An Improved Non-Termination Criterion for Binary Constraint Logic Programs

Etienne Payet Fred Mesnard

IREMIA, université de la Réunion, Océan Indien, France

Workshop on Logic-based methods in Programming Environments, 2005

イロト イポト イヨト イヨト

Where Is It?

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP

ヘロト 人間 とくほとくほとう

æ

Outline

Motivation

- Termination/Non-termination in (C)LP
- Previous Work

- Preliminary Definitions
- Main Result

< □ > < 同 > < 三 > <

э

Termination/Non-termination in (C)LP Previous Work

Outline

Motivation

• Termination/Non-termination in (C)LP

Previous Work

Our Contribution

- Preliminary Definitions
- Main Result

イロト イポト イヨト イヨト

ъ

Termination/Non-termination in (C)LP Previous Work

Termination

There exists various web-interfaced termination analyzers for Prolog, e.g.

- cTI (ISO-Prolog)
- TALP
- TermiLog
- TerminWeb

They check or infer termination conditions for *universal termination* of Prolog programs.

◆□ ▶ ◆圖 ▶ ◆ 臣 ▶ ◆ 臣 ▶

ъ

Termination/Non-termination in (C)LP Previous Work

Non-Termination

There is also at least one web-interfaced non-termination tool for *pure* Prolog programs:

nTl

It generates classes of queries for which *existential non-termination* is insured: there exists an infinite branch in the search tree.

イロト イ理ト イヨト イヨト

æ

Termination/Non-termination in (C)LP Previous Work

Optimal Termination Condition

The Idea:

When cTI and nTI produce complementary results, we hold optimal termination conditions for the given program wrt our language defining classes of queries.

ヘロト ヘアト ヘビト ヘビト

Termination/Non-termination in (C)LP Previous Work

An Example (1)

ways(A,Cs,N) iff

- N is the number of ways to change
- a given amount of money A
- using a fixed set Cs of coins values

NB: suggested by Mike Codish.

イロト イポト イヨト イヨト

Termination/Non-termination in (C)LP

An Example (2)

```
add(0, X, X).
add(s(X), Y, s(Z)) :=
    add(X,Y,Z).
ways(A,[],0).
ways(0, Cs, s(0)).
ways(s(Amount),[C|Coins],N) :-
    add(C,NewAmount,s(Amount)),
    ways(s(Amount),Coins,N1),
    ways(NewAmount, [C Coins], N2),
    add(N1,N2,N).
ways(s(Amount),[C|Coins],N) :-
     add(s(Amount),s(D),C),
     ways(s(Amount),Coins,N).
```

프 🖌 🖌 프 🕨

э.

Termination/Non-termination in (C)LP Previous Work

An Example (3)

cTI:

term_cond(add(A,B,C),C+A)

term_cond(ways(A,B,C),0)

What's wrong???

イロト イポト イヨト イヨト

Termination/Non-termination in (C)LP Previous Work

An Example (3)

cTI:

- term_cond(add(A,B,C),C+A)
- term_cond(ways(A,B,C),0)

What's wrong???

イロト イポト イヨト イヨト

An Example (4)

Let's do an optimal termination check with *precision* = 2:

- ok for add/3: termConds=[[1],[3]], nonTermQueries=[[2]-add(s(A),B,s(C))], undecidedModes=[]
- problem with ways/3: termConds=[], nonTermQueries=[[1,2,3]-ways(s(A),[0],B),
 - undecidedModes=[]

Oops ... ways(s(t_1),[0], t_2) loops for any term t_1 and term t_2 .

ヘロト 人間 ト ヘヨト ヘヨト

æ

An Example (4)

Let's do an optimal termination check with precision = 2:

- ok for add/3: termConds=[[1],[3]], nonTermQueries=[[2]-add(s(A),B,s(C))], undecidedModes=[]
- problem with ways/3: termConds=[], nonTermQueries=[[1,2,3]-ways(s(A),[0],B),

```
undecidedModes=[]
```

. . .

Oops ... ways(s(t_1),[0], t_2) loops for any term t_1 and term t_2 .

イロト イポト イヨト イヨト

æ

Termination/Non-termination in (C)LP Previous Work

An Example (5)

```
ways(A,[],0).
ways(0, Cs, s(0)).
ways(s(Amount),[C|Coins],N) :-
    C=s(),
    add(C,NewAmount,s(Amount)),
    ways(s(Amount),Coins,N1),
    ways(NewAmount,[C|Coins],N2),
    add(N1,N2,N).
ways(s(Amount),[C|Coins],N) :-
     add(s(Amount),s(D),C),
     ways(s(Amount),Coins,N).
```

・聞き ・ヨキ ・ヨト

э.

Termination/Non-termination in (C)LP Previous Work

An Example (6)

Let's redo an optimal termination check with *precision* = 3:

- ok for add/3
- ok for ways/3: termConds=[[1,2]], nonTermQueries=[[1,3]-ways(s(A),[s(0)|B],C), [2,3]-ways(s(A),[s(0)],B) undecidedModes=[]

イロト イ理ト イヨト イヨト

Termination/Non-termination in (C)LP Previous Work

An Example (7)

Hence, cTI + nTI may provide some means to:

- debug programs
- get a complete knowledge about the termination behaviour of programs.

イロト イポト イヨト イヨト

э

Termination/Non-termination in (C)LP Previous Work

Outline

Motivation

- Termination/Non-termination in (C)LP
- Previous Work

Our Contribution

- Preliminary Definitions
- Main Result

イロト イポト イヨト イヨト

э

The Binary Unfoldings of a Logic Programs (1)

[Gabbrielli & Giacobazzi, 89] [Codish & Taboch, 99]

- A T_P -like operator : T_P^{bin}
- Input: a pure logic program P
- Output: *Ifp*(*T_P^{bin}*) = *P^{bin}* a possibly infinite set of facts and *binary* clauses

Property

Q, an atomic query, left-terminates wrt *P* iff Q terminates wrt *P^{bin}*

ヘロン 人間 とくほ とくほ とう

Termination/Non-termination in (C)LP Previous Work

The Binary Unfoldings of a Logic Programs (2)

- compute $P_{precision}^{bin} = T_P^{bin} \uparrow precision$
- generalize the lifting lemma to infer classes non-terminating atomic queries from P^{bin} precision
- hence we hold classes of non-terminating atomic queries for P

ヘロト ヘアト ヘビト ヘビト

Preliminary Definitions

Outline

- Termination/Non-termination in (C)LP
- Previous Work

Our Contribution 2

- Preliminary Definitions
- Main Result

イロト イポト イヨト イヨト

э

Preliminary Definitions Main Result

Preliminary Definitions (1)

We consider ideal CLP.

Definition (Set Described by a Query)

The set of atoms that is described by a query $S := \langle p(\tilde{t}) | d \rangle$ is $Set(S) = \{ p(v(\tilde{t})) | \mathcal{D}_{\mathcal{C}} \models_{v} d \}.$

Definition (More General)

We say that a query S' is more general than a query S if $Set(S) \subseteq Set(S')$.

ヘロト ヘアト ヘビト ヘビト

Preliminary Definitions Main Result

Lifting Theorem

Theorem (Lifting)

Consider a derivation step $S \underset{r}{\Longrightarrow} T$ and a query S' that is more general than S. Then, there exists a derivation step $S' \underset{r}{\Longrightarrow} T'$ where T' is more general than T.

イロト イポト イヨト イヨト 一臣

Preliminary Definitions Main Result

Preliminary Definitions (2)

Definition (Set of Positions)

- A set of positions, denoted by τ, is a function that maps each predicate symbol p to a subset of [1, arity(p)].
- Let τ be a set of positions. Then, τ̄ is the set of positions defined as: for each predicate symbol p, τ̄(p) = [1, arity(p)] \ τ(p).

イロト イ押ト イヨト イヨトー

Preliminary Definitions Main Result

Preliminary Definitions (3)

Definition (Projection)

Let τ be a set of positions and p a predicate symbol of arity n.

- The projection of p on τ is the predicate symbol denoted by p_τ. Its arity equals the number of elements of τ(p).
- Let $\tilde{t} := (t_1, ..., t_n)$ be a sequence of *n* terms. The projection of \tilde{t} on τ , denoted by \tilde{t}_{τ} is the sequence $(t_{i_1}, ..., t_{i_m})$ where $\{i_1, ..., i_m\} = \tau(p)$ and $i_1 \le \cdots \le i_m$.
- Let A := p(t̃) be an atom. The projection of A on τ, denoted by A_τ, is the atom p_τ(t̃_τ).
- The projection of a query (A | d) on τ, denoted by (A | d)_τ, is the query (A_τ | d).

< ロ > < 同 > < 三 >

Preliminary Definitions Main Result

Preliminary Definitions (4)

Definition (Filter)

- A *filter*, denoted by Δ, is a pair (τ, δ) where τ is a set of positions and δ is a function that maps each predicate symbol p to ⟨p_τ(ũ) | d⟩ where D_C ⊨ ∃d and ũ is a sequence of *arity*(p_τ) terms.
- Let Δ := (τ, δ) be a filter and S be a query. Let p := rel(S).
 S satisfies Δ if Set(S_τ) ⊆ Set(δ(p)).
- Let $\Delta := (\tau, \delta)$ be a filter and *S* and *S'* be two queries. *S'* is Δ -more general than *S* if S'_{τ} is more general than S_{τ} and *S'* satisfies Δ .

イロト イ理ト イヨト イヨト

Preliminary Definitions Main Result

First Result

Definition (Derivation Neutral)

 Δ is *DN* for *r* if for each derivation step $S \underset{r}{\Longrightarrow} T$ and each query *S'* that is Δ -more general than *S*, there exists a derivation step $S' \underset{r}{\Longrightarrow} T'$ where *T'* is Δ -more general than *T*.

Theorem

Let Δ be a filter that is DN for *r*. If $\langle B | c \rangle$ is Δ -more general than $\langle H | c \rangle$ then $\langle H | c \rangle$ loops with respect to $\{r\}$.

ヘロト ヘアト ヘビト ヘビト

Preliminary Definitions Main Result

Preliminary Definitions (5)

Definition (Local Variables)

Let $r := p(\tilde{X}) \leftarrow c \diamond q(\tilde{Y})$ be a rule. The set of *local variables* of r is denoted by *local_var*(r) and is defined as: *local_var*(r) := $Var(c) \setminus (Var(\tilde{X}) \cup Var(\tilde{Y}))$.

Definition (sat)

Let $S := \langle p(\tilde{u}) | d \rangle$ be a query and \tilde{s} be a sequence of arity(p) terms. Then, $sat(\tilde{s}, S)$ denotes a formula of the form $\exists_{Var(S')}(\tilde{s} = \tilde{u}' \land d')$ where $S' := \langle p(\tilde{u}') | d' \rangle$ is any variant of S variable disjoint with \tilde{s} .

ヘロン 人間 とくほ とくほ とう

Main Result

Outline

- Termination/Non-termination in (C)LP
- Previous Work

- Preliminary Definitions
- Main Result

イロト イポト イヨト イヨト

э

Preliminary Definitions Main Result

$\mathsf{DNlog} = \mathsf{DN}$

Definition (Logical Derivation Neutral)

A filter $\Delta := (\tau, \delta)$ is *DNlog* for $r := p(\tilde{X}) \leftarrow c \diamond q(\tilde{Y})$ if

$$\mathcal{D}_{\mathcal{C}} \models \boldsymbol{c} \to \forall_{\tilde{\boldsymbol{X}}_{\tau}} [\operatorname{sat}(\tilde{\boldsymbol{X}}_{\tau}, \delta(\boldsymbol{p})) \to \exists_{\mathcal{Y}} [\operatorname{sat}(\tilde{\boldsymbol{Y}}_{\tau}, \delta(\boldsymbol{q})) \land \boldsymbol{c}]]$$

where $\mathcal{Y} := Var(\tilde{Y}_{\tau}) \cup local_var(r)$.

Theorem

Assume C enjoys the following property: for each $\alpha \in D_C$, there exists a ground Σ_C -term a such that $[a] = \alpha$. Δ is DN for r iff Δ is DNlog for r.

イロト イポト イヨト イヨト

э

- For constraint filtered derivations: DN = DNlog
- it strictly generalizes our previous criteria defined in SAS'02, SAS'04, and TOPLAS'06.
- Implementation:
 - SAS'02: CLP(H), filter: positions+true
 - SAS'04: CLP(Q), filter: positions+true
 - TOPLAS'06: CLP(H), filter: positions+constraint
 - WLPE'05: ?

▲ □ ► ▲ □ ► ▲