Interactions, Transformations and AUI3D

Mark D. Watson*
CMPT856

April 29, 2004

Abstract

User-interfaces have been dominated by two or two-and-a-half di-
mensional interfaces for the better part of the last two decades. Al-
though much important work remains in to be done in the area of in-
terface design and human-computer interaction with regards to two di-
mensions, there has been a recent, renewed interest in three-dimensional
interfaces. Largely, this is due to the emergence of graphics cards capa-
ble of rendering three-dimensional scenes, rather than a great demand
for interfaces of this nature. As such, there has been some difficulty
in finding applications that seem to require higher dimensional inter-
faces. Also, there has been a great deal of difficulty in understanding
how user interaction should occur within three dimensions. Presented
is a value-oriented framework for capturing user interaction as a se-
ries of transformations, designed to aid the research of interactions
techniques.

1 Background and Motivation

While the 70s had a great deal of user interface development, the micro-
computer revolution and standardization of operating systems in the
80s brought that to a close [8]. GUIs became much more standardized
and practical interface development took over.

Forms based interaction, by far the dominant interface paradigm,
has evolved to a point that numerous XML languages are capable of
describing their components. While there remain many unsolved issues
in traditional two dimensional interfaces, the basic and traditional in-
teraction techniques are well understood and formalized.

*mark.watson@usask.ca



Quite the opposite is true of three-dimensional interfaces. Two
dimensional interfaces have always had an obvious metaphor for de-
velopment; the desktop. Much of the success can been seen as a way
to streamline the interactions which would have occurred on desk-
tops, with physical papers and folders. three-dimensional interfaces
do not have such a background to guide their development. Rather,
three-dimensional interfaces have arisen largely because the ubiquity
of powerful graphics cards.

This does not mean that three-dimensional interfaces are without
any merit, but rather that there has not proven to be a “killer app”
that has driven research in the field. Researchers, then, have great
freedom in experimenting with interactions.

AUI3D provides a framework in which interaction techniques can
be easily prototyped and explored. It does this by providing a source
based description that an easily be analyzed and transformed based on
user input.

1.1 The Bluewall Project

The Bluewall project began development in the spring of 2003. The
Bluewall is a large display system for the development, management
and analysis of computer systems. Some substantial work has been
done in the area of large displays [6], although the overall goals and
process of the Bluewall are somewhat different.

One major issue was the desire to create a new display environment.
Complete control of a display environment has many strengths. One
of the purposes of the Bluewall project is to prototype and experiment
with uncommon GUI constructs, for example horseshoe scrollbars or
circular menus. By freeing ourselves of a traditional GUI library, such
as Swing or Cocoa, one avoids the aggravation that accompanies run-
ning into their limitations. We were distinctly aware of the limitations
of the system and needed a way to extend the system as needed.

We felt that a language-based approach was the best way of dealing
with the difficulty of the Bluewall’s display. We then should consider
the variety of languages which exist for UI design.

1.2 XML Based User Interface Languages

Since XML UI Markup Languages' have become so popular in the last
few years, it is important to discuss them and understand their core
strengths.

The vast array of XML UI languages are based around forms, and
have a set of tags that allow the description of any common interface

'Some important projects include XAML, XIML and UIML.



component. In this manner, it is easy to describe a window filled with
panels which in turn contains buttons and combo boxes. To describe
this components, the system is extremely powerful, and reduce classic
interfaces to a sort of HI'ML complexity.

However, they are not designed for experimentation and often have
impoverished concepts of interaction. Which these languages can be
powerful, they are clearly not right for either the Bluewall, nor any
attempts to study three-dimensional interfaces.

1.3 Other Approaches

In traditional GUI libraries and widget systems we are given a set of
immutable devices, like buttons and text fields. These components
must be allocated and destroyed by the user, and interaction is done
by a series of call to pre-constructed methods.

Zero Memory Widgets (ZMW) [5] libraries instead resemble the
interaction within OpenGLZ2. There is no concept of creation or deletion
of objects, and all interactions are handled via programmer functions.

In pseudo-code, we might have a function perform_operation we
could give it to the system as the window_selected (perform_operation)
such that when a window is selected, that function is immediately
called. This is an incredible level of freedom for most programmers
and seems intuitively good. It is a very clean system — a graphics-
library styled procedural language that is based around functions.

ZWM is embedded within a procedural language, currently C. The
adoption of a function-call scheme similar to ZWM-in-C seems to make
perfect sense for the application. ZWM is still an extremely new tech-
nology and, while it may never become anything near a dominant Ul
paradigm, it is a good direction for future research to continue. How-
ever, it again is based in two dimensions, and could not be used to
study three-dimensional interactions.

Ultimately, AUI3D is not based off of any of these approaches,
although it does have a few core characteristics in common. It is a
highly structured language like the XML UI languages, but it’s core
is much closer to that of a graphics system which is in turn similar to
XML. While AUI3D doesn’t resemble these systems explicitly, it tries
to address many of the same concerns, particularly those of ZWM.

2 AUI and AUI3D

AUI3D is a description language and environment for creating user
interfaces. It grows out primarily out of the work done on the AUI [9]

?Project home is http://www.opengl.org/



[10] system. As such, much of AUI3D can be understood as a migration
of the concepts found in AUI to three dimensions.

2.1 AUI and PAUI

AUI was created as a programming language and environment to de-
fine plastic user interfaces. Interface Plasticity refers to the property
that the functionality (and skeletal structure) of an interface is pre-
served, even if it is ported to multiple environments. That is, the
functionality of something like a thermostat in a house with computer
controller heating should be adapted to PDAs, Web Interfaces as well
as the physical thermostat unit with a minimum of difficulty while
maximizing utility.

The AUI expression that describes an interface is fairly small. This
description is then interpreted and turned into an interface with which
the user can then interact with

AUTI is a functional language that also describes the interface’s func-
tionality and appearance. Although functional languages are far from
a dominant paradigm, they are elegant to program in, and yield clean,
clear code. AUT’s syntax is clean and clear, and although it has some
mark-up properties like XML, it doesn’t descend into that realm of
confusion.

The language, much like Haskell, views all operations as a trans-
formation from one structure to another, such as a String to an Image
in the case of opening a drawing saved to a file. This transformation
model resembles the experiences of the authors in TXL [2].

The seeming biggest issue with AUI is the problem of separating
the interface from the rest of the system. Surely, not all operations
should be carried out within AUI, which seems to be the manner in
which the system is most inclined. Still, AUI only promises a plastic
interface, which is still delivered even if back end routines are written
in different languages depending on the device used.

AUI recognizes that interfaces can be described in an abstract man-
ner, such that they are not bound to any given device, and still be
defined enough that they can be interpreted and run. The model it
presents was both novel and simple.

PAUIT [11] was an attempt to extend and recast AUI as a procedural
language. The goals were: human readability, an intuitive grammar,
ease in transformation, ease in transformation from a related descrip-
tion language to a valid expression, and the capacity for procedural
programming. In this manner, it resembles ZMW.

In practice, PAUI is an imbedded language, like SQL. The language
is completely free of control statements, for these features we appeal to
the language in which PAUI is embedded. The reason for this design



choice is that the presence of control constructs reduces the redundancy
of the language.

2.2 The Canvas and the Pin

In AUI and PAUI, every scene is composed of a canvas and some num-
ber of graphical elements (or gels). The canvas is the fundamental
base of the display; without a canvas, no expression can be understood.
When rendered, a canvas is a white box containing the graphical scene.
In structural terms, a canvas is a list filled with gel-pin tuples called
children. A pinis an X —Y coordinate pair that gives a location on the
board where the gel should be placed. In the case of a box, the box’s
top left corner will occupy this space. In the case of a line segment, it
refers to the point of origin. Other objects have some logical method in
which they are placed, usually the same as the box. When a canvas is
rendered, each gel is told a location from which it should begin drawing
itself. Gels are rendered in order so the last entity in the canvas list
may paint over previous locations as per Painter’s Algorithm.

In addition to this, PAUI also allows containment. Gels were al-
lowed to have subcanvases that again are lists of children. Every pin
uses relative coordinates, and a child can be pinned anywhere within a
subcanvas. This allows the movement of a gel without the need to re-
calculate any child’s location. This allows easier transformations, and
manipulations to the canvas. This is similar to the system designed by
Craighill and Fong [3].

When moving the pin-canvas metaphor to three dimensions, nu-
merous additions to the system had to occur. Most obviously, we need
to extend the pin to include a the Z coordinate, making it an X —Y —Z
triple. Another important aspect is the orientation of the gel. Each
gel’s orientation can be described in terms of a Pitch-Yaw-Roll triple.
See figure 1.

We now consider the problem of containment. In two dimensions,
the containment metaphor can be viewed as a “stack”, each gel must
rest completely on the object that contains it. In three dimensions
there appear to be two containment metaphors, “on” and “inside”.

“On” means that a contained gel lies on the surface of the con-
taining gel, see figure 2. This metaphor allows AUI3D to model such
interactions as buttons on panels, etc. With this metaphor, we are
able to easily model all of the expressions of AUI.

“Inside” means that a contained gel is physically inside of the con-
taining gel. This metaphor is not overly useful for interaction, but can
be very useful in terms of displaying data.

AUI has a small collection of primitive gels from which all scenes
are created. This list includes vectors, boxes, text, and so forth, but is
not intended as an exhaustive list of graphical elements that might be



space<200,200>{<box<5,5>(F1ll Solid),
<0,0,-15>, [45, 45, 0]>}

Figure 1: An AUI3D expression and the resulting scene.

Figure 2: The two smaller boxes are both “on” faces of the larger box.



needed during GUI construction. One feature of an abstract language
should the capacity to create new elements with relative ease and if it is
necessary, the system is easy to extend. It is not a major undertaking
to add or remove gels from the language. The parser must be modified
slightly and the objects added to the interpreter, but again, this is not
overly difficult. In the prototype implementation, it involves adding
a method to the parser to handle the new entity and creating a class
that extends the Gel class. In this manner, AUI or AUI3D can be
easily extended to include whatever interface elements are required as
development progresses.

2.3 The Viewer

In AUI, the relation of the scene to the viewer was static. Although the
gels on the canvas could be moved to the right to give the perspective
of the viewer panning left, the viewer’s position relative to the canvas
did not change.

In three dimensions, it is more important to clearly differentiate
the view from the space. Where and how the viewer’s perspective is
defined can dramatically distort the rendering of the gels. It should
not be the gels’ responsibility to determine how it should be rendered
given the new viewpoint. Thus, we separate transformations of the
space and transformations of the view.

This requires that we add another atomic unit to the AUI expres-
sion, the view. As it is part of the expression, it can undergo source-
to-source transformations.

Typical transformations might involve zooming, changes to the
frustum, changes from objective to perspective views, and other sim-
ilar changes. As they are part of the expression they can be easily
manipulated to any form that the programmer wishes.

2.4 Lighting

It has been recently suggested that the inclusion of lights might be
useful to the system. Lights represent another atomic element, like gels.
Normally one considers a gel to be an object that the user can directly
see or interact with. Lights, on the other hand, are only noticeable
indirectly, that is, in term of their effect on the gels in the system.

Most graphic systems use a “three term” lighting model composed
of ambient, specular and diffused lights. Specular and diffused lights
are both type of lights that have physical locations, so they can be
included in the expression using pins. In this regard, they may be
treated as gel, although they are gels that can never contain other gels
and cannot be directly interacted with.



Ambient light is general to the entire scene, and could be included
as part of the description of the space term.

3 Transformations

At the very heart of AUI3D is a concept of source-to-source transfor-
mations. An AUI3D expression is a series of pins and gels describing
some three-dimensional interface, which can be written very concisely
as a string. Since we have a formal language to describe expressions,
it is possible to directly manipulate them.

Source transformation is an extremely powerful paradigm [1]. We
can use a transformation language like TXL to convert between two
scenes. With this, it is then possible to use user input, such as a mouse
click, to perform a source-to-source transformation. We will examine
a few extremely simple transformations to explain the power of the
system.

3.1 Movement and Rotation

The most basic transformation is the manipulation of the pins that
compose the scene. This an extremely simple process — one need only
need to change the value associated with the coordinates of a pin to
move the object. The metaphor that AUI programmers tend to in-
voke is that one is “pulling the pin out of the board, and placing it
somewhere else.” This analogy is somewhat more complex in three di-
mensions, but effectively, it is the same; an object is removed and then
returned, in a new location.

3.2 Insertion and Deletion

Adding and removing gels from the scene is quite simple. To add a gel
to a scene, we just add its description to the expression. Similarly to
destroy a gel, we need only remove its description from the expression.
Clearly, these are commonly invoked transformations.

3.3 Swapping Pins

Another simple transformation which gives some example of the power
of transformations is swapping pins. The point is that we switch the
gels associated with two pins, which means that the gels orientations
and locations will swap. Because all contained pins us relative coordi-
nates, a gel’s contents are not changed in any manner when they are
transformed. For an example of swapping pins, see figure 3.



>

>

space{<box(<2,2,2>)<0,0,-10>,[30,30,30]>,
<box(<3,3,3>..) <-10,0,-15>, [30,30,90]>}

> 9

space{<box(<3,3,3>.)<0,0,-10>, [30,30,30]>,
<box(<2,2,2>) <-10,0,-15>, [30,30,90]>}

Figure 3: An example of swapping pins. The initial scene is on top, and
the scene after the transformation is below. The two gels are completely
unchanged, aside from the fact their orientations and locations have been
exchanged.



> B

space{<box(<1,1,1>)<0,0,-1>>, <box(<3,3,3>)
<-10,0,-15>, [30,30,90]>}

space{<box(<3,3,3>){<box(<1,1,1>)<0,0,-1>>}
<-10,0,-15>, [30,30,90]>}

Figure 4: An example of composition. The initial scene is on top, and
the scene after the transformation is below. The smaller box is completely
unchanged, its pin has simply been moved to be contained by the larger
box. The small box appears to be huge in the first scene as it is very close
to the camera.

3.4 Composition

Manipulating gels is at least as important as manipulating pins. Com-
position is a transformation where pins are not changed, but they are
placed inside another gel. That is, one gel is transformed to contain
one or more pins that it did not previously contain. Many common UI
interactions can be imitated using this system, such as drag-and-drop.
For an example of composition, see figure 4.

3.5 Selection

A final, common transformation is selection. Selection is a transfor-
mation based on some pattern match. For instance, we might want to
change all blue squares to red ovals, or all pins beyond some X posi-
tion should be rotated, or so forth. The point is that this is another
simple, powerful transformation that allows wide scale manipulation
to a scene.

10



While more complex transformations are sometimes required, it is
often surprising how much is possible with very simple transformations.
Often, at the core of any complex transformation is a series of trivial
ones.

4 Implementation

Algorithm 1 DRAW_GELS

for all pins:

1: push a matrix

2: transform to location specified by pin’s coordinates
3: rotate as specified to pin’s orientation

4: tell pin’s gel to DRAW _SELF
5

. pop matrix

end

AUI3D was prototyped in C++ in both Mac Os X 10.3 as well as
Windows XP. For the graphics library, OpenGL 1.5 was used.

The architecture of the system is quite simple. There are two object
hierarchies: one for gels and another for views. There is another class
of objects, which is the pins. There are no classes which inherit from
pins.

If lights are added to the model, there seems to be a clear alteration
of the model. Obviously, a Light element would need to be added.
What should be done is that Pin can contain any SceneElement, a
class that both Gel and Light inherit from. In this manner, Pin can
be used to hold lights in positions and does not lose any of its Gel
functionality.

The implementation makes heavy use of the keyboard as a input
device to reduce the complexity of the system.

The rendering process makes heavy use of the glMatrixPush()
and glMatrixPop() routines found in OpenGL. Rending is done via
algorithm 1.

Note that each gel told to render itself may in turn contain gels,
which are drawn using the same algorithm.

Another extension to the system would be to include interpolation
between AUI3D expressions, so that rotation will appear to be gradual
without needing to send numerous intermediate transformations.

11



5 Related Work

In the realm of creating graphics frameworks focusing on transforma-
tion, there appears to be little related works. One exception is the
MAM/VRS [4], an object oriented frame work for both geometry and
3d widget design. It using a concept of nodes that define data about
the objects in the system. It supports complex constraint systems and
allows for animation of objects in the system. While it does possess
many of the ideal features and some concept of value-oriented design,
it is not explicitly based around the concept of transformation, and
seems to have no idea of source-to-source transformation.

While not a framework at all, an interesting example of three-
dimensional interaction for a traditional issue is 3DOSX [7]. 3DOSX
is a program which replaces the Finder (window manager) in Apple’s
OSX operating system with a three-dimensional scene filled with ro-
tatable platters. Each directory is represented by one of these platters
with the file icons listed around its perimeter. If a user opens a folder,
a new platter of that folder’s contents is generated. The system also
creates a connecting bridge that spans between the folder icon and it’s
platter. See figure 5.

While this model of interaction doesn’t seem to be very effective, it
is interesting that the authors are trying to reconsider a fairly well un-
derstood scenario (i.e. navigating a directory hierarchy). It is possible
that this mode of thinking will reveal the scenarios in which three-
dimensional interactions are radically more effective than their two
dimensional counterparts.

6 Future Work

While the current implementation of AUI3D has allowed mild interac-
tion with three-dimensional interfaces, more complex interactions must
be explored. The most important extension of the work is to add func-
tionality to the system so that we can map a traditional interface to a
three-dimensional interface.

An example might be an IDE that has been mapped to a cube.
On the cube, each face can have a different exclusive mode, such as
different editing, compiling, debugging, and so forth. Again, it is not
really known what will prove to be the benefit from moving to three
dimensions, so the important thing is to experiment with the medium
and see what interactions present themselves.

An important addition would be interpolation between scenes so
that objects would smoothly move from one position to the next. Al-
though this is almost purely a graphics issue, it would likely make the
interface seem much more fluid and clean, and reduce the number of

12



Tl IDOSN e I8e Rane men

Figure 5: A scene from 3DOSX. The various platters represent the contents
of different folders. Folders are connected to subfolders via the bridges
pictured. Taken from the developer’s website.

13



intermediate transformations.

7 Conclusions

three-dimensional interfaces are not only an exciting new area of re-
search for HCI researchers, they are also not very well understood. To
fully explore this new domain, researchers require frameworks which
are powerful enough to encompass all potential interaction techniques.

AUI3D represents a powerful framework for prototyping and ex-
perimenting with three-dimensional interactions and user interfaces.
However, because of its powerful core of source-to-source transforma-
tions, a fully realized AUI3D could be used as a general interface en-
vironment. At it’s core, AUI3D is a very simple system, but it can
be easily extended to include any type of gel via adding classes to the
interpreter.

Finally, it is interesting to note that all display aspects of AUI can
be captured within AUI3D. AUI3D is a superset of AUI, and as such
is capable of everything that the simpler system was capable of.

8 Acknowledgments

Thanks to the members of the CMPT856 class for providing good sug-
gestions and to the Software Engineering Lab for the use of machines
over the course of the term. Finally, thanks to Dr. David Mould and
David Paquette for suggestions regarding rendering and interaction.

References

[1] CorpY, J., DEAN, T., MALTON, A., AND SCHNEIDER, K.
Source transformation in software engineering using the txl trans-
formation system. Journal of Information and Software Technol-
ogy 44, 13 (October 2002), 827-837.

[2] CorpY, J., HALPERN, C., AND ProOMISLOW, E. Txl: A rapid
prototyping system for programming language dialects. In Pro-
ceedings of the IEEE 1988 International Conference on Computer
Languages (October 1988), pp. 280-285.

[3] CralcHILL, N., AND FONG, M. GraphPak: A 2D Graphics Class
Library. Wiley, 1992.

[4] DOLLNER, J., aAND HINrICHS, K. Object-oriented 3d modeling,
animation and interaction. Journal of Visualization and Com-
puter Animation 8, 1 (1997), 33-64.

14



[5]
(6]

EORES)

[10]

[11]

EXCOFFIER, T. Zero memory widgets. Tech. Rep. LIRIS Research
Report 20030311, Université Claude Bernard, France, 2003.

GUIMBRETIERE, F., STONE, M., AND WINOGRAD, T. Fluid

interaction with high-resolution wall-size displays. In Proceedings
of UIST 2001 , ACM, Orlando (November 2001).

MACWARRIORS. 3dosx, http://www.acm.uiuc.edu/macwarriors/projects/3dosx/ .

MvyEeRrs, B., HuDsON, S. E., AND PAuscH, R. Past, present,
and future of user interface software tools. ACM Transactions on
Computer-Human Interaction 7, 1 (March 2000), 3-28.

SCHNEIDER, K., AND CORDY, J. Abstract user interfaces: a
model and notation to support plasticity in interactive systems.
In Design, Specification and Verification of Interactive Systems
(2002), vol. 2220 of Lecture Notes in Computer Science, Springer,
pp- 28-48.

SCHNEIDER, K., AND CORDY, J. Aui: A programming language
for developing plastic interactive software. In Proc. HICSS-35
- Hawaii Int’l Conf. on the System Sciences (Waikoloa, Hawaii,
Jan. 2002), pp. 281-291.

WaTsoN, M. Paui syntax and server: a status report. Tech. Rep.
SE Lab WP03-201-MDW, University of Saskatchewan Software
Engineering Lab, 2003.

15



