
Enhancing the Alloy
Analyzer with
Patterns of Analysis
William Heaven

in collaboration with
Alessandra Russo

Imperial College London

Motivation
Formal techniques not yet widely adopted by programmers.
Commercial pressure to produce higher quality software is
increasing.

Motivation
Formal techniques not yet widely adopted by programmers.
Commercial pressure to produce higher quality software is
increasing.

Software developers favour so-called lightweight techniques that
provide immediate returns and sit comfortably with activity of
implementation.

Motivation
Formal techniques not yet widely adopted by programmers.
Commercial pressure to produce higher quality software is
increasing.

Software developers favour so-called lightweight techniques that
provide immediate returns and sit comfortably with activity of
implementation.

Existing lightweight techniques (such as JML and Alloy) still suffer
shortcomings

Notation
Limited or misleading feedback from tools

JML Example
class BadInvariant {

//@ invariant x.equals (y) && ! x.equals (y);
Integer x = new Integer (1);
Integer y = new Integer (1);

//@ requires true;
//@ ensures x != k;
void setX (Integer k) { x = k; }

}

JML Example
class BadInvariant {

//@ invariant x.equals (y) && ! x.equals (y);
Integer x = new Integer (1);
Integer y = new Integer (1);

//@ requires true;
//@ ensures x != k;
void setX (Integer k) { x = k; }

}

INV ⋀ PRE ⋀ CODE -> POST

JML Example
class BadInvariant {

//@ invariant x.equals (y) && ! x.equals (y);
Integer x = new Integer (1);
Integer y = new Integer (1);

//@ requires true;
//@ ensures x != k;
void setX (Integer k) { x = k; }

}

INV ⋀ PRE ⋀ CODE -> POST
ESC/Java2 passes setX. .. implication vacuously true.

Alloy Example
sig Project { }
sig Employee { project : Project }
sig Pool extends Employee { } { no project }
fact { some Pool }

pred PropertyTest () {
some e : Employee | e not in Pool

} run PropertyTest for 4

Γ

P

Alloy Example
sig Project { }
sig Employee { project : Project }
sig Pool extends Employee { } { no project }
fact { some Pool }

pred PropertyTest () {
some e : Employee | e not in Pool

} run PropertyTest for 4

Analyzer suggests that PropertyTest is inconsistent with the
specification.
But is this really all?

Γ

P

Alloy Example
sig Project { }
sig Employee { project : Project }
sig Pool extends Employee { } { no project }
fact { some Pool }

pred PropertyTest () {
some e : Employee | e not in Pool

} run PropertyTest for 4

⊩ Γ ⋀ P

Γ

P

Aims & Approach
Development of a lightweight specification environment for OO
programs that provides richer analysis feedback.

Aims & Approach
Development of a lightweight specification environment for OO
programs that provides richer analysis feedback.

Loy

Patterns of analysis

Lightweight specification
language for OO programs built
upon Alloy.

For richer feedback.

Example Loy Specification
class ManagedEmployee extends

Employee {
manager : Manager
depends manager <- project

assign (p : Project)
requires no project
ensures project' = p and
manager' = p.manager

modifies project
}

class Project {
manager : Manager
invariant some manager

}

class Employee {
project : Project
invariant
no project.manager

assign (p : Project)
requires no project
ensures project' = p
modifies project

}

Analysis
Check consistency of

invariants
invariants and precondition
invariants and postcondition
precondition and postcondition
postcondition and frame condition
..

Check behavioural subtype properties
invariants of subtype imply invariants of supertype
overriding postconditions imply overridden postconditions
..

Pattern Application
Check that invariant and postcondition of assign in
ManagedEmployee (type B) together imply postcondition of
assign in Employee (type A)

Φ : assign-POSTB ⋀ INVB --> assign-POSTA

Pattern Application
Check that invariant and postcondition of assign in
ManagedEmployee (type B) together imply postcondition of
assign in Employee (type A)

1) Apply pattern for “ -->” to Φ
Pattern warns of vacuous satisfiability of Φ due to unsatisfiable
antecedent.

Φ : assign-POSTB ⋀ INVB --> assign-POSTA

Pattern Application
Check that invariant and postcondition of assign in
ManagedEmployee (type B) together imply postcondition of
assign in Employee (type A)

1) Apply pattern for “ -->” to Φ
Pattern warns of vacuous satisfiability of Φ due to unsatisfiable
antecedent.

2) Apply pattern for “⋀” to antecedent
Pattern checks satisfiability of each combination of conjunct
and identifies unsatisfiability of assign-POSTB ⋀ INVB.

Φ : assign-POSTB ⋀ INVB --> assign-POSTA

Example Loy Specification
class Project {
manager : Manager
invariant some manager

}

class Employee {
project : Project
invariant
no project.manager

assign (p : Project)
requires no project
ensures project' = p
modifies project

}

class ManagedEmployee extends
Employee {

manager : Manager
depends manager <- project

assign (p : Project)
requires no project
ensures project' = p and
manager' = p.manager

modifies project
}

Negation and Conjunction
SAT [¬(A ⋀ ¬A)] T

SAT [A ⋀ ¬A] T

YES

NO

SAT [¬A] T

YES NO

apply [A] T Q: Why is A valid?
apply [A] T

Negation

SAT [A1 ⋀ .. ⋀ An] T

Q: Is Ai vacuously satisfied?
apply [Ai] T , 1 ≤ i ≤ n

Q: Why is A1 ⋀ .. ⋀ An unsatisfiable?
apply [Ai1 ⋀ .. ⋀ Ajk] T ,

1 ≤ i < j ≤ n, 1 ≤ k < n

NOYES

SAT [A] T , SAT [¬A] T

Conjunction

Implication

SAT [A -> B] T

SAT [A] T

SAT [(A ⋀ ¬A) -> B] T

SAT [A ⋀ ¬A] T

WARNING [vacuously SAT.]

YES

NO

WARNINGSAT [¬B] T

YES

YES

YES

NO

NO

NO

WARNINGapply [A] T,

apply [B] T

Q: Why is A valid? apply[A] T ,

Q: Why is B unsatisfiable? apply[B] T

Implication

Universal Quantification
SAT [all x : X . A (x)] T

X ≠ {}

Q: Is A(x) satisfiable? apply [A(x)] (x,X) + T

Q: Is A(x)
vacuously
satisfiable?
apply [A(x)] (x,X) + T

WARNING

NO

NO

SAT [all x : X. some y : Y. P (x,y)] T

SAT [¬ some y : Y. P (x,y)] (x,X) + T

apply [some y : Y. P (x,y)] (x,X) + T

NO

YES

YES

YES

SAT [¬A(x)] (x,X) + T

Universal Quantification

We know formula is
unsatisfiable for at least one

value of x. This SAT query will
provide a value.

YES

Existential Quantification
SAT [all y : Y. P (x,y)] (x,X) + T

Y ≠ {}

NO

NO

WARNING [empty domain:
vacuously unsatisfiable]

SAT [some y : Y . A (y)] T

Q: Is A(y) vacuously
satisfiable?
apply [A(y)] (y,Y) + T

NOYES

Y ≠ {}

YES NO

Q: Why is A(y) unsatisfiable?
apply [A(y)] (y,Y) + T

WARNING

Existential Quantification

Future Work
Finish work on implementing prototype tool on top of Alloy Analyzer.

Future Work
Finish work on implementing prototype tool on top of Alloy Analyzer.

Address main limitation that satisfiability checking is labour intensive
– one approach to be investigated is the implementation of a
change-management system to avoid unnecessary re-analysis of
satisfiability.

Future Work
Finish work on implementing prototype tool on top of Alloy Analyzer.

Address main limitation that satisfiability checking is labour intensive
– one approach to be investigated is the implementation of a
change-management system to avoid unnecessary re-analysis of
satisfiability.

Investigate complexity and completeness issues of the approach.

	Enhancing the Alloy Analyzer with Patterns of Analysis
	Motivation
	Motivation
	Motivation
	JML Example
	JML Example
	JML Example
	Alloy Example
	Alloy Example
	Alloy Example
	Aims & Approach
	Aims & Approach
	Example Loy Specification
	Analysis
	Pattern Application
	Pattern Application
	Pattern Application
	Example Loy Specification
	Future Work
	Future Work
	Future Work

