
DiscoTech: A Toolkit for Handling User Level

Disconnection Problems in Synchronous Groupware
Banani Roy

Queen’s University
School of Computing

Kingston, ON, K7L 3N6

 Nicholas Graham
Queen’s University

School of Computing
Kingston, ON, K7L 3N6

Carl Gutwin
University of Saskatchewan

110 Science Place
Saskatoon, SK, S7N 5C9

ABSTRACT

During a collaboration session in synchronous groupware

participants can often get disconnected, which causes various

user level problems, such as interpretation difficulties, confusion

and misunderstanding To date, no toolkit exists for providing

programming support for developers to solve user level

disconnection problems. In this paper, we present a toolkit called

DiscoTech that offers a gentle learning curve programming

solution to the groupware developers for handling user level

disconnection problems.

Keywords

Groupware, disconnection behaviour, feedback, toolkit, plug-ins.

1. INTRODUCTION
During a collaboration session, participants get disconnected in

synchronous groupware for several reasons including power

failure, network outage, network latency, and explicit departure

[4]. A disconnected participant loses track of the collaborative

workflow causing various user-level problems, such as

interpretation difficulties, confusion, and misunderstanding [4].

Effective feedback following a reconnection would help the user

‘catch up’ with the ongoing collaboration activities. For example,

during a group chat session, suppose a participant gets

disconnected for one minute due to network outage. Upon

reconnection, the user sees a quick replay of the messages

exchanged in her absence, allowing her to ‘catch up’ with the

current conversation.

However, despite the promise of improved group coordination

and collaboration, synchronous groupware does not yet resolve

these user level disconnection problems. Addressing user level

disconnection problems from the scratch adds new programming

tasks to the groupware developers and increases complexity of

groupware applications. It distracts the developers from

constructing the application itself. In some cases, developers

simply may not have considered the problem or they focused

mainly on reestablishing the network connection and the

consistency maintenance of the shared objects [1, 2, 3, 7]. To

date, no programming toolkits exist that address disconnection

considering user–level problems. The only framework that

considers this issue, Disco [4], does not deeply investigate how

their proposed approach would work in practice.

In order to address the user-level disconnection problems, we

have built a toolkit called DiscoTech which offers a flexible, yet

simple APIs that allow developers to create disconnection aware

synchronous groupware applications in a simple and flexible

manner.

DiscoTech is designed using the plug-in architecture proposed by

Gutwin et al. [4]. These plug-ins aim to provide flexibility to the

developers to adapt to various disconnection behaviours in the

groupware applications. Disconnection behaviours are obtained

by storing information and presenting this information (we also

term it reconnection information) to the reconnected users.

Compactor plug-ins reduce the size of the stored messages to

optimize message delivery requirements [3]. To adapt the

presentation disconnection behaviours, replayer plug-ins

represent the stored messages to the reconnected users in some

fashions.

DiscoTech aims to provide a gentle learning curve for the

groupware developers who want to construct a groupware

application with the reconnection feedback mechanisms. We

term such an application as disconnection aware. For this,

DiscoTech offers three levels of plug-ins solutions. With these

three levels, developers can engage with the toolkit progressively

to adapt disconnections behaviours with increased

expressiveness.

We plan to evaluate DiscoTech in two steps. First, we will

measure the expressiveness of the plug-ins using a four-

dimensional design space. The design space exposes all possible

strategies for presenting reconnection information for a wide

range of groupware applications. We will fit the plug-ins on the

design space and investigate the situation where they fail. In case

of failure, our plan is to either build a new plug-in (if possible)

or to mark the failure as a limitation of the toolkit. While

measuring the expressiveness, we will show how the developers

can engage with the toolkit progressively for adapting

disconnection behaviours with increased expressiveness. Second,

we will illustrate how the plug-ins work in practice by

constructing various groupware applications using DiscoTech.

2. RELATED WORK
To date, Disco [4] is the only framework for handling

disconnection considering user-level problems. With Disco,

Gutwin et al. show that it is important to address user-level

disconnection problems in synchronous groupware in order to

achieve the usability of synchronous groupware. Disco handles

several types of disconnections in synchronous groupware

considering how disconnections are identified, what senders and

receivers should do during an absence, and what should be done

with accumulated data upon reconnection for three different toy

applications. Disco uses the plugin architecture concept for

Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and the

full citation on the first page. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

supporting various disconnection behaviours. However, Disco

did provide details of a practical application. It also did not

address the issue of developer’s progressive engagement with the

framework. Using our toolkit, we attempt to address these

shortcomings of Disco.

Other than Disco few tools do exist to address disconnection

issues. These tools mainly reestablishing the network connection

automatically and maintain the consistency of a shared object.

Ensemble [1] considers developers’ effort while supporting fault

tolerance in groupware applications. Corona [5] and DISCIPLE

[6] allow disconnected mobile clients work offline and concern

about consistency maintenance of the shared object upon a

reconnection. YCab [2] offers a minimal learning curve for the

developers to build fault tolerant collaborative applications in the

mobile environment. WebArrow [7] addresses bringing a

disconnected client into an operational state using a complex

distributed algorithm. None of these tools, however, are

intended to provide feedback to the reconnected users for solving

the user-level disconnection problems, which is the main goal of

our DiscoTech toolkit.

3. DESIGN PRINCIPLES OF DiscoTech
Due to disconnection in synchronous groupware several user

level problems occur such as interpretation difficulties, confusion

and misunderstanding. To overcome the user level problems, it is

important to provide effective feedback to a reconnected client to

catch up with the current collaboration activities. For example

consider the following two scenarios where feedback helps:

Scenario 1: Bonny, a PhD student, is in a chat session with her

two supervisors, Clive and Nett using a chat application. When

someone types, the client applications display the ‘keypress’

event instantly in the chat-viewing window to provide typing

awareness. When someone presses ‘ENTER’, the applications

display the chat messages while removing the ‘keypress’

awareness messages.

However, when Bonny types her study update of the last week,

Clive gets disconnected due to network outage. Despite Clive’s

disconnection, Bonny and Nett continue chatting. The

disconnection tools integrated with the chat application stores

all the chat messages sent from Bonny and Nett while discarding

the ‘keypress’ awareness messages because upon a reconnection

these messages are not important for Clive.

When Clive rejoins to the chat session, the disconnection

handling tools display the stored chat messages in his chat-

viewing window one after another with a short delay between

them. After reading the messages, Clive gets an idea about his

student’s progress and starts typing his next message without

having any confusion that could arise if he would not see the

missed messages.

Scenario 2: A group of people use a shared drawing editor to

collaboratively draw a UML diagram. However, during the

ongoing collaborative drawing session, Sally, a group member,

gets disconnected for two minutes. The disconnection toolkit

adapted with the groupware application stores all the drawing

events of the last 50 seconds while discarding the rest due to the

limited bandwidth.

After rejoining to the drawing session, she sees the replay of the

drawing activities of the last 50 seconds at a double speed of the

original on her drawing window, which helps her understand

how changes occurred in the UML diagram. If Sally could not

able to see the replay, she would have been confused about the

changes.

In our toolkit, we have used the idea of providing feedback to the

reconnected users for solving the user-level disconnection

problems. For example, in scenario 1, Clive gets feedback by

seeing the missed messages and overcomes his confusion about

his student’s progress, and in scenario 2, Sally gets feedback by

seeing the replay of the drawing activities and overcomes her

confusion about the changes in the UML diagram. In this paper,

we call a groupware application disconnection aware when it

provides such feedback to the reconnected users.

4. ARCHITECTURE FOR FEEDBACK
The main requirement for our toolkit is to provide feedback to

the reconnected users. To satisfy the requirement, the toolkit

needs to adapt various disconnection behaviours into the

groupware applications. For example, in scenario 1, the feedback

of the chat application characterizes two disconnection

behaviours: (1) discarding the awareness messages, and (2)

flashing the chat messages with a short delay between them. As

such, there are a wide range of disconnection behaviours for

various groupware applications. In order to adapt the various

disconnection behaviours, we have exploited the plug-in

architecture (proposed by Gutwin et al.) as the underlying

architecture of DiscoTech. These plug-ins are intended to adapt a

wide variety of the disconnection behaviours.

In Figure 1, we show the architecture of a client/server based

disconnection aware groupware application with DiscoTech. In

normal operation, the client application generates a sequence of

events which are processed locally and sent to the server that

multicasts the events to the other clients. There is a clean

separation between the application and DiscoTech’s components.

The application only interacts with the DiscoWrapper component

(that works as a mediator between the application and

DiscoTech’s components). For this feature, DiscoTech’s core

components are reusable across various groupware applications.

All the complexities needed to handle disconnection and passing

messages over the network are embedded in DiscoTech’s

components, and developers do not need to expose them.

Therefore, at the simplest level, the developers need to learn

simple APIs to pass events through DiscoWrapper while the rest

is taken care of by DiscoTech. In the following, we explain how

DiscoTech takes care of a disconnection situation and provides

feedback to the reconnected user by using the compactor and

replayer plug-ins.

Figure 1: An architecture for providing feedback

4.1 Compactor Plug-ins
The server side Event Queue (Figure 1) component stores

messages in the event queue in preparation for the eventuality of

disconnection. Different disconnection behaviours can be

obtained based on what portion of messages will remain in the

storage. For example, in scenario 1, the chat application stores

the chat messages while discarding the unimportant awareness

messages and in scenario 2, the drawing editor stores the

messages of the last 50 seconds discarding drawing events older

than that due to limited bandwidth. In these scenarios, Event

Queue behaviours are adapted based on the applications’ event

delivery/ QoS requirements [3] and its event queue capacity. In

order to address different disconnection Event Queue behaviours,

we have proposed compactor plug-ins intended to reduce the size

of the event queue for satisfying the event delivery requirements.

The compactor component (Figure 1) can easily incorporate a

compactor plug-in using the inheritance feature of object oriented

programming language, where the compactor component offers a

base class and the plug-ins are the sub classes overriding its

compact method. A compactor plug-in can be built using a

simple pattern where it will access the event queue periodically

and will reduce its size either by eliminating some events or

transforming them into another representation

4.2 Replayer Plug-ins
When a client is reconnected, the ReconnectionManager (Figure

1) sends the processed stored events via the NetworkEndPoint.

The client side NetworkEndPoint receives the events and stores

them in the event queue. Replayer retrieves them from the event

queue and compares the timestamp of the events with current

time; if the time interval is higher than a given threshold value,

the Replayer identifies that these events are for providing

feedback to the reconnected users.
s

Different disconnection behaviours can be obtained based on the

fashions the reconnection messages will be presented to the

reconnected users. For example, in scenario 1, the chat

application presents the chat messages by flashing them one after

another with a quick delay between them, and in scenario 2, the

shared drawing editor replays the messages at a double speed. To

address the various presentation behaviours, we have proposed

replayer plug-ins. Replayer calls a replayer plug-in to adapt the

presentation behaviour. The replayer plug-in processes the events

(e.g. the double speed replayer plug-in compresses the time

interval of the events for replaying them at a double speed) and

sends them to DiscoWrapper, which passes them to the client

application that displays the events to the reconnected user as

feedback.

5. THREE LEVELS OF SOLUTIONS
With this toolkit, we offer three levels of plug-ins solutions for

adapting a wide range of disconnection behaviours in the

groupware applications. By going through the three levels

developers can engage with the toolkit step by step and can adapt

disconnection behaviours with increased expressiveness. Thus,

DiscoTech offers a gentle learning for the developers who want

to construct the disconnection aware groupware application.

5.1 Generic Plug-ins
These plug-ins can be used without any customization. For

example, the compactor plug-in that discards events older than

30 seconds is generic because it can be applied to various

groupware applications without knowing the internal event

structure. DiscoTech provides the generic plug-ins for supporting

simple disconnection behaviours, e.g. replaying the last 10 events

or replaying the last 50 seconds of events at a double speed.

Developers can use start by using generic plug-ins without the

need to learn anything difficult. They simply need to learn how to

interact with the DiscoWrapper component (Figure 1) to send

and receive events over the network and this can be done with

simple APIs. The benefit of this approach is that with a very little

effort they will get some disconnection behaviours built into their

application. Generic plug-ins may be sufficient for many

groupware applications.

5.2 Partial Generic Plug-ins
If developers want to add complexity, they can use the partially

generic plug-ins. These compactors require some customization.

DiscoTech offers the basic template for writing a plug-in, but the

developers need to customize a specific method for adapting the

plug-in in their applications.

For example, in an Aggregating compactor the event queue is

divided into two-second intervals, and all events within that

interval are aggregated into a single event. The basic compaction

algorithm is generic, but the specifics of how a set of events is

aggregated into a single event are application-specific. For

example, a telepointer application uses averaging (a group of

events is combined to a single event whose position is the

average of the group), whereas a chat application uses chunking

(a sequence of single-character events is combined to a single

event with a sequence of characters). Here the telepointer and the

chat applications use different methods for combining the events.

To address such disconnection behaviours, DiscoTech offers the

following API for the Aggregating compactor:

abstract class AggregatingCompactor : Compactor

 {

 void Compact();

 virtual Event Aggregate(List<Event>);

 }

The developers have to fill the virtual Aggregate method that

requires them to learn the event structure of DiscoTech.

Therefore, by using the partial-generic plug-ins developers can

expose a wide range of disconnection behaviors while engaging

with the toolkit one step further than the generic ones.

5.3 Application-specific Plug-ins
For some cases groupware applications might need to have

application-specific disconnection behaviours. For example, a

telepointer application can use a TelepointerTraces plug-in to

visually represent the information about the recent telepointer

positions on the current frame. Although in such cases the

constructions of plug-ins require more engagement with the

toolkit than the other two plug-ins levels, the underlying plug-in

architecture of DiscoTech offers flexibility to do so. Developers

only have to concentrate on their plug-ins algorithms and not on

their adaptation technique with the toolkit. As a result, they can

expose a wider range of disconnection behaviours.

6. DESIGN SPACE FOR PLUG-INS
The goal of DiscoTech is to ensure the feedback for the

reconnected users for a wide range of groupware applications.

For this, DiscoTech should be able to adapt required

disconnection behaviours into the groupware applications. In so

doing, a library of plug-ins is required. We need to analyze how

the plug-ins fit for different groupware disconnections

behaviours. For the analysis, we have defined a four-axis design

space (Figure 2). The goal of design space is to capture all

possible strategies for presenting reconnection information,

which would allow us to identify possible disconnection

behaviours of various groupware applications. Each axis in the

design space ranges over three values and each point in the

design space is a strategy. If our plug-ins library fails to cover

any strategy, we will either build a new one (if possible) to cover

it or we will mark the failure as a limitation of our toolkit. In the

following, we discuss how some strategies fit into each axis of

design space.

Amount of events: specifies what portion of backlogged events

needs to be delivered. The first value of this axis is all events

replayed where an application would replay all the accumulated

information, e.g. a chat application might replay all the messages

when a user is reconnected after a few seconds. The second value

is the subset of events replayed where an application replays

events after eliminating some events based on the factors, such

as the age of the events, number of events and groupware

message types (such as awareness and transactions [3]). For

example, in scenario 2, the strategy was to replay the last 50

seconds of drawing events. The third value is the last state

updated where only the latest event will be replayed, e.g. a

power point presentation application presents the latest slide.

Pacing of playback: refers to how closely the pace of playback

needs to be matched with the original. The first value of this

axis is the same pacing as original, e.g. a telepointer application

replays the line drawing events at the same pace as the original

while discarding the telepointer awareness messages. The second

value is the same proportional pacing with compressed timeline

where events are replayed after compressing their time intervals,

e.g. a video application replays a video stream at a double speed.

And the third value is pacing not preserved where events are

replayed without having any pace, e.g. an audio conferencing

application presents the audio transcription in a single frame.

Aggregation of events: specifies grouping of events. The first

value of this axis is the original events preserved, e.g. a shared

editor replays drawing operations without grouping them

together. The second value is the grouping of events where a

group of events is combined into a single event, e.g. a telepointer

application combines a group of telepointer positions into a

single position using averaging. The third value is the change of

representation, where events are transformed into different

representations, e.g. a telepointer application uses change of

representation to heat map

Ordering of events: specifies at what order the events need to

be processed. The first value is the same order as original, e.g.

a chat application replays messages using the original order. The

second value is the partial order where ordering of each message

type would be maintained but not the overall ordering of all

message types, e.g., a shared white board application replays

different reliable messages [3] such as chat, annotations and

session management in a partial order. The third value is simply

any order.

7. EVALUATION
We will first illustrate how expressive the three levels of plug-

ins solutions (mentioned earlier) are for supporting a wide range

of disconnection behaviours. For measuring the expressiveness

we will go through the design space and will analyze to what

extent the three levels of plug-ins cover the design space. We

will also analyze how these three levels engage developers

progressively in order to adapt the disconnection behaviours with

increased expressiveness.

Then, we will show how various compactor and replayer plug-

ins work in practice for covering the design space. For this we

will construct a wide variety of disconnection aware groupware

applications.

8. CONCLUSION AND FUTURE PLAN
To the best of our knowledge, DiscoTech is the only toolkit for

providing programming support to the developers for solving

user level disconnection problems. It intends to engage a

developer progressively to address disconnection behaviors with

increased expressiveness.

Our future plan is to construct plug-ins to cover the design space

and then investigate them extensively by constructing various

disconnection groupware applications with DiscoTech. We also

plan to build some plug-ins that provide feedback to the

disconnected users.

9. REFERENCES
[1] Ding, Vogel, W. Object Oriented GroupWare using the

Ensemble System, Proc. OOGP’97, pp .

[2] Buszko, D., Lee, W., and Helal, A. Decentralized adhoc

groupware API and framework for mobile collaboration.

Proc. Group’01, 5-14.

[3] Gutwin, C., Fedak, C., Watson, M., Dyck, J. and Bell, T.

Improving Network Efficiency in Real-Time Groupware

with General Message Compression, Proc ACM CSCW’06,

119-128.

[4] Gutwin, C., Graham, T.C.N., Wolfe, C., Wong, N. Alwis,

D. Gone but not forgotten, Proc ACM CSCW’10, 179-188.

[5] Hall, R., Mathur, A., Jahanian, F., Prakash, A., and

Rassmussen, C. Corona: a communication service for

scalable, reliable group collaboration systems, Proc.

CSCW’96, 140-149.

[6] Ionescu, M., Meng A.K. and Marsic, I. Dynamic Content

and Offline Collaboration in Synchronous Groupware. Proc

CTS’02.

[7] T. Graham, R. Kazman, and C. Walmsley. Agility

experimentation: Practical techniques for resolving

architectural tradeoffs, Proc. ICSE '07, 519-528.

Figure 2: A four dimensional/axes design space

