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Inference of Program Properties

Program 

OVER-approximation

Abstract semantic
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DEDUCTION
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Our approach : 1-Modeling

C program  
P(X) = Y

Constraint 
P(X,Y)

Modeling of the relational semantics
S[P] = {(X,Y) | there exists a trace t with init(t) = X and final(t) = Y}

Correct and complete
P(X,Y) = true ⇔ (X,Y) ∈S[P]

Implemented in Inka



Executions 
pool

Invariant

Inv(X,Y)

C program  
P(X) = Y

Constraint 
P(X,Y)

Inference of an invariant (= property)
Relation between the memory states X and Y

Could be a relation between intermediary states

Our approach : 2-Inducing



Executions 
pool

Invariant

Inv(X,Y)

Our approach : 3-Refuting
C program  
P(X) = Y

Constraint 
P(X,Y)

Solving of   P(X,Y) ∧ ¬ Inv(X,Y)

No solution

Inv (X,Y) is 
sound

(Xs,Ys) is a 
solution

Counterexample



Executions 
pool

Invariant

Inv(X,Y)

Our approach : 4-Refining
C program  
P(X) = Y

Constraint 
P(X,Y)

Solving of   P(X,Y) ∧
¬ Inv(X,Y)

No 
solution

(Xs,Ys) 
is a 

solution

Enlarge the pool of executions with the new one 

Maybe refine directly the invariant



Expected contributions

Obtain the correctness of dynamically 
inferred invariants

Precise invariants due to the mechanism of 
refinement

Potentially very large panel of invariants (all 
the relations !)



Outline

Step 1 : Translation of an imperative program 
into CLP(FD) 
Step 2 : Dynamic inference of properties

(Daïkon as a black-box)
Step 3 : Validation of properties

Motivating example
Problems and future work

No step 4 until now !!!



Constraint-model of a program

Translation of an imperative program into a 
constraint system
2 main problems

multiple assignments to a variable
conditionals and loops

Approach of Gotlieb et al. [ISSTA 98] 
SSA-Form
New constraint combinators



SSA Form

Translation of the program into SSA-form
Preserves the semantics
Each variable is assigned only once during 
execution

Except the iteration structures

Data flow is preserved via phi-functions

Direct translation into constraints
A variable in the SSA form -> A logic variable
A control-structure -> A constraint



“Ite” combinator

ite(c,v0,v1,v2,Cthen,Celse ):

¬ (c ^ Cthen ^ v2 = v0) → ¬c ^ Celse ^ v2 = v1

¬ (¬c ^ Cthen ^ v2 = v1) → c ^ Cthen ^ v2 = v0

if c 

Sthen

else

Selse

if c 

S’then

else

S’else

v2 = Φ(v0,v1)

SSA

Guarded -
constraints

ite(c,v0,v1,v2,Cthen,Celse)

Constraint
SSA - formC program



“w” Combinator

W(c,v0,v1,v2,Cbody) :

¬ (c ^ Cbody) → ¬c ^ v2 = v0

¬ (¬c ^ v0 = v2) → c ^ Cbody ^ w(c,v1,v3,v2,C’body)

w(c,v0,v1,v2,Cbody)

v2 = Φ(v0,v1)

while c 

S’

SSA - form
Constraint

while c 

S

C program



Dynamic inference of properties

We use Daïkon as a black box, in its by 
default configuration [Ernst ICSE 99]

Generate a set of potential relationships 
between variables of a program

At “interesting” points of the program
For “interesting” variables

Run a test suite 
Consider relationships that hold over every 
test case as a Likely Invariant



Motivating example

int foo (int n, int r) 
b = 0;
while (n > 0)
if (b == 0)
b = 1;
r ++;
else
b = 0;
r --;

return r;

Likely invariants inferred

• orig(r) = 0 ⇒ return = 0

• return = 0 ⇒ orig(r) = 0

• return ≥ orig(r)



Validation of likely invariants

Problem of the Oracle :
Difficult to know if likely invariants hold

Automatically checking these invariants is crucial

Related work
Nimmer and Ernst 02 : based on a theorem prover

Proving properties 
Vaziri and Jackson 00 : based on constraint solving

Disproving properties

Our method : 
Both proving and disproving invariants



Declarative semantics of invariant 
validation

Gopal Gupta [the LP paradigm 99]

Pre(X) : pre-condition on input vector X
P(X,Y) : denotation of an imperative program

Relation between input vector X an output vector Y

Post(X,Y) : post-condition 

Post condition is proved to hold if the following 
goal has no solution 

Pre(X), P(X,Y), not Post(X,Y)



State space reduction with CLP

Using pure horn logic :
Generate and Test
Try all values of X such that Pre(X)

Using a CLP denotation :
Constrain – generate and Test
Asserting not Post(X,Y) reduces the search space

Conjecture :
The reduction makes the approach more tractable



Running example – invariant 1

Refutation of orig(r) = 0 ⇒ return = 0

foo(N,R,Ret) ∧ R = 0 ∧ Ret \= 0

Input domains reduction :
N ∈ [1,sup], R = 0

labeling step :
find a solution : N = 1, R = 0, Ret = 1 

Invariant 1 is disproved



Running example – invariant 2

Refutation of return = 0 ⇒ orig(r) = 0

foo(N,R,Ret) ∧ Ret = 0 ∧ R \= 0

Input domains reduction :
N ∈ [1,sup], R ∈ [inf,-1] ∪ [1,sup]

labeling step :
find a solution : N = 1, R = -1, Ret = 0

Invariant 2 is disproved 



Comments

The labeling step is crucial to find counter 
examples
In our two examples the default labeling 
procedure is “magically” efficient enough

For example, beginning to label variable R would 
have been terrible

Future work
Design specialized heuristics for finding counter 
examples 



Running example – invariant 3

Refutation of return ≥ orig(r)

foo(N,R,Ret) ∧ Ret < R

Input domains reduction :
N ∈ Ø, R ∈ Ø

No labeling step

Invariant 3 is proved



Details of the refutation 3

B = 0, 

w(…)

RET < R 

Initial state

Constraint store

B in [0,0] 

N in [-100,100]

R in [-99,100]

RET in [-100,99]

Variables domains
int foo (int n, int r) 

b = 0;
while (n > 0)
if (b == 0)
b = 1;
r ++;
else
b = 0;
r --;

return r;



Details of the refutation 3

B = 0, 

w(…)

RET < R

N =< 0,

RET = R

Propagation in the w combinator : 

entailment checking of the 2nd guard

¬ (¬c ^ v0 = v2) → c ^ Cbody ^ w(c,v1,v3,v2,C’body)

Constraint store

B in [0,0] 

N in [-100,0]

R in Ø

RET in Ø

Variables domains

Failure the guard is entailed

int foo (int n, int r) 
b = 0;
while (n > 0)
if (b == 0)
b = 1;
r ++;
else
b = 0;
r --;

return r;



Details of the refutation 3

B = 0, 

w(…)

RET < R

N > 0

N1 = N -1

B1 = 1

R1 = R + 1

Propagation of the w combinator : 

setting the tail of the constraint

¬ (¬c ^ v0 = v2) → c ^ Cbody ^ w(c,v1,v3,v2,C’body)

Constraint store

B in [0,0] 

N in [1,100]

R in [-99,99]

RET in [-100,98]

N1 in [0,99]

B1 in [1,1]

R1 in [-98,100]

Variables domains int foo (int n, int r) 
b = 0;
while (n > 0)
if (b == 0)
b = 1;
r ++;
else
b = 0;
r --;

return r;



Details of the refutation 3

int foo (int n, int r) 
b = 0;
while (n > 0)
if (b == 0)
b = 1;
r ++;
else
b = 0;
r --;

return r;

Propagation in the w combinator : 

entailment checking of the 2nd guard again

B = 0, 

w(…)

RET < R

N > 0

N1 = N -1

B1 = 1

R1 = R + 1

N1 =< 0

RET = R1

Constraint store

B in [0,0] 

N in [1,100]

R in [-99,99]

RET in [-100,98]

N1 in [0,99]

B1 in [1,1]

R1 in [-98,100]

Variables domains



Details of the refutation 3

int foo (int n, int r) 
b = 0;
while (n > 0)
if (b == 0)
b = 1;
r ++;
else
b = 0;
r --;

return r;

Propagation in the w combinator : 

entailment checking of the 2nd guard again

B = 0, 

w(…)

RET < R

N > 0

N1 = N -1

B1 = 1

R1 = R + 1

N1 =< 0

RET = R1

Constraint store

B in [0,0] 

N in [1,1]

R in [-99,99]

RET in [-100,98]

N1 in [0,0]

B1 in [1,1]

R1 in [-98,100]

Variables domains



B in [0,0] 

N in [1,1]

R in [-99,99]

RET in [-98,98]

N1 in [0,0]

B1 in [1,1]

R1 in [-98,98]

Variables domains

Details of the refutation 3

int foo (int n, int r) 
b = 0;
while (n > 0)
if (b == 0)
b = 1;
r ++;
else
b = 0;
r --;

return r;

Propagation in the w combinator : 

entailment checking of the 2nd guard again

B = 0, 

w(…)

RET < R

N > 0

N1 = N -1

B1 = 1

R1 = R + 1

N1 =< 0

RET = R1

Constraint store



Details of the refutation 3

int foo (int n, int r) 
b = 0;
while (n > 0)
if (b == 0)
b = 1;
r ++;
else
b = 0;
r --;

return r;

Propagation in the w combinator : 

entailment checking of the 2nd guard again

B = 0, 

w(…)

RET < R

N > 0

N1 = N -1

B1 = 1

R1 = R + 1

N1 =< 0

RET = R1

Constraint store

B in [0,0] 

N in [1,1]

R in [-97,99]

RET in [-98,98]

N1 in [0,0]

B1 in [1,1]

R1 in [-98,98]

Variables domains



Details of the refutation 3

int foo (int n, int r) 
b = 0;
while (n > 0)
if (b == 0)
b = 1;
r ++;
else
b = 0;
r --;

return r;

Propagation in the w combinator : 

entailment checking of the 2nd guard again

B = 0, 

w(…)

RET < R

N > 0

N1 = N -1

B1 = 1

R1 = R + 1

N1 =< 0

RET = R1

Constraint store

B in [0,0] 

N in [1,1]

R in [-97,97]

RET in [-98,98]

N1 in [0,0]

B1 in [1,1]

R1 in [-96,98]

Variables domains



…



Details of the refutation 3

int foo (int n, int r) 
b = 0;
while (n > 0)
if (b == 0)
b = 1;
r ++;
else
b = 0;
r --;

return r;

Propagation in the w combinator : 

entailment checking of the 2nd guard again

B = 0, 

w(…)

RET < R

N > 0

N1 = N -1

B1 = 1

R1 = R + 1

N1 =< 0

RET = R1

Constraint store

B in [0,0] 

N in [1,1]

R in Ø

RET in Ø

N1 in [0,0]

B1 in [1,1]

R1 in Ø

Variables domains



Details of the refutation 3

B = 0, 

w(…)

RET < R

N > 0

N1 = N -1

B1 = 1

R1 = R + 1

…

N1 > 0

N2 = N1 - 1

Propagation of the w combinator : setting the tail of the constraint

Constraint store

B in [0,0] 

N in [2,100]

R in [-99,99]

RET in [-100,98]

N1 in [1,99]

B1 in [1,1]

R1 in [-98,100]

…

N2 in [0,98]

Variables domains

int foo (int n, int r) 
b = 0;
while (n > 0)
if (b == 0)
b = 1;
r ++;
else
b = 0;
r --;

return r;



…



Details of the refutation 3

B = 0, 

w(…)

RET < R

N > 0

N1 = N -1

B1 = 1

R1 = R + 1

…

N1 > 0

N2 = N1 – 1

N100 = N99 - 1

Constraint store

B in [0,0] 

N in [100,100]

R in [-99,99]

RET in [-100,98]

N1 in [99,99]

B1 in [1,1]

R1 in [-98,100]

…

N2 in [98,98]

N100 in [0,0]

Variables domains

We have a failure as it is 
impossible to unfold the loop 
and to exit the loop



Comments

The propagation is very long
We need to show inconsistencies at each loop 
unfolding
Each inconsistency is long to demonstrate 

Bound consistency slow convergence

Future work
Use information about the loops such as loop 
invariants to add redundant constraint
Mix CLP(FD) with other types of constraint solver 



Conclusion

An approach to both prove and disprove 
invariants based on constraints

No approximation
Based on clp(fd)

Need to specialize constraint techniques to 
this particular problem 

Propagation step
Labeling step


