overhead to handle a buffer cache miss is called the miss overhead. Since the miss

overhead is insignificant by comparison with the time consumed by the one or

more disk I/Os following a miss, the algorithm overhead means simply hit

overhead in the rest of this chapter unless otherwise stated.

93

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 0.1 0.2 0.3 0.4 0.5

N
or

m
al

iz
ed

 C
ac

he
 S

pe
ed

up

Cache Size / Data Size

LIRS
LRU-2

2Q
ARC
LRU

Clock
Random

(a) NFSEmail

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 0.1 0.2 0.3 0.4 0.5

N
or

m
al

iz
ed

 C
ac

he
 S

pe
ed

up

Cache Size / Data Size

LIRS
LRU-2

2Q
ARC
LRU

Clock
Random

(b) WebSearch1

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 0.1 0.2 0.3 0.4 0.5

N
or

m
al

iz
ed

 C
ac

he
 S

pe
ed

up

Cache Size / Data Size

LIRS
LRU-2

2Q
ARC
LRU

Clock
Random

(c) Openmail6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 0.1 0.2 0.3 0.4 0.5

N
or

m
al

iz
ed

 C
ac

he
 S

pe
ed

up

Cache Size / Data Size

LIRS
LRU-2

2Q
ARC
LRU

Clock
Random

v
(d) TPC-C

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 0.1 0.2 0.3 0.4 0.5

N
or

m
al

iz
ed

 C
ac

he
 S

pe
ed

up

Cache Size / Data Size

LIRS
LRU-2

2Q
ARC
LRU

Clock
Random

(e) TPC-H Power Query 11

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.1 0.2 0.3 0.4 0.5

N
or

m
al

iz
ed

 C
ac

he
 S

pe
ed

up

Cache Size / Data Size

LIRS
LRU-2

2Q
ARC
LRU

Clock
Random

(f) TPC-W Shopping

Figure 5.6: Normalized Cache Speedups

[In Figure 5.6(e), LRU-2, ARC, LRU, and CLOCK overlap. Figure 5.6(f) uses
a different scale on y-axis because of its much larger range of normalized cache
speedups.]

94

Most existing replacement algorithms (such as CLOCK, LRU, 2Q [60],

LIRS [59] and ARC [76]) have constant overhead. Some algorithms (such as

LRU-K [84], FBR [93] and LRFU [66]) have O(log n) overhead, where n is the size

of the buffer cache. The common belief is that O(logn) overhead is too large to be

useful. Although some designers think O(1) overhead is small enough to be

negligible, others struggle to reduce the overhead further, such as by using

CLOCK to approximate LRU.

In a multi-user workload, overhead can affect the system throughput only when

the system is CPU-bound. File servers, storage servers and web servers typically

copy the pages to the network after they are read into the buffer cache. In these

systems, disks are often the bottleneck, and the overhead of cache replacement

algorithms does not usually affect system throughput. Database workloads vary.

OLTP workloads are often I/O-bound and decision support workloads are often

CPU-bound. Real database workloads are typically a mix of both, such as many

production workloads [51, 52] and e-commerce workloads [33]. Since “it is

extremely rare to have access to real production workloads” [52], OLTP and

decision support benchmarks were used to represent the real workloads. The

analysis of overhead for these benchmarks can be used to speculate on the

algorithm overhead in real database workloads.

In CPU-bound systems, the impact of algorithm overhead on overall

performance is affected mainly by lock proportion, which is the proportion of the

time that the system spends on “overhead” operations2.

The pgbench program of PostgreSQL was used as the OLTP workload.

Pgbench is an implementation of the TPC-B benchmark [124]. Although TPC-B is

simpler than TPC-C, previous studies [9] found that its memory behaviour is

2In order to get realistic lock proportion values in database systems, PostgreSQL [90] version
7.3.4 compiled on cygwin [83] was instrumented to record the lock proportion on the test machine
described in Section 5.3.2 (page 84). The instrumentation of PostgreSQL is non-intrusive since
there were no observed performance differences. To remove the effect of disk I/O, the database
size was set to be much smaller than system memory, and all disk data required by the testing
benchmarks were pre-loaded into the buffer cache of the operating system by running the query
more than once. PostgreSQL manages its buffer cache by LRU [91].

95

similar to that of TPC-C. The measured average lock proportion of pgbench is 7%.

The DBT3 benchmark developed by the Open Source Development Lab [26] is

a simplified implementation of the TPC-H benchmark, which is a popular decision

support benchmark. Similar to TPC-H, DBT3 has 22 queries. Figure 5.7 shows

the measured average lock proportion of these queries. The lock proportions vary

between 0.5%-8.5%, but most are around 2%. These results show that decision

support workloads have smaller lock proportion than OLTP workloads. This is

because OLTP applications often perform relatively simple work on each page, e.g.,

search in an index page or update one record of a page, while a decision support

application often needs to perform more complex computations such as scan, sort,

join, etc. To be conservative, larger lock proportion is assumed. 1% and 10% are

used as the lower and upper bounds of lock proportion in subsequent experiments.

The lock proportion of systems such as storage servers and I/O controllers may be

higher than 10%, since they simply copy the data from the buffer cache to the

network. These systems are likely to be I/O-bound, however, and so the contention

and overhead of replacement algorithms do not affect the system throughput.

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Query Number

Lo
ck

 P
ro

po
rt

io
n

(%
)

Figure 5.7: Lock Proportion in a Decision Support Workload

[The workload is the DBT3 Benchmark. The DBMS is PostgreSQL 7.3.4 running
cygwin.]

To demonstrate the impact of overhead on system throughput, the cache

emulator was configured to be CPU-bound. Figure 5.8 shows the measured

96

throughput of different replacement algorithms under different cache sizes and lock

proportions. All disk I/Os are bypassed, because otherwise the system is

I/O-bound and no performance difference can be observed. With a small lock

proportion (1%), all O(1) algorithms and the O(log n) algorithm (LRU2-F)

perform similarly. With a large lock proportion (10%), the throughput of LIRS is

about 12% lower than that of other O(1) algorithms, and the throughput of

LRU2-F is 25% lower than that of the best performing O(1) algorithms. One may

be tempted to conclude that the overhead of replacement algorithms is crucial to

performance, but the overhead of a replacement algorithm matters only when the

system is CPU-bound, which typically happens when the lock proportion is small.

Systems with large lock proportion, such as file servers, storage servers and OLTP

workloads, are often I/O-bound, in which case the overhead of replacement

algorithms does not impact the overall throughput. These results show that a

higher replacement algorithm overhead (even as high as O(log n)) has negligible

impact on system throughput. Therefore, it is worthwhile to design new

approaches for buffer cache management to improve the hit ratio and/or reduce

lock contention even if slightly higher overhead is introduced.

A first glance at the throughput reduction of LRU2-F under a 10% lock

proportion would attribute this reduction to the O(log n) time complexity of the

algorithm. However, its throughput under large caches is similar to that under

small cache, implying that this decrease is not caused by the time complexity. This

degradation is likely to be caused mainly by more processor cache misses for

O(log n) algorithms. Similar results were reported by Megiddo and Modha [76],

where the overheads of O(log n) algorithms (LRU-2 and LRFU) do not increase

with cache sizes (but are larger than O(1) algorithms).

5.5 The Multi-region Cache Approach

A new approach was developed for cache management, called multi-region cache

(or Mr. cache for short). Multi-region cache can eliminate contention with little

97

0

1000

2000

3000

4000

5000

6000

7000

RAND LRU LRU2-F LRU2-S ARC LIRS CLOCK 2Q
Cache Replacement Algorithm

T
hr

ou
gh

pu
t (

R
eq

ue
st

s/
se

co
nd

)

Cache=400,000 pages
Cache=1,200,000 pages
Cache=2,000,000 pages

769

321

208

(a) Lock Proportion for LRU = 1%

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

RAND LRU LRU2-F LRU2-S ARC LIRS CLOCK 2Q

Cache Replacement Algorithm

T
hr

ou
gh

pu
t (

R
eq

ue
st

s/
se

co
nd

)

Cache=400,000 pages
Cache=1,200,000 pages
Cache=2,000,000 pages

1035

351

214

(b) Lock Proportion for LRU = 10%

Figure 5.8: Impact of Replacement Algorithm Overhead on Throughput

[The two figures have different scales on the y-axis. All throughput values are
measured from the cache emulator. The random synthetic trace is used. The cache
miss ratio is 5%. All disk I/O calls are bypassed to make the workload CPU-bound.
The number of users is 1. If the page size is 8KB, the three cache sizes are equivalent
to 3.2GB, 9.6GB, and 16GB.]

overhead without compromising the hit ratio. The basic idea of multi-region cache

is to remove the global data structure of the replacement algorithm by splitting

the cache into n fixed-size regions, numbered 1, 2, . . ., n. Each region is managed

by an instance of the replacement algorithm. Mr.Alg(RgNum, RgSize) is used to

denote a multi-region cache using replacement algorithm Alg with RgNum regions

98

of RgSize pages each3. The buffer cache without using multi-region is the same as

the multi-region cache with one region, and is called the one-region cache for

convenience.

In a multi-region cache, every page is hashed uniquely into a region. Typically

a replacement algorithm employs a hash table to maintain a directory of all pages

in the buffer cache. To distinguish between these two hash functions, the one used

by the multi-region cache is called the region-hash-function, and the one used to

look for pages in the buffer cache is called the page-hash-function. Of course, the

same hash function can be used for both. A hash function designed by Jenkins [57]

is used as the region-hash-function in these experiments unless otherwise stated.

One way to implement the multi-region approach is to manage each region

using an unchanged instance of the replacement algorithm. On each buffer cache

access, the index of the region that contains this page is calculated using the

region-hash-function. This page is then handed over to the instance of the

replacement algorithm managing that region. This approach is simple to

implement since it requires no change to the existing replacement algorithm. The

region-hash-function must be evaluated on every buffer cache access (hits and

misses), however, which increases the overhead of the algorithm. Moreover,

because consecutive pages are scattered into different regions by the

region-hash-function, the detection of prefetch within a region is not possible.

The overhead of evaluating the region-hash-function can be minimized by using

one global hash table instead of a hash table for every region. On a cache miss, the

region index of the page is computed and stored in the page header. On a cache

hit, the page is located in the global hash table and the region index is retrieved

from the page header. A reference to this page is then passed to the instance of

the replacement algorithm managing this region. Many replacement algorithms

use history buffers to record the pages that have been evicted recently. The

headers of these pages are also maintained in the global hash table, with an extra

3For simplicity, Alg or RgSize is sometimes omitted when presenting results. RgNum is always
included.

99

flag indicating that the page data are not in the buffer cache. The

region-hash-function is evaluated only on each cache miss. This introduces a

negligible additional delay, since a cache miss must perform one or more slow disk

accesses anyway. Since only a hash bucket needs to be locked when accessing a

page of the hash table, and each hash bucket has less than one page on average,

the global hash table does not cause lock contention.

Because contiguous pages are scattered into different regions by the

region-hash-function, the detection and execution of prefetch must be conducted

on the whole buffer cache. The page data with contiguous disk addresses should be

placed in contiguous memory space, while their page headers are managed by

different instances of replacement algorithms from different regions. This

arrangement enables efficient DMA (Direct Memory Access) transfers when

prefetching large amount of data. Some algorithms, such as SEQ [41], detect the

patterns of page addresses to make replacement decisions. These algorithms

cannot be directly used in the multi-region cache, since pages with consecutive

physical addresses are often hashed into different regions. However, alternative

algorithms can be used that do not rely on physical addresses to detect such

patterns. For example, EELRU [112] has properties similar to SEQ without

detecting page addresses.

Partitioning buffer cache into regions is an old idea, but one that was proposed

for different objectives. Multi-region cache is analogous to the set associative cache

used in memory hierarchies [47]. A set associative cache is a fast cache between

processor and memory used to reduce the memory access latency by caching

popular memory blocks in a small fast cache. In an m-way set associative cache,

the cache is partitioned into many sets, each of which can hold m different memory

blocks. Each memory block is hashed into a set based on the lower bits of the

block address. If m equals the cache size, the cache is called a fully associative

cache. The design goal of set associative cache is to reduce the cost of the

hardware to search a certain block in the cache. A multi-region cache where each

region contains m pages is similar to a m-way set associative cache, and the

100

traditional one-region approach is similar to a fully associative cache.

Buffer cache partitioning is also used for other purposes: some approaches aim

at achieving hit ratios higher than a global cache [116, 121, 123]; some approaches

employ partitioning as a way of admission control [34]; some approaches seek to

perform goal-oriented tuning [14]. All these partitioning approaches strategically

place objects into partitions and adjust the sizes of partitions dynamically. The

objective of multi-region cache is to eliminate contention without paying a price

for the hit ratio. Therefore, the multi-region cache has fixed-size regions and does

not require any tuning.

5.6 Evaluation of Multi-region Cache

5.6.1 Contention

The goal of multi-region cache is to eliminate contention, without sacrificing

performance. Lock contention happens when two or more threads access pages in

the same region at the same time. Therefore, the fewer pages a region has, the

lower the probability of lock contention. When the region is small (i.e., the number

of regions is large), the chance of lock contention becomes small.

The contention micro-benchmark was used to study the effectiveness of

multi-region cache in reducing contention. Multiple mutexes are used to protect

the data structure for the replacement algorithm of each region. Each user

randomly selects a mutex to wait on, which simulates the scenario that a page in

the corresponding region is required. Contention happens only when multiple users

request the same mutex at the same time, the probability of which is low when the

number of mutexes is large. Figure 5.9 shows the system throughput normalized to

the maximum throughput, which is achieved by configuring the micro-benchmark

to have no contention. Since contention is the major factor that could decrease

throughput in the micro-benchmark, higher throughput indicates lower contention.

In the figure, the normalized throughput quickly increases to a point close to the

101

maximum throughput, implying that the contention is almost eliminated. This

figure demonstrates that contention can be effectively eliminated by using a

moderate number of regions.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 50 100 150 200 250

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of Mutexes

LP=1%, 100 threads, 8 Processors
LP=1%, 1000 threads, 8 Processors
LP=10%, 100 threads, 8 Processors

LP=10%, 1000 threads, 8 Processors

Figure 5.9: Effect of Number of Mutexes on Reducing Contention

The above experiments assume that each region has the same probability to be

accessed. In real workloads, the page access probability has a skewed

distribution [52]. When each region has a random set of pages, the distribution of

access probability for each region has much less skewness than that of the page

access probability, since hot pages are likely to be scattered in different regions.

The results shown in Figure 5.10 confirm that multi-region cache can effectively

eliminate contention in real workloads with skewed accesses. The results in the

figure were obtained from the buffer cache emulator. Disk I/O calls were bypassed

to make the system contention-bound. Two processors were used in this

experiment, because the trace-reading thread cannot keep up with the worker

threads when more processors are used. The throughput of Mr.LRU(524, 40000) is

21% higher than that of LRU. The average time to finish a cache hit in

Mr.LRU(524) is 5.0µs4, whereas it is 82.1µs in LRU because of contention. The

CLOCK algorithm has contention only on cache misses. Therefore, its throughput

is higher than that of LRU, and Mr.CLOCK performs similarly to CLOCK.

41µs = 10−6 second

102

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

LRU CLOCK
Cache Replacement Algorithm

T
hr

ou
gh

pu
t (

R
eq

ue
st

s/
se

co
nd

)

Original
Mr.(524,40000)
Mr.(52430,400)

Figure 5.10: Effect of Number of Regions

[The trace is OpenMail6. The page size is 1KB. All I/O calls are bypassed.
The cache size is 2GB (The first level cache of this trace is 1GB). The number of
processors is 2 and the number of users is 30.]

5.6.2 Miss Ratio

Miss ratio is a crucial metric when evaluating the performance of multi-region

cache. The overall miss ratio of a multi-region cache can be affected by many

factors: the number of pages mapped into a region, the access frequency of a

region (i.e., the sum of access frequencies of all pages in this region), the

replacement algorithm used and the miss ratio of the region. A detailed

mathematical model is difficult to develop, however, because these factors,

especially the miss ratio of each region, are hard to model.

Since the multi-region cache with region size m is similar to an m-way set

associative cache, previous studies on set associative cache can be used as an

indication of how multi-region cache performs. Normally, m-way set associative

cache has higher miss ratio than fully associative cache. This difference decreases

as m increases. The miss ratio of an 8-way set associative cache is not observably

different from that of a fully associative cache [47]. Because the buffer cache is

large, each region of a multi-region cache typically is much larger than 8 pages.

Analogous to the set associative cache, it can be expected that multi-region cache

has almost the same miss ratio as that of the one-region cache.

103

Several analyses of the miss ratio of the multi-region cache with simplified

assumptions are first presented to provide insight into the miss ratio of the

multi-region cache. Simulation studies on different traces are then presented.

5.6.2.1 Modeling Results

The notation used in this section is summarized in Table 5.3.

Table 5.3: Notation for the Analysis of the Multi-region Cache

Symbol Definition
Di Number of distinct pages hashed into region i as a random variable
Li Proportion of logical references to pages in region i as a random variable
Mi The miss ratio of region i as a random variable
M The miss ratio of the whole multi-region cache as a random variable
D Data size in pages (the total number of distinct pages accessed)
n Number of regions
R Size of a region in pages
C Total cache size in pages C = nR

miss(r) Miss ratio function of the buffer cache given the proportion of the cache
size to the data size

In the one-region cache, the miss ratio of the buffer cache is miss(C/D). In

multi-region cache, the set of pages in any region is a random sample of all pages.

The probability that this sample represents the behaviour of all pages is high as

long as the region size is not too small. Therefore, it is assumed that each region

has the same miss ratio function as the whole buffer cache. Since approximately
D

n
data pages are hashed into each region, the proportion of the cache size to the data

size in each region is close to
(

C
n

)

(

D
n

) =
C

D
,

indicating that the miss ratio of each region, and the overall miss ratio of the

multi-region cache, is the same as that of the one-region cache.

In multi-region cache, the regions need not have exactly the same number of

pages. The probability that a page is put into a region is 1/n. Thus the number of

104

pages in region i is a binomial random variable Di, whose probability function is:

PDi
(k) =

(

n

k

) (

1

n

)k (

n− 1

n

)n−k

The distribution of the proportion of page references in each region Li depends

on the distribution of page references to all pages, which is a skewed

distribution [52]. A distribution commonly used to represent the skewness of data

accesses is defined by Knuth [65, p. 400]:

pi =
iθ − (i− 1)θ

N θ
,

where i = 1 . . .N and 0 < θ ≤ 1.

When θ = 1, this is the uniform distribution. When

θ =
log 0.80

log 0.20
= 0.1386,

this is the popular “80-20” distribution where 80% of the references go to 20% of

the pages. This distribution is called Knuth(a, b), where

θ =
log 0.01a

log 0.01b
.

A region with more distinct pages hashed into it has more average logical

references to this region:

E[Li] =
Di

D
,

where E[Li] is the mean of Li. Therefore, Di = D · E[Li], and the correlation

between Li and Di is:

E[Li ·D · E[Li]]− E[Li] · E[D · E[Li]] = 0.

Preliminary experiments on many traces and different configurations confirmed

that the correlation between Li and Di is small (< 10−5). The following analysis

105

assumes that Li and Di have no correlation.

The miss ratio of the overall buffer cache M is:

M =

n
∑

i=1

LiMi,

where Mi is the miss ratio of region i: Mi = miss(
C

nDi

).

L1, L2, . . ., and Ln have negative correlation, since when one region gets more

logical references, other regions tend to get fewer logical references. Preliminary

experiments indicate that the correlation between any two of them is very close to

zero as long as the number of regions is not too small. Therefore, the correlation

among them is not considered. The small negative correlation among D1, D2, . . .,

Dn are ignored for the same reason. Since the Li (i = 1, 2, . . . , n) are considered

independent, L is used to represent all of them. Similarly, R is used to represent

Ri (i = 1, 2, . . . , n). The overall miss ratio M can be written as:

M =

n
∑

i=1

L ·miss(
C

nDi

). (5.1)

The study of production database workloads indicates that the miss ratio

function can be well fitted by [52]: miss(r) = 0.102(100r + 0.208)−0.511, which is

used as the miss ratio function when solving expression 5.1. The distribution of

the overall miss ratio M with different skewness is simulated numerically and

shown in Figure 5.11; its mean and standard deviation are listed in Table 5.4. The

figure and table show that the distribution of miss ratio is affected mainly by the

skewness of page accesses. With a more skewed distribution, the miss ratio has a

larger standard deviation. The number of regions has no obvious effect on the

average miss ratio. In all cases, the average miss ratio is within 1% of that of the

one-region cache.

106

 0

 0.2

 0.4

 0.6

 0.8

 1

 8 9 10 11 12 13 14

C
D

F

Miss Ratio (%)

10 regions
100 regions

1000 regions

(a) Knuth(40,20)

 0

 0.2

 0.4

 0.6

 0.8

 1

 8 9 10 11 12 13 14

C
D

F

Miss Ratio (%)

10 regions
100 regions

1000 regions

(b) Knuth(60,20)

 0

 0.2

 0.4

 0.6

 0.8

 1

 8 9 10 11 12 13 14

C
D

F

Miss Ratio (%)

10 regions
100 regions

1000 regions

(c) Knuth(80,20)

Figure 5.11: Distribution of Miss Ratio

[The vertical line is the miss ratio of the one-region cache.]

107

Table 5.4: Miss Ratio of Multi-region Cache

Skewness
Number of
Regions

Miss Ratio

Mean
Standard
Deviation

- 1 9.261% 0
10 9.259% 0.000494

Knuth(40, 20) 100 9.260% 0.000217
1000 9.263% 0.000171
10 9.260% 0.00132

Knuth(60, 20) 100 9.258% 0.00131
1000 9.268% 0.00136
10 9.263% 0.0131

Knuth(80, 20) 100 9.250% 0.0137
1000 9.373% 0.0145

5.6.2.2 Simulation Results

Figures 5.12 and 5.13 show the cache speedups of different replacement algorithms

as a function of region size under different cache sizes and different workloads.

These results were obtained from simulation. Only results from the LRU algorithm

are presented, since all other algorithms have the same trend as LRU. On the

rightmost data point of each line, the region size is 1. The figure shows that the

system throughput is stable across a wide range of region sizes for a wide range of

workloads. In all traces except the TPC-W trace, the cache speedup only starts to

drop when each region has less than about 100 pages, at which point the number

of regions is several hundreds of thousands. Based on Figure 5.9 (page 102), the

number of regions required to eliminate contention is far less than the points where

the cache speedup starts to drop. The cache speedup for the TPC-W trace drops

earlier when the buffer cache is large. This trace has good temporal locality [68],

and large TPC-W configurations typically use a buffer size which is less than 5% of

the data size [126]. Therefore, the drop of cache speedup in Figure 5.13(f) is not

likely to happen in practice.

108

 0

 1

 2

 3

 4

 5

 6

 7

 1 10 100 1000 1e4 1e5 1e6

C
ac

he
 S

pe
ed

up

Number of Regions

0.6
0.5
0.4
0.3
0.2
0.1

(a) Financial1

 0

 1

 2

 3

 4

 5

 6

 7

 1 10 100 1000 1e4 1e5 1e6

C
ac

he
 S

pe
ed

up

Number of Regions

0.6
0.5
0.4
0.3
0.2
0.1

(b) Financial2

 0

 1

 2

 3

 4

 5

 6

 7

 1 10 100 1000 1e4 1e5 1e6

C
ac

he
 S

pe
ed

up

Number of Regions

0.6
0.5
0.4
0.3
0.2
0.1

(c) WebSearch1

 0

 1

 2

 3

 4

 5

 6

 7

 1 10 100 1000 1e4 1e5 1e6

C
ac

he
 S

pe
ed

up

Number of Regions

0.6
0.5
0.4
0.3
0.2
0.1

(d) WebSearch2

 0

 1

 2

 3

 4

 5

 6

 7

 1 10 100 1000 1e4 1e5 1e6

C
ac

he
 S

pe
ed

up

Number of Regions

0.6
0.5
0.4
0.3
0.2
0.1

(e) WebSearch3

 0

 1

 2

 3

 4

 5

 6

 7

 1 10 100 1000 1e4 1e5 1e6

C
ac

he
 S

pe
ed

up

Number of Regions

0.6
0.5
0.4
0.3
0.2
0.1

(f) NFSEmail

Figure 5.12: Effect of Number of Regions

[Each line represents a cache size ranging between 0.1-0.6 of the data size. LRU is
the replacement policy. On the rightmost point of each plotted line, the size of each
region is one page.]

109

 0

 1

 2

 3

 4

 5

 6

 7

 1 10 100 1000 1e4 1e5 1e6

C
ac

he
 S

pe
ed

up

Number of Regions

0.6
0.5
0.4
0.3
0.2
0.1

(a) Openmail1

 0

 1

 2

 3

 4

 5

 6

 7

 1 10 100 1000 1e4 1e5 1e6

C
ac

he
 S

pe
ed

up

Number of Regions

0.6
0.5
0.4
0.3
0.2
0.1

(b) Openmail2

 0

 1

 2

 3

 4

 5

 6

 7

 1 10 100 1000 1e4 1e5 1e6

C
ac

he
 S

pe
ed

up

Number of Regions

0.6
0.5
0.4
0.3
0.2
0.1

(c) Openmail3

 0

 1

 2

 3

 4

 5

 6

 7

 1 10 100 1000 1e4 1e5 1e6

C
ac

he
 S

pe
ed

up

Number of Regions

0.6
0.5
0.4
0.3
0.2
0.1

(d) Openmail6

 0

 20

 40

 60

 80

 100

 120

 1 10 100 1000 1e4 1e5 1e6

C
ac

he
 S

pe
ed

up

Number of Regions

0.6
0.5
0.4
0.3
0.2
0.1

(e) TPC-C

 0

 5

 10

 15

 20

 25

 1 10 100 1000 1e4 1e5 1e6

C
ac

he
 S

pe
ed

up

Number of Regions

0.6
0.5
0.4
0.3
0.2
0.1

(f) TPC-W Shopping

Figure 5.13: Effect of Number of Regions – More Workloads

[Each line represents a cache size ranging between 0.1-0.6 of the data size. LRU is
the replacement policy. On the rightmost point of each plotted line, the size of each
region is one page. Figure 5.13(e) and 5.13(f) have different scales on the y-axis
than all other figures.]

110

5.6.3 Overhead

The overhead that multi-region cache adds to a one-region cache comes from the

need to evaluate the region-hash-function on every cache miss. This cost should be

small because of the low frequency and long latency of cache misses. The overhead

of multi-region cache was measured in the cache emulator to confirm this.

The cache emulator is configured to bypass all disk I/O calls to measure the

overhead of multi-region cache. This omission makes the results conservative, since

the overhead of evaluating region-hash-functions can otherwise be dominated by

disk I/Os in cache misses. The random synthetic trace was used since the type of

the trace does not affect the overhead of the replacement policy. Three

replacement algorithms with different time complexities were selected. The lock

proportion was set to the upper bound of 10% to show the worst case of overhead.

Figure 5.14 shows the results obtained.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

LRU LRU2-F LRU2-S

Cache Replacement Algorithm

T
hr

ou
gh

pu
t (

R
eq

ue
st

s/
se

co
nd

)

Original
Mr.(1,2000000)
Mr.(20000,100)

214

127735

212

Figure 5.14: Overhead of Multi-region Cache

[All throughput values were measured from the cache emulator, with the random
synthetic trace. The cache miss ratio is 5%. All disk I/O calls were bypassed. The
page size was 4096 bytes, and the cache size was 1600MB. The number of users was
1. The work interval was configured so that the lock proportion is 10% when using
the LRU replacement policy.]

The throughput of Mr.LRU(1) is similar to that of LRU, implying that the

overhead introduced by multi-region cache is small. Mr.LRU(20000,100) has 19%

lower throughput than LRU, because the program manipulating 20,000 linked lists

111

generates more processor cache misses than the program manipulating one linked

list. The same trend can be seen for the Mr.LRU2-F and LRU2-F algorithms.

These results are conservative since (1) the emulated workload does not compete

for processor cache with LRU as much as a real workload does; (2) when the lock

proportion is 10%, the system is likely to be I/O-bound, where the overhead does

not matter. In more realistic environments, the overhead of the multi-region cache

is expected to be close to the overhead of the one-region cache.

Mr.LRU2-S(20000,100) outperforms LRU2-S by about 600 times. Moreover, it

has throughput comparable to Mr.LRU and outperforms LRU2-F. The reason for

this speedup is that, although the miss overhead of LRU2-S is O(n), it performs

comparably to an algorithm with O(1) overhead when n is small. As an extreme

case, when the miss ratio is decreased from 5% to 20% by increasing the data size,

the throughput of Mr.LRU2-S(20000,100) drops 21% due to the O(n) miss

overhead. The system is unlikely to be CPU-bound under such high miss ratios,

however, and so this extra miss overhead can be overlapped by disk requests.

The multi-region cache introduces some space overhead. Every instance of the

cache replacement algorithm has to maintain some bookkeeping information.

When there are hundreds of thousands of regions, the total space occupied by

these bookkeeping data structures could be a concern. One way to reduce this

space overhead would be to extract the read-only or infrequently updated data

from these instances and store them in global data structures.

5.7 Discussion

An ideal cache replacement algorithm should have high hit ratio, low overhead and

low lock contention, but an algorithm which is superior in one aspect is often

inferior in others. Designers often need to make tradeoffs between these aspects.

Some systems, such as storage servers, disk caches and I/O controller caches,

are likely to be I/O-bound because of the large lock proportion in the workload.

Normally only one processor (or two for high availability) is needed in these

112

systems, and so lock contention can be safely ignored. The overhead of the

replacement algorithm can also be overlapped by disk I/Os. As a result, a

replacement algorithm with high hit ratio is the preferred choice.

Some systems, such as database systems, must work well under both

I/O-bound workloads and CPU-bound workloads. In such environments, systems

with many disks and multiple processors are often used to support many

concurrent users, and lock contention has the largest impact on system

throughput. Without using the multi-region cache, a CLOCK-based algorithm is a

good choice, since it does not cause lock contention on cache hits and its lower hit

ratio can be offset by adding more memory or disks. With the multi-region cache,

the replacement algorithm with the highest hit ratio can be used.

Emulation results presented in Figure 5.14 suggest that when using

multi-region cache, a replacement algorithm with O(1) hit overhead and O(n) miss

overhead can perform well, even in a CPU-bound system. This relaxation on cache

miss overhead enables a new family of replacement algorithms that perform simple

bookkeeping on a cache hit (e.g., recording a timestamp in the page header) and a

full region scan for the victim page on a cache miss.

Another area that can benefit from the multi-region cache approach is virtual

memory management, one of the most crucial components in operating systems.

The design of replacement algorithms for virtual memory management is

constrained by the requirement that cache hits must be performed by hardware.

The virtual memory management functions in existing hardware only allow

CLOCK-based algorithms to be used, since the hardware support for more

advanced algorithms is too expensive. Using multi-region cache, it is possible to

accurately implement sophisticated algorithms (such as LRU, LRU-2, LIRS, etc.)

in virtual memory with small additional hardware support. For example, Mr.LRU

could be implemented by letting the processor write the current timestamp into

the page table entry whenever a page is referenced. On a cache miss on page p, the

page table entries of all pages in the region that page p belongs to are scanned and

the page with the oldest timestamp is evicted.

113

5.8 Summary

In this chapter, lock contention in buffer cache replacement algorithms is analyzed.

The design tradeoffs in various aspects of a replacement algorithm are discussed

and approaches that can eliminate lock contention are investigated. It is found

that the impact of lock contention on system throughput is mostly affected by the

lock proportion of the workload and the number of processors in the system. The

number of threads affects the extent of contention only weakly.

One of the current solutions for reducing contention is to use a CLOCK-based

replacement algorithm. Simulations found that in large buffer caches, the CLOCK

algorithm has an unnoticeably smaller hit ratio than other advanced algorithms,

while this small hit ratio difference results in significantly worse system throughput

compared to other replacement algorithms.

Further study of the overhead of the replacement algorithm indicates that

algorithms with O(log n) overhead only slightly impact system throughput

compared to algorithms with O(1) overhead, even in large buffer caches. Moreover,

the larger overhead of the O(log n) algorithm is not caused by the higher time

complexity but by more processor cache misses. This result suggests that it is

worthwhile to deploy replacement algorithms with higher hit ratio and/or lower

lock contention at the expense of some CPU overhead.

A new approach called multi-region cache is proposed to reduce lock

contention. The multi-region cache splits the buffer cache into many fixed-size

regions, each of which is managed by an instance of a replacement algorithm. Any

replacement algorithms can be used together with the multi-region cache. Since

the multi-region cache removes the need for a global data structure, lock

contention is reduced to a negligible level. Analysis and simulation show that use

of the multi-region cache does not noticeably decrease either the overall hit ratio or

the cache speedup of the buffer cache with hundreds of thousands of regions. The

low overhead of the multi-region cache makes it practical in real systems.

114

Chapter 6

Disk Layout Management

Disk layout management deals with how the data are placed on the disks. Its main

design objective is to reduce the time that the disk head must wait when reading

and writing data. This is often done by aggregating disk I/O requests so that a

few large I/Os are performed instead of many small I/Os; this means that the slow

disk arm movement and rotational latency can be reduced when accessing data on

different locations of the disk. Disk layout management can significantly affect disk

I/O performance of the system [74, 75].

Some disk layout approaches seek to optimize read performance [74] while some

approaches mainly optimize write performance [96]. With large in-memory buffers,

most disk reads can be resolved in memory [88]. As a result, in write-intensive

systems, such as database servers running OLTP applications, email servers, file

servers and storage servers, write requests make up a large portion of the total disk

traffic [32, 113]. This makes the optimization of write performance crucial to

overall system performance.

The typical approach to disk layout for writes is Overwrite, which means that

new data are overwritten on top of old copies. Data of one file are normally placed

contiguously on disks. If the entire file is written as a whole, write performance is

good. But some workloads, such as OLTP and email workloads, have small

random writes. Moreover, a large system often supports many users. Interleaved

requests from multiple concurrent users destroy the locality of the disk request

stream and result in poor write performance. LFS (Log-structured File

System) [88, 96] uses a non-overwrite approach in which data are accumulated and

written to new places in large chunks. It has the potential to achieve superior

115

write performance while maintaining comparable read performance [96, 108], but

LFS has to perform segment cleaning to reclaim large contiguous free space for

further writes. Previous studies [108] on a 1991 disk under OLTP workloads have

found that this cleaning overhead significantly degrades system performance when

the disk space utilization is higher than 50%. Disk technology has improved

dramatically since these studies were published. Using 1991’s DEC RZ26 and

today’s Cheetah X15 36LP as examples, the disk positioning time has decreased

from 15ms to 5.6ms (a 2.7x times improvement), while the disk bandwidth has

increased from 2.3MB/s to 61MB/s (a 27x times improvement). The disk

bandwidth improved 10 times more than the positioning time for these two disks,

and this trend is expected to continue [43]. Since LFS was designed to utilize the

disk bandwidth effectively, this trend speaks favourably to the performance of

LFS. Whether or not the cleaning cost of LFS is still prohibitively high on modern

and future disks is an unaddressed issue.

This chapter investigates the performance of LFS and Overwrite under modern

disk technologies in large configurations. A new disk layout approach is proposed

that further improves performance [135]. The remainder of this chapter is

organized as follows. Section 6.1 develops a performance model for LFS and

Overwrite and analyzes their performance. Section 6.2 describes the design of the

new disk layout approach, called HyLog. Section 6.3 discusses the methodology

used to evaluate HyLog and Section 6.4 presents simulation results of HyLog.

Section 6.5 summarizes this chapter.

6.1 Disk Layout Write Cost Model

The extensive use of client and server caching on read traffic makes write

performance an important factor in many systems [88]. In fact, write traffic was

found to exceed read traffic on some recent file systems [32] and OLTP

workloads [113]. Two popular approaches for managing disk layouts are Overwrite,

where updated data are overwritten to their old addresses, and LFS [96], where

116

updated data are written to new locations. Previous studies have found that the

read performance of these two approaches is comparable while their write

performance has large differences [96, 108]. An analytical model that quantifies the

write performance of these two approaches is important for understanding their

overall performance, as well as for designing and evaluating new disk layout

approaches. A new write cost model is developed that gives the average time the

disk takes to write one page of data under Overwrite or LFS.

6.1.1 Assumptions and Definitions

To simplify the modelling, it is assumed that read performance is not affected by

different disk layouts. The notation used for the model is summarized in Table 6.1.

Table 6.1: Notation for the Disk Layout Write Cost Model

Category Symbol Definition

Disk
Parameters

Tpos Disk positioning time
B Average sustained bandwidth of the disk
Nd Number of disks in a disk array (RAID)
Tpg Average disk I/O time to read/write a disk page
Tseg Average disk I/O time to read/write a disk segment
η Segment I/O efficiency

System
Config.

P Size of a disk page in bytes
S Size of a disk segment in number of pages

System
Statistics

ud Disk space utilization
u Space utilization of the segments to be cleaned

Pidle Proportion of idle time in a disk array (RAID)
h Proportion of pages in the hot partition (hot pages)
w Proportion of writes to the hot partition (hot writes)

Write
Costs

Cow Write cost of Overwrite
C ′

ow Scaled write cost of Overwrite
Clfscleaning Write cost of LFS using cleaning
C ′

lfscleaning Scaled write cost of LFS using cleaning
Clfsplugging Write cost of LFS using hole-plugging
C ′

lfsplugging Scaled write cost of LFS using hole-plugging
C ′

hylog Scaled write cost of HyLog

A simple disk model with seek time, rotational latency and transfer bandwidth

is used. The positioning time Tpos is the sum of the average seek time and the

117

average rotational latency, i.e., the time for the disk to rotate half a rotation. The

transfer bandwidth B is the average sustained bandwidth at which the disk can

read or write data. It is assumed that the read bandwidth is the same as the write

bandwidth.

It is also assumed that data are stored on the disk in fixed-size pages of P

bytes. In LFS, the disk is separated into fixed-size segments, each of which has S

pages. The time to read or write a page is Tpg and the time to read or write a

segment is Tseg. Therefore,

Tpg = Tpos +
P

B
,

and

Tseg = Tpos +
SP

B
.

The disk space utilization ud represents the proportion of the disk space

occupied by user data: 0 < ud < 1.

LFS writes data in units of segments instead of pages in an attempt to achieve

better write performance than Overwrite. The segment I/O efficiency η represents

the saving of disk I/O time for writing one segment over writing S pages of the

segment individually. η is defined as

η =
STpg

Tseg

=
S(P + TposB)

SP + TposB
. (6.1)

The higher the η, the better the performance of LFS, if other factors are

constant. η is a monotonously increasing function of the segment size S and a

monotonously increasing function of TposB, called the disk performance product.

TposB represents the amount of data the disk can transfer during the time required

to position the disk head. The parameters of three high-end SCSI disks of different

years are listed in Table 6.2. Their segment I/O efficiency is shown in Figure 6.1.

Modern disks have much larger η than old disks, implying LFS should perform

much better on modern disks than on old disks.

When a disk has multiple pending requests from several users, a disk

118

Table 6.2: Disk Parameters

Brand Name Year Positioning Time (ms) Bandwidth(MB/s)
Cheetah X15 36LP 2004 5.6 61.0
Quantum atlas10k 1999 8.6 20.4
DEC RZ26 1991 15.0 2.3

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 500 1000 1500 2000 2500 3000 3500 4000

S
eg

m
en

t I
/O

 E
ffi

ci
en

cy

Segment Size (KB)

Cheetah X15 36LP (year 2004)

Quantum atlas10k, (year 1999)

DEC RZ26, (year 1991)

Figure 6.1: Segment I/O Efficiency of Different Disks

[Page size is 8KB.]

scheduling algorithm is often used to reorder the requests, which could reduce the

average disk positioning time. As a result, η decreases as the number of pending

requests increases.

6.1.2 Modelling LFS and Overwrite

6.1.2.1 The Write Cost Model

The Write Cost of Overwrite

In Overwrite, each write takes Tpg time. Thus the write cost of Overwrite Cow is

Cow = Tpg.

119

The Write Cost of LFS

To model the write cost of LFS, the segment cleaning overhead must be considered.

The cost of segment cleaning is directly affected by the space utilization of the

segments selected for cleaning, which is defined as the cleaning space utilization u.

There are two segment cleaning methods: cleaning [96] and hole-plugging [72].

These variants of LFS are called LFS-cleaning and LFS-plugging, respectively.

In LFS-cleaning, some candidate segments for cleaning are selected and read

into memory. The pages that have been written again after this segment was

written are called dead pages and other pages are called live pages. The live pages

in these segments are written out to new segments, while the dead pages are

discarded. After this cleaning procedure, the old copies of these segments are

considered free and the space occupied by the dead pages in these segments is

reclaimed. After 1 segment is read, segment space u is written and segment space

1− u is freed. Therefore
1 + u

1− u
segment I/O operations are required to free 1

segment space. For the system to be balanced, whenever a segment of user data is

written to the disk, a segment of free space is reclaimed by cleaning. Thus LFS

requires

1 +
1 + u

1− u
=

2

1− u

segment I/O operations to write one segment of user data. The average time

required to write one page in LFS is defined as the write cost Clfscleaning:

Clfscleaning =
Tseg

S
·

2

1− u
.

In LFS-plugging, some candidate segments are read into memory, and the alive

pages of these candidate segments are written out to holes found in other segments

so that the space occupied by these candidate segments becomes free. To reclaim

one segment of free space requires 1 segment read and uS page writes. Therefore,

the write cost of LFS-plugging Clfsplugging is defined as the average time required

120

to write one page:

Clfsplugging =
1

S
· (2Tseg + uSTpg).

Calculation of Cleaning Space Utilization

If the workload is uniform random update, the segment with the lowest space

utilization should be selected for cleaning in both LFS-cleaning and LFS-plugging.

u increases with ud and u ≤ ud. The relation between the two can be

approximated by [77]:

ud = (u− 1)/ lnu. (6.2)

Figure 6.2 shows that simulation results match this formula well. If the page

update frequencies have a skewed distribution, as seen in real workloads [52, 94],

the cleaning space utilization is lower than that under the uniform random update

workload [72]. Expression 6.2 can be used as an upper bound estimation of u,

given the disk space utilization ud.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
le

an
in

g
S
p
ac

e
U

ti
li
za

ti
on

Disk Space Utilization

Simulation Result
Inverse of f(x) = (x− 1)/lnx

Figure 6.2: Disk Space and Cleaning Space Utilization

[Assuming f(x) = (x−1)/ ln x, Equation 6.2 can be written as ud = f(u). Therefore,
u = f−1(ud). The function f−1(u) cannot be represented in a closed form. The
f−1(x) line shown in the figure was plotted from numerical solutions.]

Impact of Segment Size in LFS

Previous simulation studies [72] showed that the segment size is an important

contributor to the performance of LFS. By experimenting on different disks, the

121

following rules of thumb were found [72]:

1. The optimal segment sizes are different for different disks. Only the disk

performance product (the product of the positioning time and the transfer

bandwidth) matters.

2. Larger segments are required for faster disks. The optimal segment size is

approximately 4 times the disk performance product.

Equation (6.1) shows that TposB is the only disk characteristic that affects η,

which is consistent with the first rule of thumb. The scaled write costs (Equations

(6.4), (6.5) and (6.6)) indicate that the higher the η and the lower the u, the more

advantage LFS can achieve over Overwrite. Figure 6.1 shows that the larger the

segment, the higher the η. On one hand, however, the increase of η is slower with

larger segment sizes, while on the other hand, the cleaning space utilization

becomes higher with larger segments [72]. Therefore, there is an optimal segment

size to achieve the best performance. From Equation (6.1), the limit of η is:

lim
S→∞

η = lim
S→∞

S(P + TposB)

SP + TposB
=

TposB + P

P
.

Assume that a segment size should be selected so that proportion α of this limit is

achieved (0 < α < 1). Then

S(TposB + P)

TposB + SP
= α

TposB + P

P
.

Thus

S · P =
α

1− α
TposB,

where S · P is equal to the segment size. If α = 80%, the segment size is

S · P = 4TposB, (6.3)

which is consistent with the second rule of thumb. The preferred segment sizes

suggested by Equation (6.3) are marked by small crosses in Figure 6.3. The crosses

122

are close to the “knee” of the curve, which means a reasonably high η value is

achieved with a relatively small segment size. In this study, the segment size is

calculated from this formula and then rounded to the closest size in powers of two.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 500 1000 1500 2000 2500 3000 3500 4000

S
eg

m
en

t I
/O

 E
ffi

ci
en

cy

Segment Size (KB)

Cheetah X15 36LP (year 2004)

Quantum atlas10k, (year 1999)

DEC RZ26, (year 1991)

Figure 6.3: Segment Sizes of Different Disks

[Page size is 8KB. The small crosses indicate the segment size suggested by Equa-
tion (6.3).]

6.1.2.2 Performance Comparisons

The performance of these disk layouts can be compared in terms of their write

costs. To simplify the write costs, the scaled write cost is defined by scaling all

write costs by
S

Tseg

:

C ′

ow =
S

Tseg

Cow = η (6.4)

C ′

lfscleaning =
S

Tseg

Clfscleaning =
2

1− u
(6.5)

C ′

lfsplugging =
S

Tseg

Clfsplugging = 2 + uη (6.6)

Note that C ′

lfscleaning is the same as the traditional write cost of LFS [96]. The

write cost of Overwrite was defined as the reciprocal of the utilized disk bandwidth

(i.e.,
TposB + P

P
) [96], which ignores the effect of segment size. Segment size is

important to the performance of LFS [72] and is taken into account by C ′

ow.

123

Figure 6.4 shows the scaled write cost of the disks listed in Table 6.2. The

relationship between LFS-cleaning and LFS-plugging is consistent with previous

studies [72]. Overwrite, LFS-cleaning and LFS-plugging always cross at the same

point when u = 1− 2/η. Since faster disks have larger η, this cross point happens

at higher disk space utilization for faster disks (e.g., u = 94% or ud = 97% for a

year 2004 disk), which means that the performance advantage of LFS over

Overwrite increases as disk technologies improve. Figure 6.4 indicates that LFS

outperforms Overwrite under such workloads when the cleaning space utilization is

below 94% under modern disks. Under real workloads other than a uniform

random update workload, LFS should perform better than what is shown in

Figure 6.4 since data accesses in real workloads have skewness [51] which could

significantly decrease the cleaning space utilization [72]. Therefore, under modern

and future disk technologies, the cleaning cost of LFS is much less important than

the common belief derived from studies with thirteen-year-old disks [108].

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.2 0.4 0.6 0.8 1

S
ca

le
d

W
rit

e
C

os
t

Cleaning Space Utilization

Cheetah X15 36LP, Overwrite

atlas10k, Overwrite

DEC RZ26, Overwrite

Cheetah X15 36LP
Plugging

atlas10k
Plugging

DEC RZ26
Plugging

LFS
Cleaning

Figure 6.4: Write Costs of Different Layouts

[Smaller values indicate better performance. The segment size for Cheetah X15
36LP (year 2004 disk) is 1MB, for atlas10k (year 1999 disk) is 512KB, and for DEC
RZ26 (year 1991 disk) is 128KB. The selection of segment sizes is discussed in
Section 6.1.2.1. The scaled write cost of LFS-cleaning is the same for all disks.]

Many systems use disk arrays and have multiple concurrent users. The number

of disks is defined as Nd. It is assumed that users send out requests without think

124

time. When RAID is used, all disks are viewed as one large logical disk. The stripe

size of RAID is set to S pages, where S is computed based on Equation (6.3). In

RAID-0, the segment size of the logical disk is NdS; in RAID-5, the segment size

of the logical disk is (Nd − 1)S, because one disk worth of space is used to store

parity data. This organization allows segment I/O to utilize all available disk

bandwidth and eliminates the small write penalty [89] in RAID-5.

6.1.3 The HyLog Model and Performance Potential

Figure 6.4 indicates that a small reduction in disk space utilization can

significantly reduce segment cleaning cost and improve the performance of LFS.

Because of the skewness in the page access distribution [51], most writes are to a

small portion of data pages (called hot pages), while the other pages (called cold

pages) are updated infrequently. In LFS, hot pages rarely need to be cleaned

because their current copies on the disk are often invalidated by further writes to

these pages before the space they occupy is reclaimed by the cleaner. Therefore,

most of the cleaning cost comes from cold pages, while most of the high write

performance comes from accumulating the writes to hot pages. If only these hot

pages are managed by LFS while cold pages are managed by Overwrite, all free

space can be dedicated to the hot pages, since Overwrite does not need extra free

space. The resulting space utilization for the hot pages would be lower, which

implies higher performance for the hot pages. Therefore, the overall performance

could exceed both LFS and Overwrite. This leads to a new approach, called the

Hybrid Log-structured (HyLog) layout. The basic idea underlying HyLog was first

mentioned in the conclusions of Lomet’s work [69]: “it is not impossible to envision

an LFS in which some segments are managed using in-place updating”, but no

further analyses or experiments were conducted.

In HyLog, the disk is divided into fixed-size segments, similar to LFS. A

segment is a hot segment (containing hot pages and free pages), a cold segment

(containing cold pages and free pages), or a free segment (containing only free

125

pages). The hot segments and the free segments form the hot partition, while the

cold segments form the cold partition.

Since LFS-plugging performs worse than LFS-cleaning under low space

utilization and worse than Overwrite under high space utilization, including

LFS-plugging in HyLog brings no performance benefit. Therefore, LFS-plugging is

not considered when modelling HyLog. Assume the proportion of hot pages is h

(0 < h < 1) and the proportion of writes to the hot pages (called hot writes) is w

(0 < w < 1). If all free space is in the hot partition, the disk space utilization of

the hot partition is

uh

1− u + uh
. (6.7)

The space utilization of segments to be cleaned, u, can be calculated from

expression 6.7 based on Equation (6.2). The scaled write cost of HyLog, C ′

hylog, is

C ′

hylog = (1− w)C ′

ow + wC ′

lfs

= (1− w)η +
2w

1− u
. (6.8)

When h is 0 and 1, the cost of HyLog degrades to Overwrite and LFS, respectively.

The proportion of hot writes w is a function of h, which is the CDF of the write

frequencies.

For uniformly distributed random access, w = h. It was found that the CDF of

the page update frequency in production database workloads follows the

Hill(fmax, k, n) distribution Hill(105, 0.528, 0.546) [51], which is defined by

f(x) =
fmax · x

n

k + xn
. Note that these distributions are for page updates before being

filtered by the buffer cache. When write through is used (as in an NFS server),

these distributions can also describe the page writes to disks. When write back is

used (as in a database server), the page writes to disks are less skewed (closer to

the uniform distribution).

The Knuth(a, b) distribution (see Section 5.6.2 in page 103) is used to

126

represent the skewness of data accesses. Knuth(a, b) means that a% of the

references go to b% of the pages. Figure 6.5 shows the CDF of these distributions

with different parameters.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

po
rt

io
n

of
 W

rit
es

 to
 H

ot
 P

ag
es

Proportion of Hot Pages

Hill(105, 0.528, 0.546)
Knuth(80, 20)
Knuth(60, 20)
Knuth(40, 20)

Uniform

Figure 6.5: Cumulative Distribution Functions

[Knuth(a, b) means that a% of the references go to b% of the pages.]

Figures 6.6(a) and 6.6(b) show the scaled write cost of HyLog under these

distributions. Equation (6.2) is used to convert disk space utilization to cleaning

space utilization. Since this equation works only for uniform random workloads,

the results shown in Figures 6.6(a) and 6.6(b) are conservative for skewed

distributions. With the right number of hot pages, HyLog outperforms both

Overwrite and LFS. The higher the skewness of the distribution, the fewer hot

pages are required and the more benefit can be achieved. In other words, HyLog

has greater performance potential than LFS and Overwrite under high disk space

utilization. When the disk space utilization is low, HyLog has limited benefit over

LFS.

127

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.2 0.4 0.6 0.8 1

S
ca

le
d

W
rit

e
C

os
t

Proportion of Hot Pages

Uniform
Knuth(40, 20)
Knuth(60, 20)
Knuth(80, 20)

Hill(105, 0.528, 0.546)

(a) Disk Space Utilization 90%

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.2 0.4 0.6 0.8 1

S
ca

le
d

W
rit

e
C

os
t

Proportion of Hot Pages

Uniform
Knuth(40, 20)
Knuth(60, 20)
Knuth(80, 20)

Hill(105, 0.528, 0.546)

(b) Disk Space Utilization 97%

Figure 6.6: Performance Potential of HyLog

[The two horizontal lines in Figure 6.6(a) and 6.6(b) represent the write cost of
Overwrite and LFS, respectively. η is 32.8, representing the Cheetah X15 36LP
disk with 1MB segment size and 8KB page size. Knuth(a, b) means that a% of the
references go to b% of the pages.]

6.2 The Design of HyLog

6.2.1 Design Assumptions

It is assumed that the disk layouts under study (Overwrite, LFS, WOLF and

HyLog) are at the storage level rather than the file system level. It is assumed that

NVRAM is used by these disk layouts so that small synchronous writes caused by

128

metadata operations are not necessary, and so the metadata operations are not

considered in this study. This omission greatly simplified the design and

implementation of the disk layout simulator. Because LFS performs much better

than Overwrite on metadata operations [96, 108], the omission of metadata

operations makes the results presented for LFS, WOLF and HyLog conservative

compared to Overwrite.

These assumptions, however, do not mean that HyLog can be used only at the

storage level with NVRAM. The metadata integrity and fast recovery from crash

must be supported without NVRAM if HyLog is used at the file system level. One

approach is to apply technologies such as Soft-updates [37] and journaling [140] to

HyLog. Another approach is to treat all metadata as hot pages so that fast

recovery can be achieved in a way similar to LFS.

WOLF [131] reduces the segment cleaning cost of LFS by sorting the pages to

be written based on their update frequencies and writing to multiple segments at a

time. This idea can be easily applied to HyLog to reduce its cleaning cost further,

but, to isolate the benefit realized from the design of HyLog and from the idea of

WOLF, this optimization is not performed in this study.

6.2.2 Separating Algorithm

Before a page is written to the disk, HyLog runs a separating algorithm to

determine if this page is hot. If it is, the write is delayed and the page is stored

temporarily in an in-memory segment buffer. Otherwise, it is overwritten

immediately to its original place on the disk. When hot pages fill up the segment

buffer, they are written out to a free disk segment, freeing the disk space occupied

by their old copies.

As time goes on, some hot pages may become cold. These pages are written to

the cold partition rather than to their current locations in the hot partition to

avoid extra cleaning overhead. As some cold pages become hot and are written to

the hot partition, free space may appear in the cold partition. To reclaim this free

129

space more effectively, HyLog uses an adaptive cleaning algorithm to select

segments with the highest cleaning benefit from both hot and cold partitions.

Separating hot pages from cold pages accurately is the key to the design of

HyLog, as shown in Figure 6.6. The basic idea of the separating algorithm is

simple. First, the write frequencies of recently updated pages are collected. These

write frequencies are used to get the relationship between w and h. Then

Equation (6.8) is used to calculate C ′

hylog for all h. The hot page proportion h with

the lowest C ′

hylog is used as the expected hot page proportion.

Measuring η accurately is important for HyLog to make correct decisions. The

service time of page I/O and segment I/O of each request is collected at the disk

level. The average of the most recent 10,000 requests is used to compute η. Since a

segment I/O always keeps all disks busy, while a page I/O keeps only one disk

busy, page I/O is less efficient in disk arrays. If the proportion of the disk idle time

is Pidle, η is adjusted to
η

1− Pidle

.

The write frequencies of all disk pages are collected in real time. A frequency

counter is associated with each page. This counter is initialized to 0, and reset to 0

after every measurement interval. Whenever a page is written to the disk, its

frequency counter is incremented. At the end of each measurement interval, all

frequency counters are sorted in a descending order and stored in an array, which

is used to calculate hot writes given the hot page proportion. The separating

algorithm is invoked every measurement interval. After the expected hot page

proportion is obtained, a page separating threshold can be determined so that all

pages with write frequencies no less than the threshold are considered hot pages.

Preliminary experiments were conducted to study the sensitivity of system

performance to the value of the measurement interval. When the measurement

interval is smaller than 20 minutes, the throughput is not sensitive to the

measurement interval. However, the throughput starts dropping with larger

measurement intervals. 20 minutes is used as the measurement interval to reduce

the frequency that the separating algorithm is invoked.

130

6.2.3 Segment Cleaning Algorithm

HyLog’s segment cleaning algorithm is adapted from the adaptive cleaning

algorithm of LFS [72], which dynamically selects between cleaning and

hole-plugging based on their write cost.

In Hylog, the cleaner is invoked whenever the number of free segments falls

below a threshold (set to 10). In every cleaning pass, the cleaner processes up to

20MB of data. It first calculates the cost-benefit values of the following four

possible cleaning choices: (1) cleaning in the hot partition, (2) hole-plugging in the

hot partition, (3) cleaning in the cold partition, and (4) hole-plugging in the cold

partition. It then performs cleaning using the scheme with the lowest cost-benefit

value.

6.3 Methodology

6.3.1 The Simulator, Verification, and Validation

Trace-driven simulations were used to compare the throughput of different disk

layouts. The simulator consists of a disk component, a disk layout component, and

a buffer cache component. The disk component was ported from DiskSim 2.0 [38].

The disk layout component simulates disk layouts for Overwrite, LFS, WOLF, and

HyLog. The implementation of LFS is based on the algorithm descriptions of two

previous LFS simulators [72, 96] and the source code of the Sprite operating

system [114]. The implementation of WOLF is based on the algorithm description

of a previous WOLF simulator [131]. The buffer cache component uses the LRU

algorithm. Together, this component and the disk layout component comprise over

31,000 lines of C++ code. The three components communicate through an

event-driven mechanism. Overwrite, LFS and WOLF are implemented as special

cases of HyLog. Overwrite is obtained by considering all pages as cold, and LFS

and WOLF are obtained by treating all pages as hot. Therefore, the only

difference between these disk layouts is the page separating algorithm. This design

131

guarantees that HyLog does not perform any “shortcut” operations that the other

three approaches do not have and thus improves the fairness of performance

comparisons. Since HyLog performs more work than Overwrite, LFS, and WOLF,

this design may increase the execution time of the simulation, which does not

affect the simulation result in anyway.

In order to verify the disk layout component, a simple disk layout simulator

called TinySim was developed independently. TinySim simulates LFS and WOLF,

and supports a single user and single disk environment. TinySim and the disk

layout component were run under uniformly distributed random update and

hot-cold (10% of the pages are referenced 90% of the time) synthetic

workloads [96], respectively. The overall write cost [72, 131], which is the key

performance metric of LFS and WOLF, was obtained from both simulators. In

most cases, the differences between the results of the two simulators were within

5%.

After verification, the cleaning algorithms in the disk layout component were

validated against results presented by Matthews et al. [72]. Figure 6.7 shows the

overall write costs of the cost-age, hole-plugging, and adaptive cleaning algorithms

under a uniformly distributed random update workload. These cleaning algorithms

show trends very similar to those in Figure 6 of the study by Matthews et al. [72].

The implementations of Overwrite and LFS were validated further by

comparing their performance with that of FFS (uses overwrite) and BSD LFS

done by Seltzer et al. [108] under the TPC-B benchmark. As was done by

Matthews et al. [72], the uniformly distributed random update workload is used to

simulate the TPC-B workload. Since the DSP 3105 disk used by Seltzer et al. [108]

is not available in DiskSim, a similar disk, the DEC RZ26, was used in the

validation experiments. Table 6.3 lists the specifications of the two disks. The

DEC RZ26 has slightly slower average seek time and slightly higher transfer rate

because it has one more sector per track than the DSP 3105, but it is very similar

otherwise.

Table 6.4 shows the throughput of Overwrite and LFS in this study and by

132

 10

 20

 30

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

O
ve

ra
ll

W
rit

e
C

os
t

Disk Space Utilization

Cost-Age
Hole-Plugging

Adaptive

Figure 6.7: Validation of Overall Write Cost of LFS

[The workload is uniform random update. Page size is 8KB, segment size is 256KB,
Tpos = 15ms, B = 5MB/s, and cache size is 128MB.]

Table 6.3: Disk Comparison for Simulator Validation

Parameters DSP 3105 DEC RZ26
RPM 5400 5400
Sectors/Track 57 58
Cylinders 2568 2599
Platters 14 14
Track Buffer 256KB 285KB
Avg. Seek Time 9.5ms 9.8ms
Transfer Rate 2.3MB/s 2.3MB/s

Seltzer et al. [108]. Although the reported throughput of LFS with cleaning in the

study of Seltzer et al. was 27.0, it has been argued [85] that 34.4 should be a more

reasonable value. Therefore, 34.4 is used here when calculating the difference. The

4.8% lower throughput observed for Overwrite in the experiments may be due to

the 3.2% slower seek time of the DEC RZ26. The LFS implementation used by

Seltzer et al. can achieve only 1.7MB/s write throughput, 26% slower than the

maximum hardware bandwidth, because of “missing a rotation between every 64

KB transfer” [108]. Since the number of segment reads is equal to the number of

segment writes (for every segment read, there is always u segment write for

cleaning and 1− u segment write for new data), this slowdown of segment write

should cause 13% performance difference, which matches the difference in

133

Table 6.4. Since the differences in all results are within a reasonable range, it is

reasonable to believe that the implementations of Overwrite and LFS used in this

study are valid.

Table 6.4: Throughput Validation (Disk Space Utilization is 50%)

Layout Seltzer et al. [108] This study Diff.
FFS/Overwrite 27.0 25.7 -4.8%
LFS w/o cleaning 41.0 43.3 5.6%
LFS w cleaning 27.0 (34.4) 39.0 13.4%

6.3.2 The Workloads

Three traces were used in the performance experiments for this study: TPC-C,

Sub-Financial1, and NFSEmail. Their characteristics are summarized in Table 6.5.

Table 6.5: Trace Characteristics

TPC-C Sub-Financial1 NFSEmail
Data size(MB) 5088 10645 9416
Page size(KB) 4 4 8
#reads(×106) 176.46 0.97 21.05
#writes(×106) 32.77 3.41 7.64
Logical reads writes ratio 5.38 0.28 2.76
Physical reads writes ratio 1.37 0.13 2.56

The TPC-C and the NFSEmail trace are the same as the ones described in

Section 5.3.4 (page 86). The NFSEmail trace contains 85% reads and writes, and

15% directory operations. Since the sizes of the directories are unknown from the

trace, it is difficult to replay the directory operations in the simulator, but because

it is assumed that NVRAM is used, these directory operations do not cause

expensive synchronized writes. So their impact on performance is small. The

directory operations were discarded and only the reads and writes of the trace

were used in this study.

The Sub-Financial1 trace is part of the Financial1 [113] trace described in

Section 5.3.4. Sub-Financial1 contains all I/O requests of the Financial1 trace

134

except those from three of the largest volumes. This trace reduction significantly

reduces the computing resources required by the simulator. Since these three

volumes have the fewest requests relative to their sizes, omitting them is expected

to have little impact on the results.

6.3.3 Experimental Setup

Since the interest of this study is the performance of various disk layouts on busy

systems, the simulator is configured as a closed system without think time. That

means the next trace record is issued as soon as the processing of the previous one

finishes. Using this method, a small number of users in the trace can represent the

workloads imposed on a system by many more users with think time. For example,

the weighted average think time plus keying time defined in Clause 5.2.5.7 of

TPC-C benchmark version 5.0 [124] is 21 seconds. The simulation results indicate

that the system with 30 users without think time has an average response time of

1.28 seconds if one disk is present in the system. Assuming that the number of

users with think time in the system is n, the average arrival rate of users is
n

21 + 1.28
=

n

22.28
. From Little’s Law: 30 =

n

22.28
× 1.28. Therefore, n = 522,

which indicates that the workload generated by 30 users without think time

presents equivalent workload to that generated by 522 users with 21 seconds think

time between requests.

The Quantum atlas10k 1999 disk model, which is the latest disk model

provided by DiskSim 2.0, was used in this study. Its specifications are given in

Table 6.6. Write-back caching is disabled to protect data loss from power failure.

The disk scheduling algorithm is SCAN based on logical page numbers.

To study the performance of disk layouts on today’s disks and future disks,

disk models for a high-end disk of year 2004 and a high-end disk of the sort that

customers might expect to see in year 2008 were also designed. Looking back over

15 years history of disk technology evolution, it seems reasonable to make the

following assumptions: every 5 years, transfer rate increases by 242% [43], average

135

Table 6.6: Disk Specifications

Parameters
Atlas10k
(Year
1999)

Year
2004
Disk

Year
2008
Disk

RPM 10025 15000 24000
Sectors/Track 229-334 476 967
Cylinders 10042 10042 10042
Platters 6 8 8
Size(GB) 9.1 18 36
Seek Time(ms) 5.6 3.6 2.0
Bandwidth(MB/s) 20.4 61 198

seek time decreases by 76% [101], and RPM (Rotations Per Minute) increases by

61% [3]. It is also assumed that all cylinders have the same number of tracks, the

number of platters is 8, and the disk size for the year 2004 disk is 18GB and for

the year 2008 disk is 36GB. The specifications of these two disks calculated on the

basis of these assumptions are given in the two rightmost columns of Table 6.6.

The seek time distribution data were created by linearly scaling the seek time

distribution of the atlas10k disk defined in DiskSim.

RAID-0 and RAID-5 were used as the multi-disk models in this study. The

stripe size for both RAID-0 and RAID-5 is computed based on Equation (6.3) and

then rounded to the closest powers of two. For RAID-0 arrays with n disks, the

segment size is n× StripeSize. For RAID-5 arrays, the segment size is

(n− 1)× StripeSize, since 1/n of the total disk space is dedicated to parity data.

In order to vary the disk space utilization, only part of the disk is accessed,

independent of the actual size of the disk. For example, if the data size is 6GB and

the disk space utilization is 60%, the total disk space required is
6GB

60%
= 10GB. If

there are 5 disks, the first 2GB of each disk is used. Since the disk layout

approaches do not handle page allocation and deallocation, all data are stored on

the former part of the disk initially. As a result, the seek time (particularly for

Overwrite) is very short, which makes η smaller. Thus this data layout makes the

performance results for LFS, WOLF, and HyLog conservative compared to

Overwrite than in real workloads where data are often placed far apart. For LFS,

136

WOLF, and HyLog, the data will eventually spread across the whole disk as data

are written, which is considered as the warmup period. Only the performance data

collected after the warmup period is measured.

The performance metric used in this study is throughput, defined as the

number of I/O requests finished per second.

Table 6.7 summarizes the parameters and values used in the experiments. Since

these parameters can be easily controlled in the TPC-C trace, this trace is used to

study the impacts of various parameters on throughput. When evaluating the

throughput of RAID-5, a 9-disk RAID-5 array is compared with an 8-disk RAID-0

array so that they have the same segment size. The buffer cache used for HyLog,

LFS and WOLF are the total buffer cache size minus one segment (for LFS and

HyLog) or two segments (for WOLF) worth of space required for segment writing.

As a result, all approaches use the same amount of memory to allow a fair

performance comparison.

Table 6.7: Experimental Parameters

Configuration Values Default

Disk layout Overwrite, LFS, WOLF, HyLog —
Number of users 1–30 20
Number of disks 1–15 4
Disk utilization 0.5–0.98 —
Disk type atlas10k, year 2004 disk, year 2008 disk atlas10k
Disk array type RAID-0, RAID-5 RAID-0
Workload TPC-C, Sub-Financial1, NFSEmail TPC-C
Buffer cache size — 400MB

6.4 Performance Evaluation

6.4.1 Validation of the Cost Model

Since the cost model was developed for the uniform random update workload, the

simulation results for the same workload were used to validate the cost model. In

particular, the previous results for TPC-B [85, 108], a random update workload,

137

were used. Since the write cost is the average time required to write a page and a

transaction requires a page read and a page write, the throughput X is computed

as

X =
1

Tpg + C + Tcpu

,

where C is the write cost of the disk layout, and Tcpu is the CPU overhead for

processing each page, which is 0.9ms for Overwrite and 1.8ms for LFS [108].

Table 6.8 shows that the modelling results match the measurement results well.

The modelling results are also close to the simulation results shown in Table 6.4

(page 134).

Table 6.8: Cost Model Validation

Layout Previous Model Difference
Overwrite 27.0 [108] 28.6 6.0%
LFS-cleaning 34.4 [85] 37.3 8.4%

6.4.2 Impact of Disk Space Utilization and Disk Type

Figure 6.8 shows the throughput of different layouts under various disk space

utilization and different disks. Since the throughput curves of LFS, WOLF and

HyLog almost overlap for the year 2004 and year 2008 disks, only one line is shown

for each of these disks. The throughput of all layouts improves with faster disks.

The throughput of Overwrite is not affected by the disk space utilization, while the

throughput of other layout approaches decreases when the space utilization is high.

The faster the disk, the more LFS and WOLF can tolerate the high space

utilization because faster disks have higher η as shown in Figure 6.1 (page 119).

Figure 6.9 gives a closer look at the throughput of the atlas10k disk. The

throughput of WOLF overlaps that of LFS for most configurations and

outperforms LFS by 5% when the disk space utilization ud is very high (98%). The

throughput of HyLog overlaps that of LFS when ud ≤ 95%. This is because HyLog

considers all pages as hot based on its cost model Equation (6.8) (see Figure 6.6(a)

on page 128). The throughput of HyLog is comparable to Overwrite when the disk

138

space utilization is higher. HyLog outperforms Overwrite by 7.4% when the disk

space utilization is 97%.

To provide some insights into the performance that LFS and HyLog show

above, two example points in the figure were analyzed further: LFS running on an

atlas10k disk with 95% disk space utilization and HyLog running on an atlas10k

disk with 98% disk space utilization.

In the LFS example, the cleaning space utilization u obtained from the

simulator is 88.4%. This is lower than the 90.2% computed from Equation (6.2)

because of the skewness of accesses in TPC-C. Therefore, to write one segment of

new data,
1 + u

1− u
= 16.3 segment I/Os need to be performed for cleaning. So the

cleaning traffic contributes 94.2% to the total segment I/O traffic. The Tpg and

Tseg values obtained from simulation are 5.6ms and 27.3ms, respectively. Therefore,

η = 26.3. The proportion of disk idle time obtained from the simulator is 30%, so

η should be adjusted to η/(1− 30%) = 37.6. Based on the scaled write cost model,

C ′

ow/C ′

lfscleaning = η(1− u)/2 = 2.2,

which means that the write throughput of LFS is 2.2 times the write throughput

of Overwrite. Since the write traffic contributes 42% to the total traffic after being

filtered by the buffer cache (Table 6.5 in page 134), LFS outperforms Overwrite by

30%, which is close to the simulation result of 27%.

In the HyLog example, the hot page proportion selected by the page separating

algorithm during the run is 35%-45%. The data collected at the first measurement

interval after warmup were used as the example. The proportion of hot pages is

42.2%, and the proportion of hot writes is 58.2%. The space utilization of segments

being cleaned is 93.4%, which is lower than that in LFS for the same configuration

(96.2%). The proportion of disk idle time is 22.5%, the Tpg and Tseg are 5.8ms and

27.2ms, respectively, and the adjusted η is
TpgS

Tseg(1− Pidle)
= 35.2. Therefore, the

write cost model indicates that the write throughput of the hot partition is 16%

higher than Overwrite. Thus the overall weighted write throughput is 9% higher

139

 0

 10

 20

 30

 40

 50

 60

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T
hr

ou
gh

pu
t (

x1
00

0)

Disk Space Utilization

Overwrite (atlas10k)
HyLog (atlas10k)

LFS (atlas10k)

(a) Year 1999 Disk (Atlas10k Disk)

 0

 10

 20

 30

 40

 50

 60

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T
hr

ou
gh

pu
t (

x1
00

0)

Disk Space Utilization

Overwrite (year’04 disk)

LFS/WOLF/HyLog (year’04 disk)

(b) Year 2004 Disk

 0

 10

 20

 30

 40

 50

 60

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T
hr

ou
gh

pu
t (

x1
00

0)

Disk Space Utilization

Overwrite (year’08 disk)

LFS/WOLF/HyLog (year’08 disk)

(c) Year 2008 Disk

Figure 6.8: The Impact of Disk Space Utilization on System Throughput

[The number of users is 20, the number of disks is 4, the trace is TPC-C, and the
buffer cache size is 400MB.]

140

 8

 10

 12

 14

 16

 18

 20

 22

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T
hr

ou
gh

pu
t (

x1
00

0)

Disk Space Utilization

HyLog
WOLF

LFS
Overwrite

Figure 6.9: The System Throughput using the Atlas10k Disk

[The number of users is 20, the number of disks is 4, the trace is TPC-C, and the
buffer cache size is 400MB.]

than Overwrite. Taking the read traffic into account, the throughput of HyLog is

1.036 that of Overwrite, which is close to the simulation result of 1.008. The write

throughput of LFS computed from the cost model under 98% disk space utilization

is 66.9% of Overwrite, and the overall throughput of LFS including read and write

traffic is 82.8% of Overwrite, which is close to the simulation result of 78.0%.

Figure 6.10 shows how well the separating algorithm works. The hot page

proportion found by the separating algorithm (35%-45%) is close to the range of

values that results in good throughput when a fixed hot page proportion is used,

and the achieved throughput is 96.4% of the maximum possible throughput.

6.4.3 Impact of Number of Users and Number of Disks

Figures 6.11 and 6.12 show the throughput normalized to Overwrite under

different numbers of users and disks. The throughput of WOLF is not shown since

it is virtually identical to LFS. Two trends can be observed in the relative

throughput of LFS, WOLF and HyLog: (1) throughput drops with more users;

(2) throughput drops with more disks.

With more users, the average disk seek time is reduced because of the use of

141

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.2 0.4 0.6 0.8 1

T
hr

ou
gh

pu
t (

x1
00

0)

Hot Page Proportion

Fixed Hot Page Proportion
HyLog

Figure 6.10: Sensitivity to Separating Criteria

[The number of users is 20, the number of disks is 4, the trace is TPC-C, the disk
space utilization is 98%, and the buffer cache size is 400MB.]

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

HyLog

 5 10 15 20 25 30
Number of Users

 2
 4

 6
 8

 10
 12

 14

Number of Disks

 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

Figure 6.11: Impact of Number of Users and Number of Disks (Disk Space Uti-
lization is 90%)

[The disk is atlas10k, trace is TPC-C. The throughput curves of LFS and HyLog
are virtually identical, and so only the throughput of HyLog is drawn.]

the disk scheduling algorithm, which reduces η. The disk idle time in Overwrite is

142

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

HyLog
LFS

 5 10 15 20 25 30
Number of Users

 2
 4

 6
 8

 10
 12

 14

Number of Disks

 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

(a) Disk Space Utilization 98% – All Data

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 5 10 15 20 25 30

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of Users

HyLog (8 disks)
LFS (8 disks)

(b) Disk Space Utilization 98% – The Hidden Points

Figure 6.12: Impact of Number of Users and Number of Disks (Disk Space Uti-
lization is 98%)

[The disk is atlas10k, and the trace is TPC-C. Figure 6.12(b) shows the hidden
data points of Figure 6.12(a).]

143

reduced with more users, which also reduced the adjusted η, i.e.,
η

1− Pidle

. This

decrease is not affected by the disk space utilization. Therefore, the first trend

happens in both low disk space utilization (Figure 6.11) and high disk space

utilization (Figures 6.12(a) and 6.12(b)).

With more disks, the segment size is larger, and so the cleaning cost is

higher [72], which reduces the benefit of the log-structured layout. This happens

only when cleaning cost plays an important role, which is true when the disk space

utilization is high. Therefore, the second trend is apparent only when the disk

space utilization is high (Figure 6.12(a)).

In Figures 6.12(a) and 6.12(b), the throughput of HyLog is virtually identical

to that of LFS when LFS outperforms Overwrite, and HyLog becomes comparable

to Overwrite when Overwrite outperforms LFS. HyLog incorrectly follows LFS

when there are 4 users and 15 disks, because at this configuration a very small

error in the estimation of η can cause HyLog to make the wrong decision, while

HyLog can tolerate some error in the estimation of η in other configurations.

6.4.4 Impact of Disk Array Type

Figure 6.13 shows the throughput of the four disk layouts (Overwrite, LFS,

WOLF, and HyLog) on RAID-0 and RAID-5. For Overwrite, the throughput on

RAID-5 is about 50% of that on RAID-0. This performance degradation is caused

by the slower page update of RAID-5. For LFS and WOLF, the use of RAID-5

increases throughput by 6.5%-10%, because the segment I/O performance is not

affected by small write penalty of RAID-5, while the one more disk in RAID-5

increases the page read throughput. When the disk space utilization is high, the

throughput of HyLog on RAID-0 is comparable to Overwrite. The throughput of

HyLog on RAID-5 is comparable to LFS because the slower page I/O in RAID-5

makes η higher, which makes HyLog treat most pages as hot pages.

144

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Overwrite LFS WOLF HyLog Overwrite LFS WOLF HyLog

T
hr

ou
gh

pu
t

RAID-0
RAID-5

Disk Space Utilization 98%Disk Space Utilization 80%

Figure 6.13: Throughput under RAID-0 and RAID-5 Arrays

[The RAID-0 array contains 8 disks, the RAID-5 array contains 9 disks, the disk
is the atlas10k, the trace is TPC-C, the number of users is 20, the segment size is
512KB per disk, and the buffer cache size is 400MB.]

6.4.5 Impact of Workload

Figure 6.14 shows the throughput of the four disk layouts using the Sub-Financial1

and NFSEmail traces. The throughput is normalized relative to that of Overwrite.

For both traces, the performance advantage of LFS, WOLF, and HyLog is much

higher than that observed with the TPC-C trace. This difference is attributed to

two facts. First, the distribution of data updates in the Sub-Financial1 and

NFSEmail traces is more skewed than it is in the TPC-C trace, leading to lower

segment cleaning cost. Second, the proportion of writes in these two traces is much

higher than in the TPC-C trace, since many reads have already been filtered out

by client-side buffers (in the NFSEmail trace) or in-memory buffers (in the

Sub-Financial1 trace). Because the Sub-Financial1 trace is more skewed and has

lower read-to-write ratio than the NFSEmail trace, the advantage of log-structured

layouts in the Sub-Financial1 trace is higher than in the NFSEmail trace. The

performance results under other configurations have similar trends and thus are

not shown.

145

0

1

2

3

4

5

6

Overwrite LFS WOLF HyLog Overwrite LFS WOLF HyLog

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Disk Space Utilization=90%

Disk Space Utilization=98%

Sub-Financial1 NFSCampus

Figure 6.14: Normalized Throughput under Real Workloads

[The throughput is normalized relative to that using Overwrite. The disk is at-
las10k, the number of disks is 1, the segment size is 512KB, and the buffer cache
size is 400MB.]

6.5 Summary

The write performance of the Overwrite and LFS disk layouts was investigated. A

write cost model was developed to compare the performance of these disk layouts.

Contrary to the common belief that its high segment cleaning cost disadvantages

LFS, it is found that because of advances in disk technologies, the performance of

LFS is significantly better than Overwrite on modern and future disks, even under

the most pathological workload for LFS (uniform random update), unless the disk

space utilization is very high.

Since LFS still performs worse than Overwrite under certain conditions such as

high disk space utilization, a new disk layout approach called HyLog is proposed.

HyLog uses a log-structured approach for hot pages to achieve high write

performance and overwrite for cold pages to reduce the segment cleaning cost. The

page separating algorithm of HyLog is based on the write cost model and can

separate hot pages from cold pages dynamically. Simulation results on a wide

range of system and workload configurations show that HyLog performs

comparably to the best of Overwrite, LFS and WOLF in most configurations.

146

Chapter 7

Conclusions

Storage is an important component of any large scale computer system. Storage

management is important to the overall system performance. This thesis studies

performance issues in two important components of storage management in large

scale systems, namely the buffer cache management and disk layout management.

The thesis contains three parts: self-tuning in buffer cache management, lock

contention in buffer cache management, and disk layout management. Section 7.1

summarizes each part of the thesis work, Section 7.2 states the main contributions,

and Section 7.3 briefly outlines further research directions.

7.1 Thesis Summary

Self-tuning of Buffer Cache Management

The buffer cache layer in storage management caches popular disk pages in

memory in an attempt to speed up accesses to the disk pages. The buffer cache

management algorithm used in real systems often has many parameters that

require careful tuning to get good performance. This thesis studies the buffer cache

management algorithm in a real DBMS running an I/O-intensive workload. The

I/O activities and impact of various parameters on performance are investigated

through measurements and simulation. A new self-tuning algorithm is proposed to

automatically tune an important parameter in the buffer cache management

algorithm by monitoring the I/O activities of the buffer cache. Results from the

simulator show that this algorithm achieves performance comparable to that of a

manually tuned system under various system configurations.

147

Lock Contention of Buffer Cache Management

The buffer cache replacement algorithm is the most important element of buffer

cache management. Most advanced replacement algorithms employ a global data

structure to manage the pages in the buffer cache. Since every access to the buffer

cache needs to change the global data structure, it is protected by a lock. In large

scale systems with multiple processors, this lock can easily become a contention

point and significantly limit system throughput. There are no existing universal

approaches to solve lock contention. Some approaches are valid only for a specific

algorithm, some approaches have high overhead, and some approaches decrease the

hit ratio of the buffer cache, which significantly decreases system throughput when

the system is I/O-bound. Various factors affecting lock contention are studied and

a new approach called the multi-region cache is proposed. The multi-region cache

can be applied to most buffer cache replacement algorithms. Analysis and

evaluation results indicate that the multi-region cache reduces lock contention to

an insignificant level, affects the overall hit ratio of the buffer cache only

marginally, and incurs little overhead.

Disk Layout Management

Work at the disk layout layer tries to improve the I/O efficiency of the storage

management subsystem by appropriately arranging the layout of disk pages. The

typical disk layout approach, called Overwrite, is optimized for sequential reads

and writes of a single file or files in the same directory. In large scale systems with

many concurrent users and large buffer caches, most reads are absorbed by the

buffer cache, and the interleaved writes from different users make writes randomly

scattered over the disks. Although the Log-structured File System (LFS) is

optimized for such workloads, previous studies have found that its expensive

garbage collection overhead offsets its benefit to Overwrite in OLTP workloads.

Analytical models are developed to investigate the write performance of Overwrite

and LFS. It is found that because of the much faster improvement of disk transfer

148

bandwidth over disk positioning time, LFS performs much better than Overwrite

on modern and future disks in most workloads, including OLTP, unless the disk

space utilization is very high. A new approach is proposed, called HyLog, which is

a hybrid of LFS and Overwrite. Simulation results show that HyLog achieves

performance comparable to the best of existing disk layout approaches in most

workloads and configurations.

7.2 Thesis Contributions

In summary, the main contributions of this thesis are:

• A self-tuning algorithm is proposed to automatically tune parameters of

buffer cache management. This algorithm achieves performance close to the

best manually tuned system.

• The problem of lock contention in buffer cache management is investigated.

A new approach, called multi-region is proposed to eliminate the lock

contention of buffer cache. This approach can work together with most

buffer cache replacement algorithms. It affects the overall hit ratio of the

buffer cache only marginally and incurs little overhead.

• Different disk layout management approaches are modeled and their

performance characteristics are analyzed. A new approach called HyLog is

proposed and is found to achieve performance comparable to the best of

existing disk layout approaches in most workloads and configurations.

7.3 Future Work

There are many open research issues related to this thesis work. Some possible

future research directions may include:

1. Studying whether the self-tuning page cleaning algorithm can respond well to

workload changes in the system.

149

2. Implementing the self-tuning page cleaning algorithm in a real DBMS system

and evaluating its performance under real workloads.

3. Designing better hash functions for the multi-region cache so that its

performance is not compromised, even in highly skewed workloads.

Modelling analysis indicates that when the distribution of logical requests to

pages is highly skewed, the hit ratio of the multi-region cache has larger

variance. A better hash function that scatters hot pages into different regions

could reduce this variance.

4. Improving the multi-region cache so that its performance is more stable

when a large number of regions are used. Simulation results indicate that the

hit ratio of the multi-region cache decreases when there are too many

regions. This is because some regions have too low hit ratios. If these regions

can be identified and their pages can be rearranged, multi-region cache could

achieve good performance even when many regions are used.

5. Implementing and evaluating the multi-region cache approach in real

systems.

6. Using different replacement algorithms in different regions of the multi-region

cache to adaptively select the best performing algorithm. This is similar to

the caching using multiple experts approach [5, 42], but should have much

lower overhead. Each region of the multi-region cache has almost the same

performance. When different replacement algorithms are used in each region,

the replacement algorithm performs the best on one region is likely to

perform the best on all other regions. Therefore, the best replacement

algorithm can be adaptively selected and applied to most regions without

simulating all replacement algorithms on each buffer cache access.

7. Designing new cache replacement algorithms which can take advantage of

full region scan at cache misses using multi-region cache. Scanning the whole

region on a cache miss incurs little overhead when each region is small. This

150

relaxes the time complexity from O(1) to O(n), and thus enables more design

choices when designing replacement algorithms.

8. Designing approaches to implement advanced replacement algorithms in

virtual memory management with small additional hardware support. By

recording the last reference time in the page table by hardware, LRU can be

implemented by scanning the whole region for the candidate to evict. With

slightly more additional hardware, a large class of replacement algorithms

can be implemented in virtual memory in a similar way. The performance

benefits and hardware costs of such design could provide valuable guidance

to computer architecture designers.

9. Studying the read performance of HyLog, especially in workloads with

random updates and sequential reads, since the sequential layout of data are

damaged by the random updates and could decrease the read performance.

10. Stabilizing the LFS implementation in NetBSD and evaluating its

performance under various benchmarks. The LFS implementation in

NetBSD is the most close to complete implementation of LFS available in

modern open source operating systems. After making the NetBSD LFS

implementation more stable, performance tests can be conducted on modern

hardware to verify its performance against that predicted by the write cost

model proposed in Section 6.1 (page 116).

11. Implementing HyLog in NetBSD and comparing its performance to LFS and

other file systems.

12. Designing approaches to add snapshot support in LFS and HyLog.

Implementing it in real systems, and comparing its performance to existing

systems supporting snapshots, such as FreeBSD FFS [35] and WAFL [48].

151

References

[1] Anurag Acharya, Mustafa Uysal, and Joel H. Saltz. Active disks:
Programming model, algorithms and evaluation. In Architectural Support for
Programming Languages and Operating Systems (ASPLOS 1998), pages
81–91, San Jose, CA, October 1998.

[2] Nick Allen. Don’t waste your storage dollars: What you need to know.
Research note, Gartner Group, March 2001.
http://www.gartner.com/DisplayDocument?doc_cd=96816.

[3] Dave Anderson, Jim Dykes, and Erik Riedel. More than an interface — SCSI
vs. ATA. In Proceedings of the 2nd USENIX Conference on File and Storage
Technologies (FAST 2003), pages 245–257, San Francisco, CA, March-April
2003.

[4] Eric Anderson, Ram Swaminathan, Alistair Veitch, Guillermo A. Alvarez,
and John Wilkes. Selecting RAID levels for disk arrays. In Proceedings of the
1st USENIX Conference on File and Storage Technologies (FAST 2002),
pages 189–201, Monterey, CA, January 2002.

[5] Ismail Ari, Ahmed Amer, Ethan Miller, Scott Brandt, and Darrell Long.
Who is more adaptive? ACME: Adaptive caching using multiple experts. In
4th Workshop on Distributed Data and Structures (WDAS 2002), pages
143–158, Paris, France, March 2002.

[6] Martin F. Arlitt. A performance study of Internet web servers. Master’s
thesis, Department of Computer Science, University of Saskatchewan, 1996.

[7] Mary G. Baker, John H. Hartman, Michael D. Kupfer, Ken W. Shirriff, and
John K. Ousterhout. Measurements of a distributed file system. In
Proceedings of the 13th ACM symposium on Operating systems principles
(SOSP 1991), pages 198–212, 1991.

[8] Sorav Bansal and Dharmendra S. Modha. CAR: Clock with adaptive
replacement. In Proceedings of the 3rd USENIX Conference on File and
Storage Technologies (FAST 2004), pages 187–200, San Francisco, CA,
March-April 2004.

[9] Luiz Andr Barroso, Kourosh Gharachorloo, and Edouard Bugnion. Memory
system characterization of commercial workloads. In Proceedings of the 25th
Annual International Symposium on Computer Architecture (ISCA 1998),
pages 3–14, Barcelona, Spain, 1998.

[10] BerkeleyDB 4.1.25. http://www.sleepycat.com.

152

[11] BerkeleyDB 4.1.25 Win32 mutex implementation. Source code
mutex/mut_win32.c. http://www.sleepycat.com/download/index.shtml.

[12] Trevor Blackwell, Jeffrey Harris, and Margo Seltzer. Heuristic cleaning
algorithms in log-structured file systems. In Proceedings of the 1995 USENIX
Annual Technical Conference (USENIX 1995), pages 277–288, New Orleans,
LA, January 1995.

[13] Kurt P. Brown. Goal-oriented Memory Allocation in Database Management
Systems. PhD thesis, Computer Sciences Department, University of
Wisconsin, Madison, WI, 1995.

[14] Kurt P. Brown, Michael J. Carey, and Miron Livny. Goal-oriented buffer
management revisited. In Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data (SIGMOD 1996), pages
353–364, Montreal, PQ, 1996.

[15] Fang-Fang Cai, M Elizabeth C Hull, and David A. Bell. Buffer management
for high performance database systems. In Proceedings of the
High-Performance Computing on the Information Superhighway (HPC-Asia
1997), pages 633–638, Seoul, Korea, April-May 1997.

[16] Pei Cao, Edward W. Felten, Anna R. Karlin, and Kai Li. Implementation
and performance of integrated application-controlled caching, prefetching
and disk scheduling. ACM Transactions on Computer Systems (TOCS),
14(4):311–343, 1996.

[17] Valeria Cardellini, Emiliano Casalicchio, Michele Colajanni, and Philip S.
Yu. The state of the art in locally distributed web-server systems. ACM
Computing Surveys (CSUR), 34(2):263–311, 2002.

[18] Zhifeng Chen and Yuanyuan Zhou. Eviction-based cache placement for
storage caches. In Proceedings of the 2003 USENIX Annual Technical
Conference (USENIX 2003), pages 269–282, San Antonio, TX, June 2003.

[19] Jongmoo Choi, Sam H. Noh, Sang Lyul Min, and Yookun Cho. An adaptive
block management scheme using on-line detection of block reference
patterns. In Proceedings of the 1998 International Workshop on Multimedia
Database Management Systems (IW-MMDBMS 1998), pages 172–179,
Dayton, OH, August 1998.

[20] Jongmoo Choi, Sam H. Noh, Sang Lyul Min, and Yookun Cho. Towards
application/file-level characterization of block references: A case for
fine-grained buffer management. In Proceedings of the 2000 ACM
SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS 2000), pages 286–295, Santa Clara, CA,
June 2000.

153

[21] Hong-Tai Chou and David J. DeWitt. An evaluation of buffer management
strategies for relational database systems. In Proceedings of the 11th

International Conference on Very Large Data Bases (VLDB 1985), pages
174–188, Stockholm, Sweden, August 1985.

[22] Wesley W. Chu and Holger Opderbeck. Program behavior and the
page-fault-frequency replacement algorithm. Computer, 9(11):29–38,
November 1976.

[23] Jen-Yao Chung, Donald Ferguson, George Wang, Christos Nikolaou, and Jim
Teng. Goal oriented dynamic buffer pool management for data base systems.
Technical Report TR94-0125, ICS/FORTH, Heraklion, Crete, Greece,
October 1994.

[24] Peter Corbett, Bob English, Atul Goel, Tomislav Grcanac, Steven Kleiman,
James Leong, and Sunitha Sankar. Row-diagonal parity for double disk
failure correction. In Proceedings of the 3rd USENIX Conference on File and
Storage Technologies (FAST 2004), pages 1–14, San Francisco, CA,
March-April 2004.

[25] Microsoft Corporation. Microsoft SQL Server 7.0 storage engine capacity
planning tips. MSDN Library, March 1999.
http://msdn.microsoft.com/library/default.asp?url=/library/

en-us/dnsql7%/html/storageeng.asp.

[26] OSDL Database test 3. http://www.osdl.org/lab_activities/kernel_
testing/osdl_database_test_su%ite/osdl_dbt-3/.

[27] Timothy Denehy, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau.
Bridging the information gap in storage protocol stacks. In Proceedings of
the 2002 USENIX Annual Technical Conference (USENIX 2002), pages
177–190, Monterey, CA, June 2002.

[28] Peter J. Denning. Effects of scheduling on file memory operations. In AFIPS
Spring Joining Computer Conference, pages 9–21, Washington, D.C., April
1967.

[29] Peter J. Denning. The working set model for program behavior.
Communications of the ACM (CACM), 11(5):323–333, May 1968.

[30] Rohit Dube. A comparison of the memory management sub-system in
FreeBSD and Linux. Technical report, Department of Computer Science,
University of Maryland, September 1998.

[31] Wolfgang Effelsberg and Theo Haerder. Principles of database buffer
management. ACM Transactions on Database Systems (TODS),
9(4):560–595, December 1984.

154

[32] Daniel Ellard, Jonathan Ledlie, Pia Malkani, and Margo Seltzer. Passive
NFS tracing of email and research workloads. In Proceedings of the 2nd

USENIX Conference on File and Storage Technologies (FAST 2003), pages
203–216, San Francisco, CA, March-April 2003.

[33] Said S. Elnaffar. A methodology for auto-recognizing DBMS workloads. In
Proceedings of CASCON 2002, pages 74–88, Toronto, ON, September 2002.

[34] Christos Faloutsos, Raymond T. Ng, and Timos K. Sellis. Flexible and
adaptable buffer management techniques for database management systems.
IEEE Transactions on Computers (TC), 44(4):546–560, April 1995.

[35] FreeBSD Developers’ Handbook. http://www.freebsd.org/doc/en_US.
ISO8859-1/books/developers-handbook/.

[36] Kevin W. Froese and Richard B. Bunt. The effect of client caching on file
server workloads. In Proceedings of the 29th Hawaii International Conference
on System Sciences (HICSS 1996), pages 150–159, Kihei, HI, January 1996.

[37] Gregory R. Ganger, Marshall K. McKusick, Craig A. N. Soules, and Yale N.
Patt. Soft updates: a solution to the metadata update problem in file
systems. ACM Transactions on Computer Systems (TOCS), 18(2):127–153,
2000.

[38] Gregory R. Ganger, Bruce L. Worthington, and Yale N. Patt. The DiskSim
Simulation Environment Version 2.0 Reference Manual, December 1999.
http://www.ece.cmu.edu/~ganger/disksim/.

[39] Robert Geist and Stephen Daniel. A continuum of disk scheduling
algorithms. ACM Transactions on Computer Systems (TOCS), 5(1):77–92,
1987.

[40] Dominic Giampaolo. Practical File System Design. Morgan Kaufmann, 1999.

[41] Gideon Glass and Pei Cao. Adaptive page replacement based on memory
reference behavior. In Proceedings of the 1997 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS 1997), pages 115–126, Seattle, WA, June 1997.

[42] Robert B. Gramacy, Manfred K.Warmuth, Scott A. Brandt, and Ismail Ari.
Adaptive caching by refetching. In 15th Annual Conference on Neural
Information Processing Systems (NIPS 2002), pages 1465–1472, Vancouver,
BC, December 2002.

[43] Jim Gray and Prashant J. Shenoy. Rules of thumb in data engineering. In
Proceedings of the 16th International Conference on Data Engineering
(ICDE 2000), pages 3–12, San Diego, CA, February – March 2000.

155

[44] John Linwood Griffin, Steven W. Schlosser, Gregory R. Ganger, and David
Nagle. Modeling and performance of MEMS-based storage devices. In
Proceedings of the 2000 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS 2000),
pages 56–65, Santa Clara, CA, June 2000.

[45] John Linwood Griffin, Steven W. Schlosser, Gregory R. Ganger, and David
Nagle. Operating system management of MEMS-based storage devices. In
Proceedings of the 4th ACM Symposium on Operating System Design and
Implementation (OSDI 2000), pages 227–242, San Diego, CA, October 2000.
http://www.usenix.org/events/osdi2000/griffin.html.

[46] Laura M. Haas, Walter Chang, Guy M. Lohman, John McPherson, Paul F.
Wilms, George Lapis, Bruce G. Lindsay, Hamid Pirahesh, Michael J. Carey,
and Eugene J. Shekita. Starburst mid-flight: As the dust clears. IEEE
Transactions on Knowledge and Data Engineering (TKDE), 2(1):143–160,
March 1990.

[47] John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, third edition, 2003.

[48] Dave Hitz, James Lau, and Michael Malcolm. File system design for an NFS
file server appliance. In Proceedings of the USENIX Winter 1994 Technical
Conference (USENIX Winter 1994), pages 235–246, San Francisco, CA,
January 1994.

[49] Bo Hong, Scott A. Brandt, Darrell D. E. Long, Ethan L. Miller, Karen A.
Glocer, and Zachary N. J. Peterson. Zone-based shortest positioning time
first scheduling for MEMS-based storage devices. In Proceedings of the 11th
International Symposium on Modeling, Analysis and Simulation on
Computer and Telecommunication Systems (MASCOTS 2003), pages
104–113, Orlando, FL, October 2003.

[50] Windsor W. Hsu, Alan Jay Smith, and Honesty C. Young. Projecting the
performance of decision support workloads on systems with smart storage
(SmartSTOR). In Proceedings of the 2000 International Conference on
Parallel and Distributed Systems (ICPADS 2000), pages 417–425, Iwate,
Japan, July 2000. Also available as Technical Report CSD-99-1057, UC
Berkeley, Berkeley, CA, August 1999.

[51] Windsor W. Hsu, Alan Jay Smith, and Honesty C. Young. Characteristics of
production database workloads and the TPC benchmarks. IBM Systems
Journal, 40(3):781–802, 2001.

[52] Windsor W. Hsu, Alan Jay Smith, and Honesty C. Young. I/O reference
behavior of production database workloads and the TPC benchmarks – an
analysis at the logical level. ACM Transactions on Database Systems
(TODS), 26(1):96–143, 2001.

156

[53] Yiming Hu and Qing Yang. DCD – disk caching disk: A new approach for
boosting I/O performance. In Proceedings of the 23rd Annual International
Symposium on Computer Architecture (ISCA 1996), pages 169–178,
Philadelphia, PA, May 1996.

[54] Lan Huang and Tzi-cker Chiueh. Experiences in building a software-based
SATF disk scheduler. Technical Report ECSL-TR81, State University of
New York, Stony Brook, March 2000. Revised in July, 2001.

[55] Larry Huston, Rahul Sukthankar, Rajiv Wickremesinghe,
M. Satyanarayanan, Gregory R. Ganger, Erik Riedel, and Anastassia
Ailamaki. Diamond: A storage architecture for early discard in interactive
search. In Proceedings of the 3rd USENIX Conference on File and Storage
Technologies (FAST 2004), pages 73–86, San Francisco, CA, March-April
2004.

[56] David Jacobson and John Wilkes. Disk scheduling algorithms based on
rotational position. Technical Report HPL-CSP-91-7, Hewlett-Packard
Technical Report, February 1991.

[57] Bob Jenkins. Hash functions for hash table lookup. Dr. Dobb’s, September
1997. Available at http://burtleburtle.net/bob/hash/evahash.html.

[58] The IBM JFS open source project.
http://oss.software.ibm.com/developerworks/opensource/jfs.

[59] Song Jiang and Xiaodong Zhang. LIRS: an efficient low inter-reference
recency set replacement policy to improve buffer cache performance. In
Proceedings of the 2002 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS 2002),
pages 31–42, Marina Del Rey, CA, 2002.

[60] Theodore Johnson and Dennis Shasha. 2Q: A low overhead high
performance buffer management replacement algorithm. In Proceedings of
20th International Conference on Very Large Data Bases (VLDB 1994),
pages 439–450, Santiago de Chile, Chile, September 1994.

[61] John P. Kearns and Samuel DeFazio. Locality of reference in hierarchical
database systems. IEEE Transactions on Software Engineering,
SE-9(2):128–134, March 1983.

[62] John P. Kearns and Samuel DeFazio. Diversity in database reference
behavior. In Proceedings of the 1989 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS 1989), pages 11–19, Berkeley, CA, May 1989.

[63] Kimberly Keeton, David A. Patterson, and Joseph M. Hellerstein. A case for
intelligent disks (IDISKs). SIGMOD Record, 27(3):42–52, 1998.

157

[64] Jong Min Kim, Jongmoo Choi, Jesung Kim, Sam H. Noh, Sang Lyul Min,
Yookun Cho, and Chong Sang Kim. Unified buffer management scheme that
exploits sequential and looping references. In Proceedings of the 4th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 2000),
San Diego, CA, October 2000.

[65] Donald E. Knuth. The Art of Computer Programming – Sorting and
Searching, volume 3. Addison-Wesley, second edition, 1998.

[66] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H. Noh, Sang Lyul Min,
Yookun Cho, and Chong Sang Kim. On the existence of a spectrum of
policies that subsumes the least recently used (LRU) and least frequently
used (LFU) policies. In Proceedings of the 1999 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS 1999), pages 134–143, Atlanta, GA, May 1999.

[67] Sangdon Lee and Sukho Lee. Applying dynamic buffer allocation to
predictive load control. In Proceedings of the 13th International Conference
on Technology and Education (ICTE 1995), pages 150–155, Orlando, FL,
March 1995.

[68] Fujian Liu, Yanping Zhao, Wenguang Wang, and Dwight Makaroff.
Database server workload characterization in an e-commerce environment. In
Proceedings of the 12th International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS 2004),
pages 475–483, Volendam, Netherlands, October 2004.

[69] David Lomet. The case for log structuring in database systems. In
Proceedings of the 6th International Workshop on High Performance
Transaction Systems (HPTS 1995), September 1995.

[70] Christopher R. Lumb, Jiri Schindler, and Gregory R. Ganger. Freeblock
scheduling outside of disk firmware. In Proceedings of the 1st USENIX
Conference on File and Storage Technologies (FAST 2002), pages 275–288,
Monterey, CA, January 2002.

[71] Christopher R. Lumb, Jiri Schindler, Gregory R. Ganger, David F. Nagle,
and Eric Riedel. Towards higher disk head utilization: Extracting free
bandwidth from busy disk drives. In Proceedings of the 4th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 2000),
San Diego, CA, October 2000.

[72] Jeanna Neefe Matthews, Drew Roselli, Adam M. Costello, Randolph Y.
Wang, and Thomas E. Anderson. Improving the performance of
log-structured file systems with adaptive methods. In Proceedings of the 16th

ACM Symposium on Operating Systems Principles (SOSP 1997), pages
238–251, Saint-Malo, France, October 1997.

158

[73] Marshall K. McKusick. The Design and Implementation of the 4.4BSD
Operating System. Addison-Wesley Longman, Reading, MA, 1996.

[74] Marshall K. McKusick, William N. Joy, Samuel J. Leffler, and Robert S.
Fabry. A fast file system for UNIX. ACM Transactions on Computer
Systems (TOCS), 2(3):181–197, 1984.

[75] Larry W. McVoy and Steve R. Kleiman. Extent-like performance from a
UNIX file system. In Proceedings of the USENIX Winter 1991 Technical
Conference (USENIX Winter 1991), pages 33–44, Dallas, TX, January 1991.

[76] Nimrod Megiddo and Dharmendra S. Modha. ARC: A self-tuning, low
overhead replacement cache. In Proceedings of the 2nd USENIX Conference
on File and Storage Technologies (FAST 2003), pages 115–130, San
Francisco, CA, March-April 2003.

[77] Jai Menon. A performance comparison of RAID-5 and log-structured arrays.
In Fourth IEEE Symposium on High-Performance Distributed Computing
(HPDC 1995), pages 167–178, Charlottesville, VI, August 1995.

[78] Jai Menon and Larry Stockmeyer. An age-threshold algorithm for garbage
collection in log-structured arrays and file systems. IBM Research Report RJ
10120, IBM Research Division, San Jose, CA, 1998.

[79] Alan Gilbert Merten. Some quantitative techniques for file organization.
PhD thesis, Computer Sciences Department, University of Wisconsin,
Madison, WI, 1970.

[80] MySQL 4.0.4 beta buffer pool replacement algorithm.
innobase/buf/buf0buf.c. http://www.mysql.com.

[81] Network Appliance Inc. http://www.netapp.com.

[82] Victor F. Nicola, Asit Dan, and Daniel M. Dias. Analysis of the generalized
clock buffer replacement scheme for database transaction processing. In
Proceedings of the 1992 ACM SIGMETRICS and PERFORMANCE 1992
International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS 1992 / PERFORMANCE 1992), pages 35–46,
Newport, RI, June 1992.

[83] Geoffrey J. Noer. Cygwin32: A free Win32 porting layer for UNIX
applications. In 2nd USENIX Windows NT Symposium, pages 31–38, Seattle,
WA, August 1998.

[84] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. The LRU-K
page replacement algorithm for database disk buffering. In Proceedings of the
1993 ACM SIGMOD International Conference on Management of Data
(SIGMOD 1993), pages 297–306, Washington, DC, May 1993.

159

[85] John K. Ousterhout. The second critique of Seltzer’s LFS measurements.
http:

//www.eecs.harvard.edu/~margo/usenix.195/ouster_critique2.html.

[86] John K. Ousterhout. Why aren’t operating systems getting faster as fast as
hardware? In Proceedings of the USENIX Summer 1994 Technical
Conference (USENIX Summer 1994), pages 247–256, Anaheim, CA, June
1990.

[87] John K. Ousterhout, Hervè Da Costa, David Harrison, John A. Kunze, Mike
Kupfer, and James G. Thompson. A trace-driven analysis of the UNIX 4.2
BSD file system. In Proceedings of the 10th ACM Symposium on Operating
Systems Principles (SOSP 1985), pages 15–24, 1985.

[88] John K. Ousterhout and Fred Douglis. Beating the I/O bottleneck: A case
for log-structured file systems. Operating Systems Review, 23(1):11–28,
January 1989.

[89] David Patterson, Garth Gibson, and Randy H. Katz. A case for redundant
arrays of inexpensive disks (RAID). In Proceedings of the 1988 ACM
SIGMOD International Conference on Management of Data (SIGMOD
1988), pages 109–116, Chicago, IL, June 1988.

[90] PostgreSQL. http://www.postgresql.org.

[91] PostgreSQL 7.2.2 buffer cache replacement algorithm.
postgresql-7.2.2-1/src/backend/storage/buffer/freelist.c.
http://www.postgresql.org.

[92] ReiserFS. http://www.namesys.com/.

[93] John T. Robinson and Murthy V. Devarakonda. Data cache management
using frequency-based replacement. In Proceedings of the 1990 ACM
SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS 1990), pages 134–142, Boulder, CO, May
1990.

[94] Drew Roselli, Jacob Lorch, and Thomas Anderson. A comparison of file
system workloads. In Proceedings of the 2000 USENIX Annual Technical
Conference (USENIX 2000), pages 41–54, San Diego, CA, June 2000.

[95] Mendel Rosenblum. The Design and Implementation of a Log-Structured
File System. PhD thesis, Department of Compute Science, University of
California, Berkeley, June 1992. Also available as Technical Report
UCB/CSD 92/696.

[96] Mendel Rosenblum and John K. Ousterhout. The design and
implementation of a log-structured file system. ACM Transactions on
Computer Systems (TOCS), 10(1):26–52, 1992.

160

[97] Mark Russinovich. Inside NTFS. Windows 2000 Magazine, January 1998.
http://www.winntmag.com/Articles/Index.cfm?ArticleID=3455.

[98] Giovanni Maria Sacco. Index access with a finite buffer. In Proceedings of
the 13th International Conference on Very Large Data Bases (VLDB 1987),
pages 301–309, Brighton, England, September 1987.

[99] Giovanni Maria Sacco and Mario Schkolnick. Buffer management in
relational database systems. ACM Transactions on Database Systems
(TODS), 11(4):473–498, December 1986.

[100] Jiri Schindler and Gregory R. Ganger. Automated disk drive
characterization. Technical Report CMU-CS-99-196, School of Computer
Science, Carnegie Mellon University, December 1999.

[101] Jiri Schindler, John Linwood Griffin, Christopher R. Lumb, and Gregory R.
Ganger. Track-aligned extents: Matching access patterns to disk drive
characteristics. In Proceedings of the 1st USENIX Conference on File and
Storage Technologies (FAST 2002), pages 259–274, Monterey, CA, January
2002.

[102] Jiri Schindler, Steven W. Schlosser, Minglong Shao, Anastassia Ailamaki,
and Gregory R. Ganger. Atropos: A disk array volume manager for
orchestrated use of disks. In Proceedings of the 3rd USENIX Conference on
File and Storage Technologies (FAST 2004), pages 159–172, San Francisco,
CA, March-April 2004.

[103] Steven W. Schlosser and Gregory R. Ganger. MEMS-based storage devices
and standard disk interfaces: A square peg in a round hole? In Proceedings
of the 3rd USENIX Conference on File and Storage Technologies (FAST
2004), pages 87–100, San Francisco, CA, March-April 2004.

[104] Frank Schmuck and Roger Haskin. GPFS: a shared-disk file system for large
computing clusters. In Proceedings of the 1st USENIX Conference on File
and Storage Technologies (FAST 2002), pages 231–244, Monterey, CA,
January 2002.

[105] Harald Schoening. The ADABAS buffer pool manager. In Proceedings of the
24th International Conference on Very Large Databases (VLDB 1998), pages
675–679, New York City, NY, August 1998.

[106] Margo Seltzer, Keith Bostic, Marshall K. McKusick, and Carl Staelin. An
implementation of a log-structured file system for UNIX. In Proceedings of
the USENIX Winter 1993 Technical Conference (USENIX Winter 1993),
pages 307–326, San Diego, CA, January 1993.

[107] Margo Seltzer, Peter Chen, and John K. Ousterhout. Disk scheduling
revisited. In Proceedings of the USENIX Winter 1990 Technical Conference
(USENIX Winter 1990), pages 313–324, Berkeley, CA, 1990.

161

[108] Margo Seltzer, Keith A. Smith, Hari Balakrishnan, Jacqueline Chang, Sara
McMains, and Venkata Padmanabhan. File system logging versus clustering:
A performance comparison. In Proceedings of the 1995 USENIX Annual
Technical Conference (USENIX 1995), pages 249–264, New Orleans, LA,
January 1995.

[109] Chuck Silvers. UBC: An efficient unified I/O and memory caching subsystem
for NetBSD. In Proceedings of the 2000 USENIX Annual Technical
Conference (USENIX 2000), FREENIX Track, pages 285–290, San Diego,
CA, June 2000.

[110] Muthian Sivathanu, Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Improving storage system availability with
D-GRAID. In Proceedings of the 3rd USENIX Conference on File and
Storage Technologies (FAST 2004), pages 15–30, San Francisco, CA,
March-April 2004.

[111] Muthian Sivathanu, Vijayan Prabhakaran, Florentina I. Popovici,
Timothy E. Denehy, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Semantically-smart disk systems. In Proceedings of the 2nd

USENIX Conference on File and Storage Technologies (FAST 2003), pages
73–88, San Francisco, CA, March-April 2003.

[112] Yannis Smaragdakis, Scott Kaplan, and Paul Wilson. EELRU: Simple and
effective adaptive page replacement. In Proceedings of the 1999 ACM
SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS 1999), pages 122–133, Atlanta, GA, May
1999.

[113] Storage performance council I/O traces.
http://traces.cs.umass.edu/storage.

[114] The Sprite operating system.
http://www.cs.berkeley.edu/projects/sprite/sprite.html.

[115] William Stallings. Operating Systems: Internals and Design Principles.
Prentice Hall, 4th edition, 2000.

[116] Harold S. Stone, John Turek, and Joel L. Wolf. Optimal partitioning of cache
memory. IEEE Transactions on Computers (TC), 41(9):1054–1068, 1992.

[117] Adam Sweeney, Doug Doucette, Wei Hu, Curtis Anderson, Mike Nishimoto,
and Geoff Peck. Scalability in the XFS file system. In Proceedings of the
1996 USENIX Annual Technical Conference (USENIX 1996), pages 1–14,
San Diego, CA, January 1996.

[118] EMC Corporation. http://www.emc.com.

162

[119] James Z. Teng and Robert A. Gumaer. Managing IBM database 2 buffers to
maximize performance. IBM Systems Journal, 23(2):211–218, 1984.

[120] Eno Thereska, Jiri Schindler, John Bucy, Brandon Salmon, Christopher R.
Lumb, and Gregory R. Ganger. A framework for building unobtrusive disk
maintenance applications. In Proceedings of the 3rd USENIX Conference on
File and Storage Technologies (FAST 2004), pages 213–226, San Francisco,
CA, March-April 2004.

[121] Dominique Thiébaut and Harold S. Stone. Improving disk cache hit-ratios
through cache partitioning. IEEE Transactions on Computers (TC),
41(6):665–676, 1992.

[122] Ken Thompson. UNIX implementation. Bell Systems Technical Journal,
57(6):1931–1946, July-August 1978.

[123] Wenhu Tian, Pat Martin, and Wendy Powley. Techniques for automatically
sizing multiple buffer pools in DB2. In Proceedings of CASCON 2003, pages
237–245, Toronto, ON, October 2003.

[124] Transaction processing performance council. http://www.tpc.org/.

[125] Java TPC-W implementation distribution.
http://www.ece.wisc.edu/~pharm/tpcw.shtml.

[126] TPC-W results list.
http://www.tpc.org/tpcw/results/tpcw_results.asp.

[127] Theodore Tso and Stephen Tweedie. Planned extensions to the Linux
ext2/ext3 filesystem. In Proceedings of the 2002 USENIX Annual Technical
Conference (USENIX 2002), FREENIX Track, pages 235–244, Monterey,
CA, June 2002.

[128] Mustafa Uysal, Arif Merchant, and Guillermo A. Alvarez. Using
MEMS-based storage in disk arrays. In Proceedings of the 2nd USENIX
Conference on File and Storage Technologies (FAST 2003), pages 89–101,
San Francisco, CA, March-April 2003.

[129] Werner Vogels. File system usage in Windows NT. In Proceedings of the 17th

ACM Symposium on Operating Systems Principles (SOSP 1999), pages
93–109, Kiawah Island, SC, December 1999.

[130] Jun Wang and Yiming Hu. PROFS–performance-oriented data
reorganization for log-structured file systems on multi-zone disks. In
Proceedings of the 9th International Symposium on Modeling, Analysis and
Simulation on Computer and Telecommunication Systems (MASCOTS
2001), pages 285–292, Cincinnati, OH, August 2001.
http://www.ececs.uc.edu/~oscar/papers/PROFS.html.

163

[131] Jun Wang and Yiming Hu. WOLF – a novel reordering write buffer to boost
the performance of log-structured file systems. In Proceedings of the 1st

USENIX Conference on File and Storage Technologies (FAST 2002), pages
46–60, Monterey, CA, January 2002.

[132] Randolph Y. Wang, Thomas E. Anderson, and David A. Patterson. Virtual
log based file systems for a programmable disk. In Proceedings of the 3rd

USENIX Symposium on Operating Systems Design and Implementation
(OSDI 1999), pages 29–43, New Orleans, LA, February 1999.

[133] Wenguang Wang and Richard B. Bunt. Simulating DB2 buffer pool
management. In Proceedings of CASCON 2000, pages 88–97, Toronto, ON,
November 2000.

[134] Wenguang Wang and Richard B. Bunt. A self-tuning page cleaner for DB2.
In Proceedings of the 10th International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MASCOTS
2002), pages 81–89, Fort Worth, TX, October 2002.

[135] Wenguang Wang, Yanping Zhao, and Richard B. Bunt. HyLog: A high
performance approach to managing disk layout. In Proceedings of the 3rd

USENIX Conference on File and Storage Technologies (FAST 2004), pages
145–158, San Francisco, CA, March-April 2004.

[136] John Wilkes, Richard Golding, Carl Staelin, and Tim Sullivan. The HP
AutoRAID hierarchical storage system. In Proceedings of the 15th ACM
Symposium on Operating Systems Principles (SOSP 1995), pages 96–108,
Copper Mountain, CO, 1995.

[137] Darryl L. Willick, Derek L. Eager, and Richard B. Bunt. Disk cache
replacement policies for network fileservers. In Proceedings of the 13th

International Conference on Distributed Computing Systems(ICDCS 1993),
pages 2–11, Pittsburgh, PA, May 1993.

[138] Theodore Wong and John Wilkes. My cache or yours? making storage more
exclusive. In Proceedings of the 2002 USENIX Annual Technical Conference
(USENIX 2002), pages 161–175, Monterey, CA, June 2002.

[139] Bruce L. Worthington, Gregory R. Ganger, and Yale N. Patt. Scheduling
algorithms for modern disk drives. In Proceedings of the 1994 ACM
SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS 1994), pages 241–251, Nashville, TN,
1994.

[140] Zhihui Zhang and Kanad Ghose. yFS: A journaling file system design for
handling large data sets with reduced seeking. In Proceedings of the 2nd

USENIX Conference on File and Storage Technologies (FAST 2003), pages
59–72, San Francisco, CA, March-April 2003.

164

[141] Yuanyuan Zhou, James F. Philbin, and Kai Li. The multi-queue replacement
algorithm for second level buffer caches. In Proceedings of the 2001 USENIX
Annual Technical Conference (USENIX 2001), pages 91–104, Boston, MA,
June 2001.

[142] Yingwu Zhu and Yiming Hu. Can large disk built-in caches really improve
system performance? In Proceedings of the 2002 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS 2002), pages 284–285, Marina Del Rey, CA, 2002.

165

	 Permission To Use
	 Abstract
	 Acknowledgements
	 Table of Contents
	 List of Tables
	 List of Figures
	 List of Acronyms
	1 Introduction
	1.1 Background and Motivation
	1.2 Storage Management Overview
	1.2.1 The Buffer Cache Layer
	1.2.2 The Disk Layout Layer

	1.3 Contributions of the Thesis
	1.3.1 Self-tuning of Buffer Cache Management
	1.3.2 Lock Contention of Buffer Cache Management
	1.3.3 Disk Layout Management

	1.4 Thesis Organization

	2 Related Research
	2.1 The Hardware Layer
	2.2 The Firmware Layer
	2.2.1 Disk Scheduling
	2.2.2 Disk Cache
	2.2.3 Redundant Array of Independent Disks (RAID)

	2.3 The Disk Layout Layer
	2.3.1 Disk Layout Optimized for Large Sequential Access
	2.3.2 Disk Layout Optimized for Metadata Updates
	2.3.3 Disk Layout Optimized for Small Writes

	2.4 The Buffer Cache Layer
	2.4.1 Characteristics of References to the Buffer Cache
	2.4.2 Replacement Algorithms
	2.4.3 Other Issues of Buffer Cache Management

	2.5 Mixing the Layers
	2.5.1 Using Lower Layer Knowledge
	2.5.2 Using Upper Layer Knowledge
	2.5.3 Difficulties of Mixing Layers

	3 Research Methodology
	3.1 Typical Workloads
	3.1.1 Database Workloads
	3.1.1.1 OLTP Workloads
	3.1.1.2 Decision Support Workloads
	3.1.1.3 E-commerce Workloads

	3.1.2 File Server Workloads
	3.1.3 Storage Server Workloads

	3.2 TPC-C Workload Characterization
	3.2.1 Overview of TPC-C
	3.2.2 System Configuration and Trace Collection
	3.2.3 Reference Characteristics in the TPC-C Benchmark
	3.2.4 Single-user Workload Characteristics
	3.2.4.1 Overall Characteristics
	3.2.4.2 Characteristics of Different Tables
	3.2.4.3 Characteristics of Data And Indexes

	3.2.5 Multi-user Workload Characteristics
	3.2.6 Summary

	4 Self-tuning of Buffer Cache Management
	4.1 Buffer Cache Management Overview
	4.2 Methodology
	4.2.1 System Configuration and Experimental Setup
	4.2.2 The Buffer Cache Simulator
	4.2.3 Simulator Validation

	4.3 Experiments with the Page Cleaning Algorithm
	4.3.1 I/O Activities in the Buffer Cache
	4.3.2 The Impact of the Number of Page Cleaners

	4.4 A Self-tuning Algorithm for Page Cleaning
	4.5 Simulation Results
	4.6 Summary

	5 Lock Contention in Buffer Cache Management
	5.1 Motivation
	5.2 Context and Definitions
	5.3 Methodology
	5.3.1 Buffer Cache Simulator
	5.3.2 Contention Micro-benchmark
	5.3.3 Buffer Cache Emulator
	5.3.4 Workloads

	5.4 Analysis of Contention
	5.4.1 Spin Lock and Contention
	5.4.2 Factors Impacting Contention
	5.4.3 Tradeoffs Among Contention, Hit Ratio, and Overhead
	5.4.3.1 Hit Ratio
	5.4.3.2 Overhead

	5.5 The Multi-region Cache Approach
	5.6 Evaluation of Multi-region Cache
	5.6.1 Contention
	5.6.2 Miss Ratio
	5.6.2.1 Modeling Results
	5.6.2.2 Simulation Results

	5.6.3 Overhead

	5.7 Discussion
	5.8 Summary

	6 Disk Layout Management
	6.1 Disk Layout Write Cost Model
	6.1.1 Assumptions and Definitions
	6.1.2 Modelling LFS and Overwrite
	6.1.2.1 The Write Cost Model
	6.1.2.2 Performance Comparisons

	6.1.3 The HyLog Model and Performance Potential

	6.2 The Design of HyLog
	6.2.1 Design Assumptions
	6.2.2 Separating Algorithm
	6.2.3 Segment Cleaning Algorithm

	6.3 Methodology
	6.3.1 The Simulator, Verification, and Validation
	6.3.2 The Workloads
	6.3.3 Experimental Setup

	6.4 Performance Evaluation
	6.4.1 Validation of the Cost Model
	6.4.2 Impact of Disk Space Utilization and Disk Type
	6.4.3 Impact of Number of Users and Number of Disks
	6.4.4 Impact of Disk Array Type
	6.4.5 Impact of Workload

	6.5 Summary

	7 Conclusions
	7.1 Thesis Summary
	7.2 Thesis Contributions
	7.3 Future Work

	 References

