Current Work

Proving or Disproving Properties with Constraint Reasoning

T. Denmat M. Ducassé A. Gotlieb

Irisa Rennes France WLPE 05 - Sitges

Inference of Program Properties

Our approach: 1-Modeling

- Modeling of the relational semantics
- $S[P]=\{(X, Y) \mid$ there exists a trace t with init $(t)=X$ and final $(t)=Y\}$
- Correct and complete
- $P(X, Y)=$ true $\Leftrightarrow(X, Y) \in S[P]$
- Implemented in Inka

Our approach : 2-Inducing

- Inference of an invariant (= property)
- Relation between the memory states X and Y
- Could be a relation between intermediary states

Our approach : 3-Refuting

Solving of $P(X, Y) \wedge \neg \operatorname{Inv}(X, Y)$

Our approach : 4-Refining

- Enlarge the pool of executions with the new one

■ Maybe refine directly the invariant

Expected contributions

- Obtain the correctness of dynamically inferred invariants
- Precise invariants due to the mechanism of refinement

■ Potentially very large panel of invariants (all the relations !)

Outline

- Step 1 : Translation of an imperative program into CLP(FD)
■ Step 2 : Dynamic inference of properties (Daïkon as a black-box)
- Step 3 : Validation of properties
- Motivating example
- Problems and future work

■ No step 4 until now !!!

Constraint-model of a program

- Translation of an imperative program into a constraint system
- 2 main problems
- multiple assignments to a variable
- conditionals and loops
- Approach of Gotlieb et al. [ISSTA 98]
- SSA-Form
- New constraint combinators

SSA Form

- Translation of the program into SSA-form
- Preserves the semantics
- Each variable is assigned only once during execution
- Except the iteration structures
- Data flow is preserved via phi-functions
\square Direct translation into constraints
- A variable in the SSA form -> A logic variable
- A control-structure -> A constraint

"Ite" combinator

Guarded - $\int \neg\left(\mathrm{c}^{\wedge} \mathrm{C}_{\text {then }} \wedge \mathrm{v}_{2}=\mathrm{v}_{0}\right) \rightarrow \neg \mathrm{c} \wedge \mathrm{C}_{\text {else }} \wedge \mathrm{v}_{2}=\mathrm{v}_{1}$ constraints

$$
\text { ite }\left(\mathrm{c}, \mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{C}_{\text {then }}, \mathrm{C}_{\text {else }}\right) \text { : }
$$

$$
\neg\left(\neg \mathrm{c} \wedge \mathrm{C}_{\text {then }} \wedge \mathrm{v}_{2}=\mathrm{v}_{1}\right) \rightarrow \mathrm{c} \wedge \mathrm{C}_{\text {then }} \wedge \mathrm{v}_{2}=\mathrm{v}_{0}
$$

"w" Combinator

$$
\begin{aligned}
& W\left(\mathrm{c}, \mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{C}_{\text {body }}\right): \\
& \quad \neg\left(\mathrm{c} \wedge \mathrm{C}_{\text {body }}\right) \rightarrow \neg \mathrm{c} \wedge \mathrm{v}_{2}=\mathrm{v}_{0} \\
& \quad \neg\left(\neg \mathrm{c}^{\wedge} \mathrm{v}_{0}=\mathrm{v}_{2}\right) \rightarrow \mathrm{c} \wedge \mathrm{C}_{\text {body }} \wedge \mathrm{w}\left(\mathrm{c}, \mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{2}, \mathrm{C}_{\text {body }}^{\prime}\right)
\end{aligned}
$$

Dynamic inference of properties

- We use Daïkon as a black box, in its by default configuration [Ernst ICSE 99]
- Generate a set of potential relationships between variables of a program
- At "interesting" points of the program
- For "interesting" variables
- Run a test suite
- Consider relationships that hold over every test case as a Likely Invariant

Motivating example

int foo (int n, int r)

b = 0;
while ($\mathrm{n}>0$)
if (b == 0)
b = 1;
r ++;
else
b = 0;
r --;

$$
\begin{aligned}
& \text { Likely invariants inferred } \\
& \hline \text { - orig(r) }=0 \Rightarrow \text { return }=0 \\
& \text { - return }=0 \Rightarrow \text { orig(r) }=0 \\
& \text { - return } \geq \text { orig(r) } \\
& \hline
\end{aligned}
$$

return r;

Validation of likely invariants

■ Problem of the Oracle:

- Difficult to know if likely invariants hold
- Automatically checking these invariants is crucial

■ Related work

- Nimmer and Ernst 02 : based on a theorem prover
- Proving properties
- Vaziri and Jackson 00 : based on constraint solving
- Disproving properties

■ Our method:

- Both proving and disproving invariants

Declarative semantics of invariant validation

■ Gopal Gupta [the LP paradigm 99]

- Pre (X) : pre-condition on input vector X
- $P(X, Y)$: denotation of an imperative program
- Relation between input vector X an output vector Y
- $\operatorname{Post}(X, Y)$: post-condition
- Post condition is proved to hold if the following goal has no solution
- Pre $(X), P(X, Y)$, not $\operatorname{Post}(X, Y)$

State space reduction with CLP

■ Using pure horn logic :

- Generate and Test
- Try all values of X such that $\operatorname{Pre}(X)$
- Using a CLP denotation :
- Constrain - generate and Test
- Asserting not $\operatorname{Post}(\mathrm{X}, \mathrm{Y})$ reduces the search space

■ Conjecture :

- The reduction makes the approach more tractable

Running example - invariant 1

■ Refutation of orig(r) $=0 \Rightarrow$ return $=0$

■ foo(N,R,Ret) \wedge R = $0 \wedge \operatorname{Ret~} \backslash=0$
Input domains reduction :
$N \in[1$, sup $], R=0$
labeling step:
find a solution: $N=1, R=0$, Ret $=1$
■ Invariant 1 is disproved

Running example - invariant 2

- Refutation of return $=0 \Rightarrow$ orig $(r)=0$

■ foo(N,R,Ret) \wedge Ret $=0 \wedge R \backslash=0$
Input domains reduction :
$N \in[1$, sup $], R \in[$ inf,- -1$] \cup[1$, sup $]$
labeling step:
find a solution: $N=1, R=-1$, Ret $=0$
■ Invariant 2 is disproved

Comments

- The labeling step is crucial to find counter examples
- In our two examples the default labeling procedure is "magically" efficient enough
- For example, beginning to label variable R would have been terrible

■ Future work

- Design specialized heuristics for finding counter examples

Running example - invariant 3

- Refutation of return \geq orig(r)

■ foo(N,R,Ret) ^Ret < R
Input domains reduction:

$$
N \in \varnothing, R \in \varnothing
$$

No labeling step

- Invariant 3 is proved

Details of the refutation 3

Initial state

Constraint store
$B=0$,
$w(\ldots)$
$R E T<R$

Variables domains
B in $[0,0]$
N in $[-100,100]$
R in $[-99,100]$
$R E T$ in $[-100,99]$

int foo (int n, int r)
$b=0 ;$
while $(n>0)$
if $(b=0)$
$b=1 ;$
$r++;$
else
$b=0 ;$
$r--;$
return r

Details of the refutation 3

Propagation in the w combinator :
entailment checking of the 2nd guard

$$
\neg\left(\neg \mathrm{c}^{\wedge} \mathrm{v} 0=\mathrm{v} 2\right) \rightarrow \mathrm{c}^{\wedge} \mathrm{Cbody} \wedge \mathrm{w}\left(\mathrm{c}, \mathrm{v} 1, \mathrm{v} 3, \mathrm{v} 2, \mathrm{C}^{\prime} \mathrm{body}\right)
$$

Details of the refutation 3

Propagation of the w combinator :
setting the tail of the constraint

$$
\neg\left(\neg \mathrm{c}^{\wedge} \mathrm{v} 0=\mathrm{v} 2\right) \rightarrow \mathrm{c}^{\wedge} \mathrm{Cbody} \wedge \mathrm{w}\left(\mathrm{c}, \mathrm{v} 1, \mathrm{v} 3, \mathrm{v} 2, \mathrm{C}^{\prime} \mathrm{body}\right)
$$

Constraint store
$B=0$,
$w(\ldots)$
$R E T<R$
$N>0$
$N 1=N-1$
$B 1=1$
$R 1=R+1$

Variables domains
B in $[0,0]$
N in $[1,100]$
R in $[-99,99]$
$R E T$ in $[-100,98]$
$N 1$ in $[0,99]$
$B 1$ in $[1,1]$
$R 1$ in $[-98,100]$

$$
\begin{aligned}
& \text { int foo (int } n \text {, int } r \text {) } \\
& b=0 ; \\
& \text { while }(n>0) \\
& \text { if }(b==0) \\
& b=1 ; \\
& r++; \\
& \text { else } \\
& b=0 ; \\
& r--; \\
& \text { return } r
\end{aligned}
$$

Details of the refutation 3

Propagation in the w combinator :
entailment checking of the 2nd guard again

Constraint store
$B=0$,
$w(\ldots)$
$R E T<R$
$N>0$
$N 1=N-1$
$B 1=1$
$R 1=R+1$
$N 1=<0$
$R E T=R 1$

Variables domains
B in $[0,0]$
N in $[1,100]$
R in $[-99,99]$
$R E T$ in $[-100,98]$
N 1 in $[0,99]$
B 1 in $[1,1]$
$R 1$ in $[-98,100]$

$$
\begin{aligned}
& \text { int foo (int } n \text {, int } r \text {) } \\
& b=0 ; \\
& \text { while }(n>0) \\
& \text { if }(b==0) \\
& b=1 ; \\
& r++; \\
& \text { else } \\
& b=0 ; \\
& r--; \\
& \text { return } r
\end{aligned}
$$

Details of the refutation 3

Propagation in the w combinator :
entailment checking of the 2nd guard again

Details of the refutation 3

Propagation in the w combinator :
entailment checking of the 2nd guard again

Details of the refutation 3

Propagation in the w combinator :
entailment checking of the 2nd guard again

Details of the refutation 3

Propagation in the w combinator :
entailment checking of the 2nd guard again

$$
\begin{aligned}
& \text { int foo (int } n \text {, int } r \text {) } \\
& b=0 ; \\
& \text { while }(n>0) \\
& \text { if }(b==0) \\
& b=1 ; \\
& r=++ \\
& \text { else } \\
& b=0 ; \\
& r=-; \\
& \text { return } r
\end{aligned}
$$

Details of the refutation 3

Propagation in the w combinator :
entailment checking of the 2nd guard again

Constraint store	Variables domains
$B=0$,	B in [0,0]
w(...)	N in [1,1]
RET < R	R in \varnothing
$\mathrm{N}>0$	RET in \varnothing
$\mathrm{N} 1=\mathrm{N}-1$	N 1 in $[0,0]$
$\mathrm{B} 1=1$	B1 in [1,1]
$\mathrm{R} 1=\mathrm{R}+1$	R 1 in \varnothing
$\mathrm{N} 1=<0$	
RET = R1	

$$
\begin{aligned}
& \text { int foo (int } n \text {, int } r \text {) } \\
& b=0 ; \\
& \text { while }(\mathrm{n}>0) \\
& \text { if }(b=0) \\
& b=1 ; \\
& r++; \\
& \text { else } \\
& b=0 ; \\
& r--; \\
& \text { return } r
\end{aligned}
$$

Details of the refutation 3

Propagation of the w combinator : setting the tail of the constraint

Constraint store	Variables domains
$B=0$,	B in [0,0]
w(...)	N in [2,100]
RET < R	R in [-99,99]
$\mathrm{N}>0$	RET in [-100,98]
$\mathrm{N} 1=\mathrm{N}-1$	N 1 in [1,99]
$\mathrm{B} 1=1$	B1 in [1,1]
$\mathrm{R} 1=\mathrm{R}+1$	R1 in [-98,100]
\cdots	\cdots
N1 > 0	N 2 in [0,98]
$\mathrm{N} 2=\mathrm{N} 1-1$	

$$
\begin{aligned}
& \text { int foo (int } n \text {, int } r \text {) } \\
& b=0 ; \\
& \text { while }(\mathrm{n}>0) \\
& \text { if }(b=0) \\
& b=1 ; \\
& r++; \\
& \text { else } \\
& b=0 ; \\
& r--; \\
& \text { return } r
\end{aligned}
$$

Details of the refutation 3

Constraint store
$\mathrm{B}=0$,
$\mathrm{w}(\ldots)$
$\mathrm{RET}<\mathrm{R}$
$\mathrm{N}>0$
$\mathrm{~N} 1=\mathrm{N}-1$
$\mathrm{~B} 1=1$
$\mathrm{R} 1=\mathrm{R}+1$
\ldots
$\mathrm{~N} 1>0$
$\mathrm{~N} 2=\mathrm{N} 1-1$
$\mathrm{~N} 100=\mathrm{N} 99-1$

Variables domains
B in $[0,0]$
N in $[100,100]$
R in $[-99,99]$
RET in $[-100,98]$
N 1 in $[99,99]$
B 1 in $[1,1]$
R 1 in $[-98,100]$
\ldots
N 2 in $[98,98]$
N 100 in $[0,0]$

We have a failure as it is impossible to unfold the loop and to exit the loop

Comments

■ The propagation is very long

- We need to show inconsistencies at each loop unfolding
- Each inconsistency is long to demonstrate
- Bound consistency \rightarrow slow convergence

■ Future work

- Use information about the loops such as loop invariants to add redundant constraint
- Mix CLP(FD) with other types of constraint solver

Conclusion

- An approach to both prove and disprove invariants based on constraints
- No approximation
- Based on clp(fd)

■ Need to specialize constraint techniques to this particular problem

- Propagation step
- Labeling step

