Current Work

Proving or Disproving Properties with Constraint Reasoning

T. Denmat M. Ducassé A. Gotlieb Irisa Rennes France WLPE 05 - Sitges

Inference of Program Properties

Our approach : 1-Modeling

Modeling of the relational semantics

S[P] = {(X,Y) | there exists a trace t with init(t) = X and final(t) = Y}

Correct and complete

P(X,Y) = true
$$\Leftrightarrow$$
 (X,Y) \in S[P]

Implemented in Inka

- Inference of an invariant (= property)
 - Relation between the memory states X and Y
- Could be a relation between intermediary states

Our approach : 3-Refuting

Our approach : 4-Refining

- Enlarge the pool of executions with the new one
- Maybe refine directly the invariant

Expected contributions

- Obtain the correctness of dynamically inferred invariants
- Precise invariants due to the mechanism of refinement
- Potentially very large panel of invariants (all the relations !)

Outline

- Step 1 : Translation of an imperative program into CLP(FD)
- Step 2 : Dynamic inference of properties (Daïkon as a black-box)
- Step 3 : Validation of properties
 - Motivating example
 - Problems and future work
- No step 4 until now !!!

Constraint-model of a program

- Translation of an imperative program into a constraint system
- 2 main problems
 - multiple assignments to a variable
 - conditionals and loops
- Approach of Gotlieb et al. [ISSTA 98]
 - SSA-Form
 - New constraint combinators

SSA Form

- Translation of the program into SSA-form
 - Preserves the semantics
 - Each variable is assigned only once during execution
 - Except the iteration structures
 - Data flow is preserved via phi-functions
- Direct translation into constraints
 - A variable in the SSA form -> A logic variable
 - A control-structure -> A constraint

"Ite" combinator

$$\begin{array}{l} \text{Guarded} \\ \text{Guarded} \\ \text{constraints} \end{array} \left\{ \begin{array}{l} \neg & (c \land C_{\text{then}} \land v_2 = v_0) \rightarrow \neg c \land C_{\text{else}} \land v_2 = v_1 \\ \neg & (\neg c \land C_{\text{then}} \land v_2 = v_1) \rightarrow c \land C_{\text{then}} \land v_2 = v_0 \end{array} \right.$$

"w" Combinator

$$W(c,v_0,v_1,v_2,C_{body}):$$

$$\neg (c \land C_{body}) \rightarrow \neg c \land v_2 = v_0$$

$$\neg (\neg c \land v_0 = v_2) \rightarrow c \land C_{body} \land w(c,v_1,v_3,v_2,C'_{body})$$

Dynamic inference of properties

- We use Daïkon as a black box, in its by default configuration [Ernst ICSE 99]
- Generate a set of potential relationships between variables of a program
 - At "interesting" points of the program
 - For "interesting" variables
- Run a test suite
- Consider relationships that hold over every test case as a Likely Invariant

Motivating example

```
int foo (int n, int r)
  b = 0;
  while (n > 0)
    if (b == 0)
    b = 1;
     r ++;
    else
    b = 0;
     r --;
  return r;
```

Likely invariants inferred

- orig(r) = $0 \Rightarrow$ return = 0
- return = $0 \Rightarrow \text{orig}(r) = 0$
- return \geq orig(r)

Validation of likely invariants

Problem of the Oracle :

Difficult to know if likely invariants hold

- Automatically checking these invariants is crucial
- Related work
 - Nimmer and Ernst 02 : based on a theorem prover
 - Proving properties
 - Vaziri and Jackson 00 : based on constraint solving
 - Disproving properties
- Our method :
 - Both proving and disproving invariants

Declarative semantics of invariant validation

- Gopal Gupta [the LP paradigm 99]
 - Pre(X) : pre-condition on input vector X
 - P(X,Y) : denotation of an imperative program
 - Relation between input vector X an output vector Y
 - Post(X,Y) : post-condition
 - Post condition is proved to hold if the following goal has no solution
 - Pre(X), P(X,Y), not Post(X,Y)

State space reduction with CLP

Using pure horn logic :

- Generate and Test
- Try all values of X such that Pre(X)
- Using a CLP denotation :
 - Constrain generate and Test
 - Asserting not Post(X,Y) reduces the search space
- Conjecture :
 - The reduction makes the approach more tractable

Running example - invariant 1

Refutation of $orig(r) = 0 \Rightarrow return = 0$

■ foo(N,R,Ret) \land R = 0 \land Ret \setminus = 0 Input domains reduction : N ∈ [1,sup], R = 0 labeling step : find a solution : N = 1, R = 0, Ret = 1

Invariant 1 is disproved

Running example - invariant 2

Refutation of return = $0 \Rightarrow orig(r) = 0$

■ foo(N,R,Ret) \land Ret = 0 \land R \setminus = 0 Input domains reduction : N ∈ [1,sup], R ∈ [inf,-1] \cup [1,sup] labeling step : find a solution : N = 1, R = -1, Ret = 0

Invariant 2 is disproved

Comments

- The labeling step is crucial to find counter examples
- In our two examples the default labeling procedure is "magically" efficient enough
 - For example, beginning to label variable R would have been terrible
- Future work
 - Design specialized heuristics for finding counter examples

Running example - invariant 3

Refutation of $return \ge orig(r)$

foo(N,R,Ret) ^ Ret < R</pre>

Input domains reduction :

 $\mathsf{N} \in \mathcal{O}, \, \mathsf{R} \in \mathcal{O}$

No labeling step

Invariant 3 is proved

Initial state

Constraint store	Variables domains
B = 0,	B in [0,0]
w()	N in [-100,100]
RET < R	R in [-99,100]
	RET in [-100,99]

int foo (int n, int r)
 b = 0;
while (n > 0)
 if (b == 0)
 b = 1;
 r ++;
 else
 b = 0;
 r --;

return r;

Propagation in the w combinator :

entailment checking of the 2nd guard

 \neg (\neg c ^ v0 = v2) \rightarrow c ^ Cbody ^ w(c,v1,v3,v2,C'body)

Failure \rightarrow the guard is entailed

int foo (int n, int r)
 b = 0;
while (n > 0)
 if (b == 0)
 b = 1;
 r ++;
 else
 b = 0;
 r --;
return r;

Propagation of the w combinator :

setting the tail of the constraint

 \neg (\neg c ^ v0 = v2) \rightarrow c ^ Cbody ^ w(c,v1,v3,v2,C'body)

Constraint store	Variables domains	int foo (int n, int r)
B = 0,	B in [0,0]	b = 0; while (n > 0)
w() RET < R	R in [-99,99]	if (b == 0) b = 1;
N > 0	RET in [-100,98]	r ++; else
N1 = N - 1	N1 in [0,99]	b = 0; r;
$B_1 = 1$ R1 = R + 1	R1 in [-98,100]	return r;

Propagation in the w combinator :

entailment checking of the 2nd guard again

Constraint store	Variables domains
B = 0,	B in [0,0]
w()	N in [1,100]
RET < R	R in [-99,99]
N > 0	RET in [-100,98]
N1 = N -1	N1 in [0,99]
B1 = 1	B1 in [1,1]
R1 = R + 1	R1 in [-98,100]
N1 =< 0	
RET = R1	

int foo (int n, int r)
 b = 0;
while (n > 0)
 if (b == 0)
 b = 1;
 r ++;
 else
 b = 0;
 r --;
return r;

Propagation in the w combinator :

entailment checking of the 2nd guard again

int foo (int n, int r)
 b = 0;
while (n > 0)
 if (b == 0)
 b = 1;
 r ++;
 else
 b = 0;
 r --;
return r;

Propagation in the w combinator :

entailment checking of the 2nd guard again


```
int foo (int n, int r)
    b = 0;
while (n > 0)
    if (b == 0)
    b = 1;
    r ++;
else
    b = 0;
    r --;
return r;
```

Propagation in the w combinator :

entailment checking of the 2nd guard again

Constraint store	Variables domains
B = 0,	B in [0,0]
w()	N in [1,1]
RET < R	 R in [-97,99]
N > 0	RET in [-98,98]
N1 = N -1	N1 in [0,0]
B1 = 1	B1 in [1,1]
R1 = R + 1	R1 in [-98,98]
N1 =< 0	
RET = R1	

int foo (int n, int r)
 b = 0;
while (n > 0)
 if (b == 0)
 b = 1;
 r ++;
 else
 b = 0;
 r --;
return r;

Propagation in the w combinator :

entailment checking of the 2nd guard again

int foo (int n, int r)
 b = 0;
while (n > 0)
 if (b == 0)
 b = 1;
 r ++;
 else
 b = 0;
 r --;
return r;

...

Propagation in the w combinator :

entailment checking of the 2nd guard again

int foo (int n, int r)
 b = 0;
while (n > 0)
 if (b == 0)
 b = 1;
 r ++;
 else
 b = 0;
 r --;
return r;

Propagation of the w combinator : setting the tail of the constraint

int foo (int n, int r)
 b = 0;
while (n > 0)
 if (b == 0)
 b = 1;
 r ++;
 else
 b = 0;
 r --;
return r;

...

Constraint store
B = 0,
w()
RET < R
N > 0
N1 = N -1
B1 = 1
R1 = R + 1
N1 > 0
N2 = N1 – 1
N100 = N99 - 1

Variables domains
B in [0,0]
N in [100,100]
R in [-99,99]
RET in [-100,98]
N1 in [99,99]
B1 in [1,1]
R1 in [-98,100]
N2 in [98,98]
N100 in [0,0]

We have a failure as it is impossible to unfold the loop and to exit the loop

Comments

- The propagation is very long
 - We need to show inconsistencies at each loop unfolding
 - Each inconsistency is long to demonstrate
 - Bound consistency → slow convergence
- Future work
 - Use information about the loops such as loop invariants to add redundant constraint
 - Mix CLP(FD) with other types of constraint solver

Conclusion

- An approach to both prove and disprove invariants based on constraints
 - No approximation
 - Based on clp(fd)
- Need to specialize constraint techniques to this particular problem
 - Propagation step
 - Labeling step