A study of set-sharing analysis via cliques

J. Navas,² F. Bueno,¹ and M. Hermenegildo^{1,2}

CLIP Group

¹ Department of Computer Science Technical University of Madrid (UPM)

² Depts. of Comp. Science and El. and Comp. Eng., U. of New Mexico (UNM)

The 15th Workshop on Logic-Based Methods in Programming Environments, WLPE'05 Sitges (Barcelona), Spain, October 5, 2005

A study of set-sharing analysis via cliques

Introduction

- Sharing analysis: the tracking of variables shared among terms
- Sharing domain: the most accurate abstract domain defined for tracking sharing
- Set Sharing: variables shared among sets of terms
- Pair Sharing: variables shared among pairs of terms
- Cliques: a representation for sets of sets of variables (powersets)
- Zaffanella, Bagnara and Hill studied Sharing+cliques for inferring pair-sharing in a bottom-up framework
- We study Sharing+cliques for inferring set-sharing in a top-down framework

The Sharing domain

- Let $V = \{x, y, z\}$ be a set of variables of interest
- Let a substitution $\{x/f(u_1, u_2, v_1, v_2, w), y/g(v_1, v_2, w), z/g(w, w)\}$
- Abstract substitution is {{x}, {x, y}, {x, y, z}}
 Notation: xyz for {x, y, z}.
 Say, abstract substitution is {x, xy, xyz}
 - x represents the occurrence of u_1 and u_2
 - xy represents v_1 and v_2
 - xyz represents w

Cliques

- How to say nothing is known about $V = \{x, y, z\}$ $\{x, xy, xyz, xz, y, yz, z\}$
- If a sharing substitution includes the powerset of some set C of variables, use C to represent it
 {xyz}
- We use pairs (cl, sh) of two sharing sets.
 - sh is a sharing substitution
 - each C in cl represents the powerset of C

 $\{x, xy, xyz, xz, y, yz, z, w\} \Leftrightarrow (\{xyz\}, \{w\})$

- Just a change in representation: no loss of precision implied
- However, the abstract operations for cliques are not precise
- Tradeoff between efficiency and accuracy

A study of set-sharing analysis via cliques

Use of Cliques

- Cliques used as alternative representation:
 - A normalization process moves powersets to cliques, producing efficiency gains, and also precision losses.
 - Problem: clique sets are produced in cases in which they are not necessary.
- Widening set-sharing via Cliques:
 - To limit the use of cliques only to the cases where it is necessary in order to avoid analysis running out of memory.
 - The clique representation will be used (only) to guarantee termination of the analysis.
 - It is not trivial: it is not easy to determine beforehand when analysis will need more memory than is available.

Use of Cliques: Widening set-sharing via Cliques

- The choice of a suitable value of the threshold is a key issue.
- This threshold is responsible for triggering widening only for the cases where it is needed.
- We studied two widenings:
 - Fetch: $\nabla^F(cl, sh) = (cl \cup sh, \emptyset)$
 - Zaffanella,Bagnara and Hill: $\nabla^n(cl, sh) = (\{C_1, \ldots, C_k\}, sh)$ where C_1, \ldots, C_k are all the maximal cliques of the graph induced from (cl, sh)and singletons are disregarded.
- ∇^F is very aggressive and therefore, not precise.
- ∇^n cannot be used in a top-down analysis framework.
- We developed a hybrid approach ∇^{nF}
 - ∇^n is used in unifications
 - ∇^F is used in the *extend* function

A study of set-sharing analysis via cliques

Results (cliques as alternative representation)

		\mathbf{Sh}	SH^W				Shfr	SH^W fr		
	Т	Р	Т	Р	#C	Т	Р	Т	Р	#C
append	11	29(60)	8	44 (60)	4	6	7(30)	6	7(30)	0
deriv	35	27(546)	27	27(546)	0	27	21(546)	27	21(546)	0
mmatrix	13	14(694)	11	14(694)	0	9	12(694)	11	12(694)	0
qsort	24	30(1716)	25	30(1716)	0	25	30(1716)	27	30(1716)	0
query	11	35(501)	13	35 (501)	5	12	22(501)	14	22(501)	0
serialize	306	1734(10531)	90	2443 (10531)	88	61	545(5264)	55	736(5264)	41
aiakl	35	145(13238)	42	145(13238)	0	37	145(13238)	43	145(13238)	0
boyer	369	1688 (4631)	267	1997 (4631)	158	373	1739(5036)	278	2074(5036)	163
browse	30	69(776)	29	69(776)	0	29	69(776)	31	69(776)	0
prolog_read	400	1080 (408755)	465	$1080 \ (408755)$	10	425	1050 (408634)	481	1050 (408634)	0
rdtok	325	1350(11513)	344	$1391 \ (11513)$	182	335	1047 (11513)	357	1053 (11513)	2
warplan	3261	8207(42089)	1430	8191 (26857)	420	1320	3068(23501)	1264	$5705\ (25345)$	209
zebra	25	$280~(67 \cdot 10^7)$	34	$280~(67 \cdot 10^7)$	0	41	$280~(67 \cdot 10^7)$	42	$280~(67 \cdot 10^7)$	0
ann	2382	$10000 (31 \cdot 10^4)$	802	$19544 \ (31 \cdot 10^4)$	700	1791	$7811 \ (40 \cdot 10^4)$	968	$14108 (39 \cdot 10^4)$	510
peephole	831	2210 (12148)	435	2920(12118)	171	508	1475 (9941)	403	2825(12410)	135
qplan	-	-	860	$42 \cdot 10^4 (38 \cdot 10^5)$	747	-	-	2181	$23 \cdot 10^4 (31 \cdot 10^5)$	529
witt	405	$858 (45 \cdot 10^5)$	437	$858 \ (45 \cdot 10^5)$	25	484	$813 (45 \cdot 10^5)$	451	$813 (45 \cdot 10^5)$	0

Table 1: Precision and Time-efficiency for sharing, clique-sharing, shfr and clique-shfr.

Comments on results

- If normalization causes no change in the representation:
 - analysis is the same as without cliques,
 - with a small extra overhead
- If normalization moves powersets to cliques:
 - efficiency gains and also precision losses,
 - but enables analysis of programs which otherwise ran out of memory.
- Same effects maintained with freeness,
 - efficiency gains are lower,
 - whereas precision gains are higher

Effectiveness

	Sh	aring+Fr	eeness	Clique-Sharing+Freeness				
	Total	NF (%)	Cov (%)	Total	NF (%)	Cov (%)		
append	1	1(100)	1(100)	1	1(100)	1(100)		
deriv	1	1(100)	1(100)	1	1(100)	1(100)		
qsort	3	3(100)	3(100)	3	3(100)	3(100)		
serialize	5	0 (0)	2(40)	5	0 (0)	2(40)		
rdtok	22	8 (36)	13 (59)	22	8 (36)	13 (59)		
zebra	6	1(16)	4(66)	6	1(16)	4(66)		

Table 2: Accuracy of the non-failure analysis

Results (widening set-sharing via cliques)

		Shfr		SHW fr $\perp \nabla F$	SH^W fr $+ \nabla^{nF}$				
			D_{11} $\Pi + \bigvee_{250}$			1 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -			
	Π [*]	Р	T	Р	#W	Π'	Р	#W	
append	6	7(30)	11	7(30)	0	10	7(30)	0	
deriv	27	21(546)	48	21(546)	0	35	21(546)	0	
mmatrix	9	12 (694)	16	12(694)	0	16	12(694)	0	
qsort	25	30(1716)	40	30 (1716)	0	43	30(1716)	0	
query	12	22(501)	23	22 (501)	0	25	22(501)	0	
serialize	61	545(5264)	74	722(5264)	6	70	703(5264)	10	
aiakl	37	145(13238)	63	145(13238)	6	61	145(13238)	33	
boyer	373	1739(5036)	561	1744 (5036)	2	536	1743(5036)	4	
browse	29	69(776)	44	69(776)	0	42	69(776)	0	
prolog_read	425	1050 (408634)	3419	$24856\ (1754310)$	198	593	$1050 \ (408634)$	103	
rdtok	335	1047 (11513)	472	1047 (11513)	0	466	1047 (11513)	0	
warplan	1320	3068 (23501)	1878	5376(21586)	42	1394	5121 (20894)	60	
zebra	41	$280 \ (671088746)$	42	$280 \ (671088746)$	1	56	$280 \ (671088746)$	48	
ann	1791	7811 (401220)	751	16122 (394800)	17	726	16122 (394800)	34	
peephole	508	1475 (9941)	453	2827 (12410)	8	512	2815(12410)	16	
qplan	-	-	1722	238426 (3141556)	26	1897	233070(3126973)	55	
witt	484	813 (4545594)	2333	259366 (23378597)	110	736	813(4545594)	140	

Table 3: Precision and Time-efficiency for shfr and clique-shfr with $\bigtriangledown_{250}^{F}$ and $\bigtriangledown_{250-40}^{nF}$.

Comments on results

- Avoided the use of cliques in some cases in which cliques were (unnecessarily) used.
- Allows executing programs which the Sharing+freeness domain could not because memory capacity was exceeded
- ∇^{nF} at least as precise as ∇^{F} .
- The difference in time efficiency between ∇^{nF} and ∇^{F} is quite acceptable

Implications of using Top-down framework

- Redefine all abstract operations, in particular the *extend* function.
- The *extend* function can make the sharing representation grow too much.
- Thus, the *extend* function plays a crucial role:
 - The normalization process could not run at the limit.
 - ∇^n cannot be used.
 - The choice of the threshold for triggering widening is further complicated.
- Therefore, the *extend* function is a very important bottleneck that affects strongly the efficiency and accuracy of this domain.

Conclusions

- Studied the problem of efficient, scalable set-sharing analysis.
- Provided the unexplored case of inferring set-sharing information in the context of top-down analysis, with Sharing and Sharing+Freeness.
- Proposed and evaluated several widenings: different levels of precision/efficiency tradeoff.
- Our experimental evaluation supports:
 - Cliques as alternative representation result in limited precision losses while useful efficiency gains are obtained.
 - The hybrid widening results quite useful in practice.
- Therefore, our results contribute to the practical application of top-down set sharing analysis.