Simulating Task Models Using Concrete User
Interface Components

David Paquette
Department of Computer Science
University of Saskatchewan
dnp972@cs.usask.ca

April 29, 2004

Abstract

Interaction Templates were previously introduced as a method to help
ease the construction of ConcurTaskTrees. This paper begins with a brief
introduction to task modelling, ConcurTaskTrees, and Interaction Templates.
Interaction Templates are then discussed in more detail in terms of a lan-
guage for defining Interaction Templates. An overview of ConcurTaskTrees
simulators is given, and the details of how Interaction Templates can be sim-
ulated using concrete interface components are also discussed. A task model
simulator that shows how a concrete interface component can simulate a task
model was built. Finally, the paper concludes with an outline of possible
future work with Interaction Templates.

1 Introduction

Task models are formal models that describe interactive systems in terms of goals
and user activities [9]. Activities can be either logical or physical. Take for exam-
ple a multimedia software package. Retrieving a CD’s play list would be a logical
activity, whereas Selecting the play button would be a physical activity. A goal can
either be a desired change in the state of a system or an attempt to retrieve some
information from a system. Retrieving a CD’s play list would be the retrieval of
information from an application, whereas Changing the track would be a modifi-
cation of the state of an application.

Task models can be used for many different purposes such as:



« helping to better understand an application domain;

 serving as a common language for all stakeholders, including system devel-
opers, interface designers, managers, users, and domain experts;

* helping to ensure that systems built match the user’'s conceptual model;

» analyzing and evaluating the usability of interactive systems, often before
the system is ever built;

* supporting the user through a task-oriented help system;
» documentation of interactive systems. [9]

ConcurTaskTrees (CTT) [9, 8], introduced by Fabio Pdgeisithe latest approach

to task modeling that has been popular in several research communities. “[CTT] is
a notation aiming at supporting engineering approaches to task modeling” [9]. CTT
is a graphical notation with a rich set of operators for describing the relationships
between tasks. An overview of the CTT notation can be seen in Figure 2, while
Figure 1 shows a simple graph editor modeled using ConcurTaskTrees.

@

dit Gr

o * Save Graph®

Show.kuallahle Graphs Decide on Graph  Select Graph

F-1-O-1-B—1—-F-1—-©

Add NodM/f?uqe\Dame Node Delete Edi

B ——

SelectFromNude Select To Mode SelectMode  Select Mew Location

Figure 1: A ConcurTaskTree for a simple graph editing program.

The main features of ConcurTaskTrees are:

« a focus on activities that helps designers avoid low level details that would
obscure the designer at the design state;

 an intuitive hierarchical structure;

 a graphical syntax, in tree-like form, which is often easier to understand;

2



* a concurrent notation through a rich set of temporal relationships among
tasks;

« task allocation with four different types of tasks;

» and objects, both user interface objects and application domain objects, that
have to be manipulated can be indicated in the task model [9].

Types of Tasks
Icon | Description Unary Operators
] Icon | Description | Syntax
@ Abstraction Task T Tterative e
-;-!; Application Task [] Optional [T1]
3 ; &> | Connection T1
g( Interaction Task -
ﬁ User Task

Temporal Relations

Icon Description Syntax

[1 Choice TL[]T2

= Order Independency Tl |=| T2

Il Concurrent TL ||| T2

i Concurrent with information | T1 |[]| T2

exchange

[= Digabling Tl [> T2

= Suspend/Resume T2 = T2

>> Enabling Tl ==T2

[I7= Enabling with information Tl []7= T2

exchange

Figure 2: Overview of the CTT notation.

Despite the advantages of CTT, large interactive systems described using the CTT
notation can become too large to be easily understood and can be very tedious
to build [6]. The remainder of this paper will discuss how Interaction Templates
can be used to ease the task modeling process, as well as enhance task model
simulation.



2 Interaction Templates

Interaction Templates are intended to help developers build task models quickly,
and allow for detailed simulation while maintaining a useful system overview [6].

While building task models for information systems, there are subtrees that repeat
throughout the model with only slight variations. These subtrees are often associ-
ated with common interface interactions found in information systems. Interaction
Templates model these common interface interactions. They include a detailed task
model, an execution path (i.e. dialog), and a presentation component. An Interac-
tion Template is a parameterized subtree that can be inserted into a ConcurTaskTree
at anytime. Inserting and customizing Interaction Templates reduces the need to
model the same interaction repeatedly in a system, and thus, can greatly reduce the
time spent modeling information systems. As well, Interaction Templates can be
designed and tested to ensure their usability in accomplishing a task. Interaction
Templates can also be designed to be ‘plastic’ and thus adapt to different contexts.

2.1 Defining Interaction Templates

Interaction Templates are described using a custom markup language embedded
inside an XML description of a ConcurTaskTree. An example XML description of
a ConcurTaskTree is shown in Figure 3.

The root task of an Interaction Template is surrounded by an identifiyiegiplate

tag that contains a single name attribute specifying the name of the template. The
first element found inside thetemplateelement is the empti.optionselement.
Theit:optionselement contains attributes specifying all the options for the current
template. The name of the attribute identifies the name of the option, while the
value of the attribute identifies the option’s type. Option types include boolean val-
ues, numbers, strings, or file paths to XML documents such as schemas or sample
data.

The options specified in thigoptions element are referenced inside the template
using Interaction Template commands. Interaction Template commands are used
to specify how the template’s task tree is built based on the options specified for
the template. Interaction Templates are defined using two basic comnilareise
andit:foreach

Theit:casestatement is used to select a specific task or subtask based on the op-
tions set for the template. Aiticase statement contains one or mateondition



<TaskModel UniquelD= “C:\CTT'Models\Graph.ctt™>
<Task Id= “Edit Graph” Category="abstraction" Iterative="false" Optional="false">
<SubTaslc>
<Task Id= “Load Graph™ Category= “abstraction” Iterative= “false™ Optional= “falge”>
=TemporalOperator=Enabling=/TemporalOp erator=
<SubTask>...</SubTask>
=/Task>
<Tazk Id= “Modity Graph” Category= “abstraction” Iterative= “true™ Optional= “falze™>
=TemporalOperator=Choice</TemporalOperator=
<SubTask>.. </SubTask>
</Task=>
<Task Id= “Save Graph™ Category= “Interaction” Iterative= “true™ Optional= “false”>
<{Task>
ubTask>
</Task>
</TaskModel~

<</

Figure 3: Partial XML description of the task model shown in Figure 1

statements, and will select the fiistondition whose expression attribute evalu-

ates to true. The expression attribute found initleendition element can contain

any boolean expression made up ofs, <, >=, <=, &&, and ||. Theit:case
statement is the statement that allows templates to be designed to be plastic based
on the values given to a template’s options. Theasestatement can appear any-
where inside a template definition and can also be nested, allowing a template to
be plastic at any level in the task tree. An example oftarase statement with
conditions to select between two operating systems is shown in Figure 4.

<it:case>
<it:condition expression= “$0S=Windows">
<Task></Task=> /Windows version of the task

</it:condition=
<it:condition expression= “$0S=Mac0SX">
<Task></Task> //MacOSX version of the task
</it:condition=
</it:case>

Figure 4. it:.case and it:condition statements

The it:foreach statement is used to repeat a task or subtask for each element in
a specified list of elements. An example of a list of elements is all of the ele-
ments contained in a complexType of an XML schema. In Figure St:foeesach
statement is used to repeat a task for each of the elements contained in the com-
plexType found in a schema file specified as one of the template’s options. Inside
theit:foreach statement, the current element is referenced by the name of the sin-

5



gle attribute of that:foreach statement. The current element’s name attribute is
referenced by adding ‘.name’ to the element reference.

<it:foreach col= “$schemaFile.complexType. element™>
<Task Identifier= “Sort By $col.name”></Task>
</it:foreach>

Figure 5: it:foreach statement

When an Interaction Template is inserted into a ConcurTaskTree, and the required
options have been set, the tree is expanded according tbadhseandit:foreach
statements. References to options andttfereachattribute, identified by ‘$optionName
or $attributeName’, are replaced by the option or attribute’s value respectively.

A prototype of an Interaction Template Definition Language interpreter that recog-
nizes and expandsforeach statements has been implemented using TXL, a rule-
based tree transformation language [2]. The prototype is fairly simple, consisting
of only 5 rules implemented in just over 100 lines of TXL code.

2.2 Using Interaction Templates

After an Interaction Template has been defined using the Interaction Template Def-
inition Language described above, using an Interaction Template is simply a matter
of inserting the template into a task model and setting values for the options of that
Interaction Template. Once the options have been set, the Interaction Template is
expanded using an Interaction Template Definition Language interpreter. After the
template has been expanded, it is always possible to edit the expanded task model
to customize the template to a specific use. It is also possible to change the op-
tions for a template and have the Interaction Template expand again to reflect those
changes.

Currently, no tool support exists for building task models using Interaction Tem-
plates. Interaction Templates must be inserted by hand into XML descriptions of
ConcurTaskTrees that are saved from CTTE.

3 Simulating Task Models

One of the advantages to using a formal modelling language such as ConcurTask-
Trees is the ability to simulate the system before it is built. Simulation can help to

6



ensure the system that is built will match the user’s conceptual model as well as
help to evaluate the usability of a system at a very early stage. Several task model
simulators have been built for ConcurTaskTrees. First, this section will discuss
how ConcurTaskTrees can be simulated. Next, an overview of some of the task
model simulators that are available will be given. The section will conclude with

a description of the Enhanced Task Model Simulator that was built to show how
Interaction Templates can be simulated using concrete user interface components.

3.1 The Simulation Process

Simulating a ConcurTaskTree involves simulating, in some way, the performance
of specific tasks in order to reach a pre-defined goal. In a ConcurTaskTree, tasks
are related to each other according to the temporal relations and hierarchical break-
down of the tasks. That is, depending on what tasks have been performed, some
tasks are enabled and others are disabled. The first step in simulating ConcurTask-
Trees is to identify the sets of tasks that are logically enabled at the same time. A
set of tasks that are logically enabled at the same point in time is called an enabled
task set (ETS) [8]. Enabled tasks sets are identified according to the rules laid out
in [8]. The set of all enabled task sets for a specific task model is referred to as an
enabled task collection (ETC).

Having identified the ETC for a task model, the next step is to identify the effects
of performing each task in each ETS. The result of this analysis is a state transition
network (STN), where each ETS is a state and transitions occur when tasks are
performed. The final preparation step for simulation is to calculate the initial state.
A command-line tool called TaskLib [4] can be used to extract the ETC, STN, and
initial state from a CTT. The details of TaskLib’s implementation can be found in

[5].

Once the ETC, STN and initial state have all be identified, simulation can begin.
This initial process is common to all ConcurTaskTree simulators. The actual simu-
lation involves the user navigating through the STN by simulating the performance
of tasks in some way. As will be discussed shortly, the simulation of performing a
task is done differently in the simulation tools that exist.

3.2 Simulation Tools

Basic Simulators: The most basic simulators, such as the one shown in Figure
6, simply display the currently enabled tasks in a list. In these simple simulators,



double-clicking on a task will simulate the performance of that task. When a task
is performed, the enabled tasks are updated accordingly. A basic task model sim-
ulator can be found in ConcurTaskTreesEnvironment (CTTE) [7], a tool for both
building and simulating task models, as well as the Enhanced Task Model Simula-
tor described below.

~Enabled Tasks [Click to Parformf———
-2 SwitchOif

i HandleMessages

| Toolz

| Settings

i Selectlist

"‘,'_ FecalMumber

Figure 6: A simple ConcurTaskTree task model simulator.

Dialogue Graph Editor: The Dialogue Graph Editor, a tool developed at the Uni-
versity of Rostock, provides a slightly more complex simulation than the basic
simulator found in CTTE. The Dialogue Graph Editor allows designers to create
views and assign tasks from a task model to those views. These views can later be
used to simulate the task model as shown in Figure 7. When simulating the task
model, views are represented as windows, elements (as well as tasks) inside the
windows are represented by buttons, and transitions are represented by navigation
between windows [3]. Views become visible when they are enabled, and invisi-
ble when they are disabled. Likewise, buttons become enabled and disabled when
their associated tasks are enabled or disabled. Users can simulate the task model by
clicking buttons to perform tasks and navigate through windows to select between
available tasks.

The windows and buttons generated by Dialogue Graph Editor for simulation pur-
poses are considered to be abstract interface prototypes. However, clicking buttons
to perform tasks does not seem to provide much of an advantage over the basic
simulators, and at times might be more confusing. The key advantage in Dialogue
Graph Editor is the ability to organize tasks into a dialog. Unfortunately, this re-
quires an additional dialog model as well as a mapping between the dialog model
and task model.

Enhanced Task Model Simulator: While Interaction Templates model common

interface interactions found in information systems, there are often concrete user
interface components that implement those interactions. In interface builders such
as Borland’s Delphi, interfaces are constructed using pre-built components. If an
Interaction Template models a common interface interaction and there exists an
interface component that implements that common interface interaction, then that

8



BN & simutieren.. =
|o|e | | @

Ifaschine leer | Maschine leer Ir
= | | EE— Wassertank

. T

Wasser sindisen
Fiterbehatter dffnen

Wassertank schiiefken

Iaschine einachafen faschine einachaken

Figure 7: Simulator included in Dialogue Graph Editor.

interface component can be used to simulate the Interaction Template. For ex-
ample, the Data Table Interaction Template can be simulated using a data table
interface component that is included with Delphi.

The Enhanced Task Model Simulator (ETMS), shown in Figure 8, was built to
show how concrete user interface components can be used to simulate the sections
of a task model where Interaction Templates are used. The ETMS was built us-
ing Borland Delphi 6, and contains a traditional task model simulator based on the
Enabled Task Sets and State Transition Networks derived using TaskLib [4]. The
ETMS contains three views: the model view, the simulator view, and the prototype
view. The model view shows a simple tree view of the entire task model. The
simulator view, titled ‘Task Model Simulator’, contains a basic task model simu-
lator as well as a list displaying the current activity chain. In the simulator view,
tasks can be performed by double-clicking on them. When a task is performed, it
is added to the bottom of the activity chain [5]. The activity chain shows a history
of the interactions that have occurred in a simulation session. The prototype view
shows the currently enabled Interaction Template prototypes. The Interaction Tem-
plate prototypes allow the user to interact with a concrete user interface component
to simulate a portion of a task model. When the tasks from an Interaction Tem-
plate become enabled in a simulation session, a prototype consisting of a concrete
interface component corresponding to that Interaction Template is shown in the
prototype view. When those tasks are disabled, the prototype is hidden. In the cur-
rent implementation of the ETMS, creation, enabling, and disabling of prototype
instances are done manually.

Interaction Template prototypes are manually built once, then created and cus-
tomized dynamically during simulation sessions. A new Delphi form containing



the appropriate interface component is created for each type of Interaction Tem-
plate. Each new prototype inherits from the gendifienPrototypeobject, which
contains the functionality that is common with all Interaction Template prototypes.
Functionality that is in common with all prototypes includes the ability to commu-
nicate with the simulator, was will as the ability to show and hide itself when told
by the simulator.

Each specific prototype will implement its own adaptation logic. When a prototype
object is created, it will read-in thitoptionstag that contains the options for the
current use of the Interaction Template. The prototype object will adapt itself to
the options specified in thi&optionstag. With the Data Table Interaction Tem-
plate for example, the data table prototype will read in the schema file to set the
column headers and read in the sample data to fill in the rows. Most other Interac-
tion Template options have a one-to-one mapping to the attributes for the interface
component that is used to simulate the Interaction Template. For example, the Data
Table Interaction Template contains a boolean option called ‘allowsort’, which has
a direct mapping to the boolean ‘showsort’ attribute of the data table component
used in its prototype. Adaptation logic for those options is simply a matter setting
the attributes of the interface component. Finally, each specific prototype will im-
plemented a mapping between events and task occurrences in the task model. Since
communication between the prototype and the simulator is already implemented,
this is simply a matter of defining the name of the task that is performed when an
event is triggered.

While all other task model simulators use abstract interface objects to simulate
tasks, concrete user interface components can be used to simulate Interaction Tem-
plates that have been inserted into ConcurTaskTrees. Using the Enhanced Task
Model Simulator, users can interact with concrete interfaces to simulate portions
of a larger task model. The Interaction Template prototypes can also be popu-
lated with sample data, making the simulation less abstract and easier for users to
understand.

4 Open Problems

This paper has further explored Interaction Templates as a tool to help in building
and simulating Task Models using ConcurTaskTrees. A language for defining In-
teraction Templates has been proposed. The Enhanced Task Model Simulator has
shown how concrete user interface components can be used to create Interaction
Template prototypes, and ultimately enhance the task model simulation process.

10



i¥ nhanced Task Model Simulator =10 x|
- Fid

Import + Pl p2 p3 ‘

rModel View Task Model Simulator Al =
: ol
=43 Table Interaction || Enabled Tasks (Click to Perform) MO alx|

farmerTd |Firstiame © |LastName | address | -

=48 Move Column ~ ¥4 Sort By CustomerlD = Niccle Staveness B 226
=% Select Columi || ¥4 Sort By FirstName

-4 Move Firsth || ¥ Sort By LastName

¥ Move LastN B Sort By PhoneNumber
¥ Move Phon||| ¥ Sort By E-Mail

-

Maurice Durette Box 42
Mark. ‘atson Box 492

Luc Demers Box 38

John Henry GD
Im Smith Biox 134

Jennifer Petrie Bow 302

wir o[ N[e oo

David Paquette #305-405 Sth Ave N
Dale Hicks Box 1 -

..... ¥ Select New Li |- B Mrwa | astNama Cal =l

= Sort By Column || _ Activity Chain
¥ Sort By Custol ||Sort By FirstName I |
¥ Sort By FirstN Sort By FirstName
..... ¥ Sort By LastN; ||Move FirstName Cel
..... I Sort By Phong || Select New Location _
_____ ¥ Sor By E-Mai Move FirstName Col
Select New Location

Reset

[Task Count: 14

L4l

Figure 8: A prototype of the Enhanced Task Model Simulator.

While several concepts have been introduced here, there are still many questions
that need answering. The goal of Interaction Templates is to aid in building task
models while providing enhanced simulation using concrete interface components,
and remaining plastic with respect to operating systems and environments. This
paper will concluded with an outline of some areas that need to be further investi-
gated in order to reach this goal.

Tool Support: Tool support is needed both for building and defining Interaction
Templates and for building task models using Interaction Templates. A tool for
building task models using Interaction Templates must include an interpreter for
the Interaction Template Definition Language described earlier. Such a tool would
interpret an Interaction Template and expand it based on the values of the options
that are set for the current use of the template.

Plasticity: Do theit:case andit:condition statements provide enough flexibility
achieve plasticity? Some concrete examples of common interface interactions that
differ when performed in different contexts are needed. Using concrete examples
would allow the Interaction Template Definition Language to be tested to see if
Interaction Templates can be designed to implement the examples.

Generating Prototypes: Currently, prototypes are manually built to be self adap-
tive to the options set for an Interaction Template. Linking events to specific tasks
is also manually coded when the prototype is initially created. The manual cod-

11



ing is only done once, and since the adaptation logic is built in, a prototype can be

reused a number of times to simulate a template. Ideally, prototypes would be auto-
matically generated from Interaction Templates. Unfortunately, there is no obvious

solution to how data can be automatically loaded into interface components, nor is
there an obvious way to automatically decide on a mapping between event occur-
rences and tasks in the task model. It is likely that the mapping between events
and tasks will always need to be manually defined once. Also, unless all interface
components begin to comply to a common interface for loading data, manual code
will need to be written to load data into components as well as to set component
attributes based on options set for an Interaction Template. In the current imple-
mentation, event-to-task mapping and adaptation logic must be manually coded
once for each interface component. The amount of code needed to implement
these two requirements is minimal, making the current solution a viable option.

Enhanced Simulation: The current ETMS prototype allows an Interaction Tem-
plate prototype to simulate the task model. Is it possible to have the traditional
task model simulator control the prototype? The reverse mapping might be more
difficult to implement. Is it possible to have template prototypes communicate
with each other. For example, if a task in one template has an enabling-with-info-
exchange relationship to a task in another template, is it possible to forward the
information from one prototype to the other? Exchanging information between
prototypes would require the prototypes to share a common information exchange
mechanism.

References

[1] BARON, M., AND GIRARD, P. Suidt: A task model based gui-builder. In
First International Workshop on Task Models and Diagrams for User Inter-
face Design - TAMODIA 2002002).

[2] CoRbDY, J., HALPERN-HAMU, C., AND PROMISLOW, E. TxI: A rapid pro-
totyping system for programming language dialec®omputer Languages
16, 1 (1991), 97-107.

[3] DITTMAR, A., AND FORBRIG, P. The influence of improved task models on
dialogues. IrFourth International Conference on Computer-Aided Design of
User Interface$2004), pp. 1-14.

12



[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

LUyTenN, K., AND CLERCKX, T. Tasklib: a command
line processor and library for concurtasktrees specifications.
http://www.edm.luc.ac.be/software/TaskLib/.

LUYTEN, K., CLERCKX, T., CHONINX, K., AND VANDERDOCKT, J.
Derivation of a dialog model from a task model by activity chain extraciton.
In Design, Specification and Verification of Interactive Systems 2003 (DSV-IS
2003)(2003), Springer-Verlag, pp. 191-205.

PAQUETTE, D., AND SCHNEIDER, K. A. Interaction templates for construct-
ing user interfaces from task models. Hourth International Conference on
Computer-Aided Design of User Interfagq@904), pp. 223-235.

PATERNO, F. Concurtasktreesenvironment (ctte).
http://giove.cnuce.cnr.it/ctte.html.

PATERNO, F. Model-Based Design and Evaluation of Interactive Applica-
tions Springer, 2000.

PATERNO, F. Task models in interactive software systemsH&ndbook of
Software Engineering and Knowledge EngineerigK. Chang, Ed. World
Scientific Publishing Co., 2001.

PATERNO, F. Tools for task modelling: Where we are, where we are headed.
In First International Workshop on Task Models and Diagrams for User In-
terface Design - TAMODIA 200@2002), C. Pribeanu and J. Vanderdonckt,
Eds., pp. 10-17.

UHR, H. Tombola: Simulation and user-specific presentation of executable
task models. IfProceedings of HCI Internationg2003).

13



