
DiscoTech: A Plug-In Toolkit to Improve Handling of
Disconnection and Reconnection in Real-Time Groupware

Banani Roy
1
, T.C. Nicholas Graham

1
, and Carl Gutwin

2

1School of Computing, Queen‟s University

Kingston, ON, K7L 3N6

{broy, graham}@cs.queensu.ca

2Department of Computer Science, University of Saskatchewan

110 Science Place, Saskatoon, SK, S7N 5C9

carl.gutwin@usask.ca

ABSTRACT

Disconnection and reconnection are common problems for

users of synchronous groupware, but these problems are not

easy for developers to handle because of the wide range of

scenarios and timeframes that must be considered. We have

developed a new toolkit called DiscoTech that helps

programmers deal with disconnection. The toolkit is based

on five design dimensions that determine how stored

information can be manipulated as the system waits for an

absent user to rejoin, and how information should be

replayed upon reconnection. DiscoTech provides a plug-in

architecture to handle a wide variety of behaviours that

developers may need during disconnection; these plug-ins

range from fully generic tools to customized strategies with

full knowledge of the groupware application. We present

the design of the DiscoTech toolkit, show examples of its

use, and provide evidence that it covers a broad range of

situations, imposes minimal performance overhead, and is

easy for programmers to learn. DiscoTech handles a wider

range of issues than previous toolkits, without requiring

undue effort, and provides a practical way to improve the

real-world usability of synchronous groupware.

Author Keywords

Real-time groupware, toolkits, disconnection, reconnection.

ACM Classification Keywords

H.5.3 [Information Interfaces and Presentation]: CSCW

INTRODUCTION

Collaborators in synchronous groupware frequently become

disconnected from the session (e.g., because of power

failure, network outage, network latency, or explicit

departure). Disconnections can range in duration from a

few seconds (e.g., due to network congestion) to hours or

days (e.g., stowing a laptop while flying). Disconnected

participants lose track of the ongoing collaboration, and

when they rejoin the session, they can have difficulty

understanding both the state of the workspace and the

current activities of other people. Previous work in CSCW

has shown the kinds of problems that disconnection can

cause, and has proposed several solutions for handling

reconnection [12], late entrance (e.g., [4,14,16,18]), periods

of asynchrony [22,23], or network faults [13].

However, existing techniques handle only a limited number

of disconnection and reconnection situations, and there is

little support for dealing with different lengths of

disconnection, user-level concerns such as summarization,

and application-level requirements for changes made to

stored data during an absence. As a result, developers must

have a deep understanding of the issues underlying

disconnection, and must write a great deal of code to handle

different scenarios. Recently, a general framework of

disconnection was proposed [12], showing that there are

several recurring patterns in the way that disconnection and

reconnection can be handled, and suggesting that this

service would be an ideal candidate for a toolkit approach.

We have developed such a toolkit – called DiscoTech – that

simplifies developer tasks in handling disconnection and

reconnection, based on an analysis of user-level questions

that need to be answered on reconnection (what happened

during the absence, what is the state of the workspace, and

what is happening now). These questions are formalized in

a design space with five dimensions that specify how

messages can be processed in different disconnection

scenarios. The different strategies on the five dimensions

are implemented as plug-ins in DiscoTech‟s component

architecture, which allows developers to handle a wider

range of disconnection and reconnection requirements than

have been seen in any previous toolkit. The architecture

allows three types of plug-ins: fully generic, which address

standard issues such as message format, sampling, and

ordering in the data that is queued during a disconnection;

partially generic, which are parameterized to allow tuned

behaviour (e.g., to allow re-ordering with priority for

certain message types); and customized, which allow

application-dependent transformations of data based on the

systems specific needs (e.g., changing movement data to a

„heat map‟ representation). Different plug-ins and

parameters provide support for disconnections of different

lengths and for different usage scenarios. The goal of

DiscoTech is to make it simple for the groupware

programmer to handle standard cases, but also to make it

possible to handle more complex cases when required.

Our initial evaluations of DiscoTech show that it succeeds

in three important design areas. First, we demonstrate the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/r a fee.

CSCW 2012, February 11–15, 2012, Seattle, Washington.

Copyright 2011 ACM 978-1-4503-1086-4/12/02...$10.00.

coverage of the toolkit by showing how policies from

previous work (including latecomer support) are handled by

DiscoTech. Second, we show that the toolkit is easy for

developers to learn and use by reporting on tutorial sessions

with four programmers. Third, we provide empirical

evidence that DiscoTech adds minimal overhead for

connected clients, and that memory use is appropriately

constrained when people are disconnected.

Our work makes two main contributions. The design space

provides a set of concepts to show the range of solutions for

handling disconnection, and identifies a number of specific

strategies that can be implemented as plug-ins. The

DiscoTech toolkit itself provides an architecture and model

for using and composing individual plug-in solutions, and

our evaluations show that the toolkit has broad coverage, is

easy for developers to use, and performs well. DiscoTech

provides a wider range of solutions to the problem of

disconnection than exist in any previous toolkit, without

causing undue programmer effort or performance penalties.

The libraries for DiscoTech are freely available

(hci.usask.ca/software/DiscoTech_Sourcecode.zip) and

work with any .NET language.

RELATED WORK

Overview of the disconnection problem

Issues of robustness, fault tolerance, network disconnection,

and late joiners have been investigated for some time (e.g.,

[1,3,5,10,15,28]), but the user view of groupware

disconnection has not been widely considered. Gutwin et al.

[12] recently provided an overview of the problem from

this perspective, stating two main factors for handling

disconnection: the time scale of the absence, and the phase

of the disconnection (specifically identifying a

disconnection, determining what to do during the absence,

and determining what to do on reconnection.)

Time scale is important in these decisions because users

want different kinds of information depending on how long

they have been away; therefore, duration of absence can be

used as the basis for adapting storage behaviour.

The high-level design presented by Gutwin et al. included

this conceptual architecture and several example systems,

but did not go into detail about the range of techniques that

could be used in handling disconnection and reconnection,

or about development infrastructures that could allow the

disconnection problem to be dealt with in an efficient and

general fashion by groupware programmers.

Techniques for handling aspects of disconnection

Strategies for dealing with disconnection issues have been

explored in research on individual systems and toolkits. The

range of techniques seen in previous literature was part of

the motivation for a plug-in architecture for the DiscoTech

toolkit, and many of the techniques described below have

been used to inform the design of DiscoTech‟s specific

plug-ins. We do not cover some basic issues, such as

identification of disconnection, or reestablishing a network

connection (although these are handled bythe toolkit). In

addition, we consider fault tolerance for data (e.g., data

replication [20]) and consistency maintenance for replicated

models (e.g., [26]) to be outside the scope of DiscoTech.

These issues are important but can be handled by other

modules in the overall groupware architecture. Strategies

for handling disconnection include:

 Persistence. Maintaining a persistent state for the shared

environment allows that state to be sent to users after a

disconnection. This strategy is used for place-based

groupware (e.g., TeamRooms [25]) and for the virtual

worlds used in games (e.g., World of Warcraft).

 State recovery. Even in groupware systems that are not

place-based, the state of documents or workspaces can

be stored at a central location and sent to a reconnecting

user (e.g., the YCab framework [3]). In pure state-

recovery systems, no event-based information (such as

awareness events) is stored. In some systems (e.g.,

DOORS [23]), event-based information exists when

users are connected synchronously, but events are not

stored during periods of asynchrony.

 Store-and-forward. In this approach, events are queued

at a central server and are sent to the receiver upon

request (e.g., XTV [5] or Chung et al.‟s latecomer

service [4]). Unlike state-based systems, state is

reconstructed at the receiver using forwarded events.

 Replay. On reconnection, queued events from store-and-

forward systems are delivered to the receiver and can be

replayed – both to reconstruct state, and to provide an

understanding of what happened during the absence. For

example, DreamObjects [18] allows playback of some

or all of the queued events, and a system by Manohar

and Prakash provided a „video-player‟ interface that

allowed playback to be paused or fast-forwarded [19].

 Type-based selection. A few systems select what

messages to send after a reconnection, based on the

message type. For example, WebArrow [17] only sends

chat messages after reconnection, not voice.

 Discarding old state-update events. Some event-based

systems recognize that certain events only update state

variables (e.g., a temperature from a sensor), and

discard all but the most recent of these events [7].

 Reordering. Some games priorize state updates for

nearby avatars ahead of those for distant avatars [2], or

move important messages (e.g., deaths and spawns) to

the front of the queue.

 Coalescing and chunking. When messages are batched

at the sender, some systems reduce space requirements

by aggregating several messages into one (e.g.,

ReConMUC [1]) or converting incremental updates into

a larger single updates (e.g., change multiple draw

messages into a single polyline) [23].

 Compression. Batched updates can be compressed using

libraries such as zlib (e.g., XTV [5], ReConMUC [1], or

Chung‟s latecomer system [4]).

 Continuation while disconnected. When a connection is

lost, some systems such as DISCIPLE [15] allow a

http://hci.usask.ca/software/DiscoTech_Sourcecode.zip

mobile client to work offline. These systems are similar

in approach to groupware that supports both

asynchronous and synchronous work (e.g., DOORS

[23]), but applies the idea to network disconnection.

 Content-based filtering. The volume of messages stored

for a particular receiver can in some cases be reduced by

selecting only those messages that match certain

patterns (e.g., keywords in an IRC client [1]).

Latecomer support

The existing CSCW toolkits that are closest to our work are

those that deal with the „latecomer‟ problem that has been

considered since the earliest groupware systems (e.g.,

[4,18,19,27]). Toolkit approaches to the latecomer problem

can generally be divided into those that provide state-based

recovery (e.g., Habanero [16] or Suite [8]), those that

provide replay-based recovery (e.g., Chung et al.‟s

accommodation service [4] or XTV [5]), and those that

combine both approaches (e.g., DreamObjects [18]).

Although there are often different issues at play in

supporting latecomers versus disconnected users, many of

the ideas are similar – and in fact some researchers have

noted that absences in the middle of a groupware session

can also be thought of as „latecomers‟ (e.g., [4]). However,

no groupware toolkit has addressed these concerns in a way

that provides both flexibility and simplicity for the

application programmer. In order to fill this need, we

designed the DiscoTech toolkit.

DESIGN DIMENSIONS FOR DISCONNECTION

The overall goal of handling disconnection is to help

collaborators rejoin and continue the collaborative work

session as smoothly and seamlessly as possible. This

involves three main questions from the user‟s perspective:

 What happened during the absence? The returning user

needs to „catch up‟ on important events and changes that

have occurred during the absence.

 What is the state of the workspace? The user needs to

understand the current state of the collaboration

artifacts, both in order to interpret changes and to

understand the overall state of the collaboration.

 What is happening now? The user needs information

about current activities in order to smoothly re-integrate

into the group‟s activity. For example, the user needs

the last few messages of a chat conversation in order to

restart their participation in the conversation.

These needs involve competing goals: the user wants to get

as complete an understanding as possible of the missed

events, but reconnection data must be delivered as quickly

as possible if the user is to rejoin the collaboration in a

timely fashion. This implies, for example, that in many

cases the events cannot simply be replayed in their original

form (since this would take too much time); in addition, this

means that the transmission time of stored messages after

reconnection must be minimized.

From these user-level requirements, we identify five

dimensions along which groupware messages can be

manipulated or altered during or after a disconnection.

1. Message Format: changing the way messages are

represented and packaged, primarily to reduce volume.

 Compression: using lossless compression techniques

(such as Zip or GMC) to reduce message size; some

lossy techniques also apply (e.g., re-encoding JPEGs).

 Aggregation: repackaging to incorporate several

individual events per message. For example, sending

multiple telepointer locations per message saves the

overhead of identifying each event as a telepointer.

 Chunking: adding together several events to create a

single larger event. For example, changing a set of

character-by-character typing events into a single chat

message event; or coalescing several pixel edits into a

larger bitmap region event.

2. Sampling: selecting a subset of the stored messages

based on a particular property. Sampling techniques imply

that some messages are deleted from the queue.

 Sampling by priority or type: selecting messages based

on an explicit priority designation in the message, or on

an implicit designation based on message type. An

example of the latter approach is to select messages that

involve changes to the model and discard awareness

messages (e.g., telepointer movement).

 Sampling by time: messages may be selected either by

time period (e.g., randomly retain one message per

second, to show the distribution of events), or by time

cutoff (e.g., retain the last ten seconds of activity).

 Sampling by count: similar to time sampling, but using

the number of messages rather than time as the

governing structure. This approach might retain every

Nth message, or just the most recent N messages.

3. Pacing: changing the temporal spacing of a stream of

messages, primarily to reduce the time needed for the user

to interpret events on reconnection.

 Uniform speedup: message timestamps can be

uniformly altered to decrease playback time; for

example, events could be replayed at double speed.

 Non-uniform time change: times can be altered to

achieve specific purposes, such as removing gaps in the

message stream, or reducing less important sequences.

 Quick-as-possible playback: in extreme cases, events

can be played with no time delay – that is, messages are

processed directly one after another.

4. Ordering: changes to the order of messages in the queue,

without removing any messages. As with sampling,

decisions are made based on properties of the message data.

 Priority: some messages may be considered as more

important and can be moved to the front of the queue.

Examples include important game events (e.g., hits), or

messages that are important for causal processes.

 Size: if small messages can be processed faster, it may

be useful to collect them at the front of the queue.

 Recency: in a standard queue, recent messages would

arrive last after reconnection; in situations where

messages do not have causal dependencies, however,

recent messages could be delivered first. For example, a

chat system might show the recent parts of an ongoing

conversation, and then gradually fill in earlier parts.

5. Transformation: changing the content or representation

of messages, either to reduce size or interpretation time.

Transformations are often paired with visualizations that

show the information in a way that is different to the

original presentation.

 Averaging. Some messages (such as position or

movement events) can be combined through averaging

(e.g., showing the average location of an avatar over

one-second intervals, rather than at each movement).

 Summarization. Messages can be summarized without

changing the basic data representation. For example,

text chat could be replaced with a shorter text summary.

 Representation. Messages can be processed to create a

completely new representation. For example, the text of

a chat conversation could be replaced with information

about participants‟ activity level; similarly, telepointer

movements could be replaced with a „heat map‟

showing overall activity. Transformations can also

convert event updates to state structures (e.g.,

converting movement messages to a „game frame‟

containing every avatar location).

PLUG-IN ARCHITECTURE

Guided by this design space, we have created the

DiscoTech architecture. DiscoTech‟s goals are:

 Ease of Use: Groupware developers should be able to

use the architecture without having to substantially

modify it or their application. The architecture should be

available as a usable toolkit with a simple API.

 Expressiveness: The architecture should support a wide

range of disconnection/reconnection behaviour, as

captured in the design space above.

 High Performance: Applications using the architecture

should not pay a major performance penalty, and any

penalty should be predictable and quantifiable.

We have realized these goals through a plug-in architecture

that has been implemented within the DiscoTech toolkit.

DiscoTech is based on an earlier design [12], but is novel in

that it deals with disconnection issues using plug-ins.

Groupware developers can use DiscoTech as a networking

API that provides built-in disconnection handling.

Developers stream their application events via the

DiscoTech API, and events are propagated via the network

to other clients. In case of network outages, events are

queued on a server, and sent to the disconnected client upon

reconnection. Developers can easily select among available

strategies in the DiscoTech API for dealing with

disconnection, or can develop custom plug-ins.

Ease of Use through the DiscoTech toolkit

DiscoTech allows groupware developers to easily add

disconnection handling to their application. Developers

simply route their application‟s events through the toolkit.

Similarly to other middleware solutions, DiscoTech

broadcasts the application‟s events to all other clients.

DiscoTech handles disconnection and reconnection events

by constantly queuing application events in case of

disconnection, and by automatically providing catch-up

functionality when the client reconnects.

Figure 1 shows how applications interact with DiscoTech.

The current implementation uses a client/server architecture

in which the application sends events to DiscoTech via its

API. DiscoTech then propagates the events to other clients

(via its Sender module). Events received from other clients

are queued on an event queue, and are forwarded to the

application via a call-back. DiscoTech therefore propagates

events for applications, providing the network functions

usually provided by a middleware such as GT [6] or by raw

socket communication. DiscoTech has no knowledge of

event semantics; events are simply viewed as serializable

objects that can be queued or sent over a network.

Figure 1: DiscoTech client

DiscoTech provides a server (Figure 2) whose primary

function is to broadcast messages from each client to all of

the other clients. Incoming events for client i are read by a

Receiver component, which then enqueues the message on

each client‟s Event Queue. A Sender process for each client

waits for new messages to arrive on the Event Queue, and

sends them to the client.

Figure 2: DiscoTech server

If a client disconnects, its sender/receiver pair attempts to

reestablish connection. In case of a brief network

disruption, the connection might be reestablished

immediately. In a longer disconnection (e.g., a computer

being powered down for the weekend), the connection may

take hours or days to reestablish. In the meantime, events

are queued so that they can be sent to the client upon

reconnection. During longer disconnections, the contents of

the event queue must be modified in order to reduce space

requirements and to avoid the need for lengthy data

transmission following reconnection. The groupware

developer can configure the techniques used to reduce the

space requirements of the server-side event queue. Two

techniques are used: (1) the data stored on the event queue

is reduced through the approaches discussed in the design

space (e.g., compression, aggregation, and sampling) and

(2) messages can be compressed using standard techniques

as part the network transmission process.

Following reconnection and receipt of data, the client

controls how the data is sent to the application. Events can

simply be forwarded to the application directly, or can be

modified to help the user re-establish context. For example,

the client‟s plug-ins may reorder events so that highest

priority events are processed first, or may adjust playback

to show missed activity at double speed.

Expressiveness through Plug-ins

Application programmers can use the DiscoTech toolkit as-

is, selecting among a set of predefined compaction and

replaying behaviours. This allows easy addition of

disconnection handling – all that the developer needs to do

is route the application‟s events through DiscoTech.

This approach limits disconnection handling, however, to

behaviours that can be programmed without knowledge of

the underlying semantics of the events. For example, the

following generic behaviours are possible with the toolkit:

 Compression – using standard libraries such as zlib

 Truncation – the last k events (or k seconds of events)

 Sampling – discarding all but a subset of events

 Accelerated playback of events

However, many interesting behaviours require knowledge

of the semantics of the events themselves, such as:

 Aggregation of multiple events to a single event

conveying the same information

 Discarding events which are superseded by later events

 Transforming events into a summary representation

DiscoTech uses a plug-in mechanism to open the toolkit,,

allowing programming of custom disconnection behaviours.

Plug-ins can be attached to either the server or client-side

event queues. Plug-ins are periodically invoked by the

toolkit (as triggered by timer interrupts or by the queue

reaching a threshold size), and may arbitrarily modify the

contents of the queue. Plug-ins fall into three categories:

generic, partially generic and custom.

Generic Plug-ins: Generic plug-ins, as described above,

provide functionality that can be implemented with no

knowledge of events‟ semantics. Events are considered to

be generic objects, tagged with a time stamp specifying

when the event originated at the source client. The toolkit

provides a set of generic plug-ins, providing simple and

useful disconnection behaviour. Generic plugins are

parameterized by the type of message on which they should

operate (e.g., awareness messages only), and by the

timeframe in which they should operate.

Partially Generic Plug-ins: The toolkit provides plug-ins

that must be parameterized by the application programmer

to adapt them to the event types used by the application. For

example, a chunker combines groups of events into coarser-

grained events. This plug-in could transform individual

keystroke events from a chat system into a single event, or

could coalesce line-segment events into a poly-line for a

drawing program. While the aggregation behaviour is

generic, the specifics of how a set of events are transformed

into a single event are application-specific. Users of this

plug-in must parameterize it by providing the

implementation of a Chunk method that takes a list of

events and combines them into a single event. In

DiscoTech, this plug-in is implemented as an abstract class,

requiring the application programmer to create a concrete

subclass that implements the Chunk function.

As a second example, the AggregateToState partially-

generic plug-in allows a sequence of events to be collapsed

into a single state update event, possibly involving a

significant change in form. As we shall see,

AggregateToState can be used to convert a sequence of line

drawing commands to a single bitmap image, or a sequence

of telepointer move events to a matrix representing a

heatmap. This plug-in must be customized with the

underlying data structure (e.g., the bitmap) and with a

method that applies events to the data structure (e.g.,

drawing the line on the bitmap).

Partially generic plug-ins significantly extend the

expressiveness of the toolkit. The cost to the application

programmer is that he/she must understand the functionality

of the plug-in well enough to provide the code customizing

it for the application‟s event types.

Custom Plug-ins: Some functionality is so dependent on

the underlying event types that no generic behaviour is

possible. For example, a sequence of moves in a chess

game might be summarized using standard chess notation,

or a sequence of video frames might be converted through

image analysis to a summary of the video‟s content.

These three plug-in types represent a progression from the

simplicity of full genericity to the power of custom

components. This allows developers to choose the degree to

which they wish to engage with the toolkit – if standard

behaviour is acceptable, there is little for developers to

learn. If they wish to have sophisticated, custom behaviour,

the toolkit makes it possible.

High Performance through Light-Weight Operation

While disconnection handling can greatly improve the

usability of groupware applications, it must not

unreasonably reduce application performance. DiscoTech is

designed to provide minimal overhead during normal

connected state, and to provide developers with hooks to

manage resource consumption during disconnected states.

Application events sent from one client to another pass

through the DiscoTech server, which broadcasts them to

other clients. This message broadcasting architecture is

widely used in groupware implementation (e.g., GT [6], or

many commercial games). DiscoTech adds the overhead of

queuing events on the server rather than sending them

directly. When a client is connected, however, events can

be removed from the queue as soon as they are added. As

shown below, the overhead of the queue is minimal

compared to the cost of sending messages over the network.

When a client is disconnected, the server enqueues its

messages until the client reconnects. This can lead to

unbounded memory use, as there is no limit to the length of

disconnection. Server-side plug-ins allow the developer to

reduce queue size with a variety of pruning and compaction

techniques. Through parameters on these plug-ins, the

developer can control how aggressively these algorithms

are applied – e.g., how often they should be invoked and

how much data should be retained.

Following reconnection, the queued data is sent to the

reconnected client. As the event queue grows, so does the

bandwidth required to transmit these events. Bandwidth

requirements are controlled through two mechanisms. First,

as described above, developers can control the amount of

data stored on the event queue. Second, the network module

can minimize transmission time by delivering the queue as

a whole, and by using compression to reduce size.

Later in the paper, we present evaluation results showing

that DiscoTech indeed imposes minimal overhead during

normal connected operation, and provides hooks for control

over resource requirements during disconnection.

DETAILS OF PLUG-IN IMPLEMENTATION

The main novelty of DiscoTech is its plug-in approach to

handling disconnection and reconnection. Plug-ins are

classes that descend from the abstract base class DTPlugin,

and are all designed around a similar pattern – plug-ins

have access to the queued events, and can perform

manipulations on that queue depending on the algorithm

built into the plug-in. We have implemented plug-ins to

correspond to all of the types detailed in the design space,

including reformatters, resamplers, re-orderers, re-pacers,

and transformers (see descriptions above).

A plug-in‟s „main‟ method is called ApplyPlugin. When

invoked by the toolkit, this method applies the plug-in‟s

algorithms to the event queue. Plug-ins have two properties:

EventQueue, which links to the event queue that is to be

manipulated; and Timeframe, which specifies the time

period for which the plug-in is to operate. In addition,

certain plug-ins have additional properties (e.g., the

TimeBasedTruncator plug-in takes an argument on creation

to determine the age at which events will be deleted from

the queue). Last, plug-ins all have a method that carries out

the desired actions on the given queue (this method is

specific to the plug-in type).

Application programmers can use the built-in generic plug-

ins (e.g., the Truncator) without any customization. For the

partially generic plug-ins, such as the Chunker plug-in (see

above), the programmer needs to redefine the behaviour of

the Chunk() method. For a custom plug-in, the programmer

creates a new class that inherits the abstract base class

DTPlugin. With custom classes, programmers can

arbitrarily change the content of the event queue.

Multiple plug-ins can be applied to the event queue (e.g., to

provide different treatment for old versus new events). Each

plug-in must therefore be capable of recognizing event

types generated by other plug-ins. For example, if chunking

introduces a new event type into the event queue to

represent the newly „chunked‟ data, other plug-ins must be

capable of dealing with that event type.

USING THE DISCOTECH TOOLKIT

DiscoTech is implemented in C#, and can be used in any

.NET project by including DiscoTech‟s client-module or

server-module libraries with the client or server application.

There is a clean separation between the application and

DiscoTech‟s components; the application only interacts

with the toolkit‟s Disco component (which acts as a

mediator between the application and DiscoTech). At the

simplest level of use (i.e., generic plug-ins only),

developers need only learn the DiscoTech APIs in order to

pass events through the Disco instance; disconnection and

reconnection behaviour is handled transparently.

Programmers instantiate DiscoTech with details of the

server IP address and port, and then define two event

handlers to receive command and data messages.

The programmer also needs to specify the set of plug-ins

they want to use: e.g., to use the „HeatmapTransformer‟

plug-in between 60 seconds and 10 minutes of

disconnection, the following lines are used:
DTPlugin hm = new HeatmapTransformer(60,600);
Disco.AddPlugin(hm);

For sending a message over the network, the programmer

uses the following call:
Disco.SendMessage(message);

where „message‟ is a string or an event object. The receiver

will get the message via the event handler mentioned above.

EXAMPLES USING DISCOTECH

We show two examples – a chat system and a paper-

reviewing application – that demonstrate a range of

strategies for handling disconnection, and show that

DiscoTech supports both low-cost generic behaviours as

well as application-specific behaviour when needed.

Text Chat Application

In this simple chat system (Figure 3), users type messages

and press Send to propagate the chat to all users. The

application uses two event types: one to send the content of

a chat message, and one to send an „is typing‟ awareness

message. When a client is disconnected, these messages are

queued on the server; for long disconnections, messages are

transformed to take up less space according to the following

rules:

 Events less than 10 seconds old are preserved as-is.

 Chat messages older than 10 seconds are chunked into a

single message (using the partially-generic Chunker

plug-in)

 Awareness events older than 10 seconds are removed

from the queue (using the generic Truncator plug-in).

 Chat messages older than 10 minutes are replaced with a

„chat frequency‟ event that counts the number of chat

messages from each user. This uses a custom plug-in

requiring knowledge of the application‟s event types.

On reconnection, messages are replayed at the client

according to the following rules:

 „Chat frequency‟ events are passed to the client, which

highlights users‟ icons based on number of messages

(this is application-specific behaviour).

 Chunked chat messages are passed to the client so that

they can be immediately shown in the chat pane. This is

default behaviour requiring no plug-in.

 Newer chat messages are replayed at double speed

(using the generic Speedup plug-in) until the playback

catches up. The order and timing of the messages

matches their original input, but the timeline is

compressed. This allows users to see the rate at which

messages were originally typed, but faster.

Figure 3: Chat application

Despite its simplicity, this example illustrates much of the

power of the DiscoTech architecture. It is easy to configure

the server to limit the amount of information that is stored,

an approach that allows a client to be disconnected

indefinitely. A custom plug-in is used to create the chat

frequency event, but if developers prefer not to create this

plug-in, the generic truncation plug-in could be used to

discard old chat messages. This shows that developers can

choose between simple behaviour with generic plug-ins, or

extended behaviour with custom plug-ins.

The reconnection plug-ins are used to help users regain

context. Here, highlighting user icons gives a general

picture of who was active during the disconnection. Older

chat messages are simply posted to the window, while

newer messages are played back at the relative rate they

were originally typed.

The plug-ins used in this application are parameterized by

thresholds such as the age at which awareness messages

should be discarded, or the age at which double-speed

playback should be used on the client. These parameters are

simple properties that are set through the DiscoTech API.

Collaborative Paper Reviewing System

Our second example is a system used by groups of authors

to review and comment on a paper draft (Figure 4). The

application allows real-time text highlighting, whiteboard-

style annotations, and addition of typed comments, and also

provides telepointers to convey gestures. The application

also shows a summary of comments in a separate window.

Clients send a stream of events specifying the current

position of each user‟s mouse pointer. Clients also send

events capturing users‟ markup operations, such as adding a

comment or an annotation.

Although this application is substantially different from the

chat system, the programmer handles disconnection in a

similar fashion. All editing operations must be preserved on

the server event queue. If the disconnection is lengthy (>10

minutes), the partially generic AggregateToState plug-in is

used to combine all edit events into a single event that

conveys the current state of the annotations. The handling

of telepointer events depends on the length of the absence:

 The last 60 seconds of telepointer events are stored as-is

and replayed with the Speedup plug-in;

 For longer disconnections, telepointer events are

transformed to a heatmap display (Figure 4) which

shades the document according to the number of

telepointer events in each area. A custom plugin

(HeatmapTransformer) converts telepointer events into

the heatmap data structure.

Figure 4: Reviewing application showing heatmap.

These examples show common ways in which

disconnection behaviour is handled by DiscoTech. A small

number of plug-ins allows a wide range of application

behaviour across different application types. Plug-ins

provide general solutions to common problems that recur

across applications (e.g., truncation of awareness events,

accelerated replay, or shifting to a state representation as

the length of the disconnection increases).

EVALUATION OF DISCOTECH

We have performed three evaluations of the DiscoTech

framework. As discussed earlier, our key claims are that

DiscoTech is expressive, supporting a wide range of

disconnection behaviours; that DiscoTech is easy to use,

with a plug-in architecture that hides the disconnection

handling infrastructure, but still provides customizability;

and that DiscoTech is performant, demanding only modest

overhead in feedthrough times and memory use.

Expressiveness

DiscoTech can reproduce a wide variety of policies and

strategies seen in previous work. In the following list, we

show how several earlier approaches, including latecomer

support, are accomplished using DiscoTech.

 Maintain model state. We provide the partially-generic

„aggregate-to-state‟ plug-in, which can convert model

updates to a single state representation. Although not a

purely state-based approach, this plug-in allows

developers to come arbitrarily close to this behaviour.

 Store-and-forward. DiscoTech provides this policy

natively through its queues, although not all updates will

be forwarded (i.e., if pruned by another plug-in).

 Event replay. This is possible with the generic „Speedup‟

plug-in. One earlier system provided a „VCR-style‟

interface for replay [4]; we do not supply this specific

interface, but the Speedup plug-in could easily support a

replayer with „pause‟ and „fast-forward‟ controls.

 Selection filtering. DiscoTech supports filtering with

generic plugins (which are parameterized by message

type); more complex filtering (e.g., by message content

[1], and the “freshest data” policy [7]) can be achieved

through custom plug-ins.

 Reordering. This policy is part of the DiscoTech design

framework, but must be implemented as a custom plug-in.

 Coalescing, chunking, and compression. We handle these

strategies through partially-generic plug-ins such as the

„Chunker‟ described above. In addition, the full queue is

compressed before delivery (upon reconnection).

 Working while disconnected. Although DiscoTech‟s

conceptual architecture supports this policy, we currently

uses a client-server architecture, so working while offline

is not possible; however, a peer-to-peer version of

DiscoTech (in development) will support this approach.

 Latecomer support. Support for latecomers is built into

DiscoTech; we implement this by creating an extra client

at system startup that is considered to be always

disconnected. When a late entrant joins, we copy the extra

client's queue to the new entrant and send it to them. Note

that whatever policies are in place for disconnected clients

will also affect the late entrant – e.g., they may receive a

summary representation of chat rather than all of the text.

This is different from schemes that guarantee the sending

of a full model, but our approach provides more flexibility

for the application programmer – we believe that what is

sent to a late entrant should be an application-level

decision, which can be achieved with DiscoTech.

Ease of Use

To obtain early feedback on ease of use, we solicited

opinions of four software developers not associated with

this project. Two developers were undergraduate research

interns, and two were graduate students. All were familiar

with the concepts of groupware and with development

using C#, but none had programmed disconnection

handling in a groupware application. Each was asked to

carry out a one-hour tutorial which showed how to convert

a single-user drawing application into a multi-user version

including disconnection handling. We observed each

developer as they worked through the tutorial, and then

conducted a semi-structured interview after the session.

All four developers were able to complete the tutorial in

one hour, correctly adding multi-user functionality to the

application and experimenting with a variety of

disconnection behaviors by swapping plug-ins. All reported

that they found the toolkit‟s API straightforward, and that

DiscoTech would be a suitable candidate for future

projects. One participant commented that “The API is really

generic… Since there is only one method call and a

callback, it is very straightforward.” Others stated “I would

use DiscoTech because I don‟t want to reinvent the wheel.”

and “I would use DiscoTech. It does [it] all for me.” While

this was far from a comprehensive study, it does provide

encouraging feedback that people with strong programming

background and familiarity with groupware can learn the

DiscoTech concepts quickly, and see value in it for

programming disconnection behavior.

Performance

In order to characterize the overhead of using DiscoTech,

we tested its effect on an application‟s feedthrough time

and memory requirements. In both cases, we used the

canonical groupware example of a shared drawing program.

To test feedthrough time, we ran a drawing program under

two conditions: with and without disconnection handling

enabled. In the “no disconnection handling” condition,

DiscoTech‟s server-side queue was removed, and the server

simply forwarded incoming events to all clients, thus

simulating a traditional message broadcasting architecture.

In both conditions, a “sender” client was automated to

inject a new random drawing command every 2,000 ms,

over a total of 200 seconds. Between one and four

additional “receiver” clients received these drawing events.

Feedthrough time was measured as the time from the event

being sent by the sender client to the time that the message

was received by a receiver client. A local area network was

used between the client and server computers with ping

times not exceeding 1 ms.

The results of this experiment are shown in Figure 5, which

shows that feedthrough time increases with number of

clients, but that the impact of DiscoTech‟s message queuing

on feedthrough time is negligible.

To characterize DiscoTech‟s overhead when a client is

disconnected, we tested the same drawing program, with

one “sender” client, one connected “receiver” client, and

one disconnected “receiver” client. In this scenario, the

server must use its event queue to store information

allowing the disconnected client to be brought up to date

following reconnection.

Figure 5: DiscoTech feedthrough time

The application transmitted two forms of events: telepointer

movement events, and drawing commands. We measured

server-side storage use under two conditions. The “without

compaction” condition measured the space required to store

the telepointer and drawing messages as-is, with no attempt

to compress them to a smaller size. The “with compaction”

condition used partially generic plug-ins to reduce storage

size: (1) Drawing events: any drawing events occurring

over the last ten minutes are represented in the queue as

sent by the client; older drawing events are applied to a

special bitmap message (using an AggregateToState

compactor). (2) Telepointer events: the last minute of

telepointer events are stored as sent by the client; events

between one and ten minutes old are averaged to provide at

most one event per five seconds (using an Averager

compactor), and events older than ten minutes are

converted to a heatmap (using AggregateToState).

Each condition was run for 12 hours (720 minutes). The

results are summarized in Figure 6. In the “without

compaction” condition, memory use climbed steadily over

time. This is as expected, as events are continuously added

to the event queue. Interestingly, even after 12 hours of

disconnection, only 15 MB was required to store data from

the drawing program. This hints that even with no

compaction, small-group shared workspace groupware

applications such as a drawing program can sustain lengthy

disconnections with acceptable overhead.

In the “with compaction” condition, memory usage reaches

a steady state after approximately one hour, at

approximately 0.4 MB. This indicates that the aggregation

to state strategy works well, where individual events are

retained to allow progressive update (e.g., through double-

speed replaying), while a full state snapshot allows

aggregation of large numbers of events. The limitation of

space to 0.4 MB also allows considerably faster

reconnection than under the “without compaction”

condition, as less data needs to be transmitted to the client.

This shows that with the use of parameterized plug-ins,

DiscoTech can have modest and bounded storage

requirements when handling disconnection. These results

depend very much on the kind of application being tested.

Our drawing surface was limited to 500 x 500 pixels; a

larger drawing surface would have required more storage

space. Similarly, trying to save the full contents of a video

chat on a server would require considerably more storage.

Nevertheless, for small-group shared-workspace groupware

applications, this test indicates that storage requirements are

well within the capacities of modern hardware.

Figure 6: Memory use during disconnection (log-log plot)

CONCLUSIONS AND FUTURE WORK

Handling user-level disconnection and reconnection issues

in synchronous groupware is difficult for developers. To

simplify this support, we developed DiscoTech, a toolkit

that covers a wider range of policies than any previous

infrastructure, but that is easy to understand and imposes

only minimal performance costs. DiscoTech‟s main novelty

is that it addresses disconnection problems with a plug-in

architecture, which provides both simple use in basic cases,

as well as full customizability for experts. DiscoTech is

based on a new representation of the design space that

characterizes the types of behaviour that applications might

need to exhibit as a consequence of disconnection. Our

initial evaluations of DiscoTech indicate that it can cover a

wide range of policies introduced in previous work, that it

is easy for developers to learn, and that it does not impose

major performance penalties during both connected and

disconnected operation.

Our next steps with DiscoTech fall into three main areas.

First, we will carry out further work on mechanisms for

composing and timing the plugins. Currently the

programmer must decide when different plugins will

operate, and there is no system support for helping people

schedule plug-ins and determine how different plug-ins will

work together. In order to work on data that has already

been manipulated by another plugin, all data must be tagged

with a flag indicating whether the effects of the previous

plugin can be reversed. We plan to explore other ways of

dealing with this issue, such as with a timeline manager that

can schedule and apply the plugins.

Second, we will test peer-to-peer versions of DiscoTech.

The current toolkit places most of the responsibility for

handling disconnection at the server – particularly during

long disconnections. While this is a reasonable division

0

20

40

60

80

100

2 3 4 5

M
e
a
n
 f
e
e
d
th

ro
u
g
h
 t
im

e
 (

m
s
)

Number of clients

Simple Message Broadcasting

DiscoTech Queuing Architecture

1

10

100

1000

10000

100000

1 10 100 1000

M
e
m

o
ry

 u
s
e
 (

K
B

)

Disconnection time (minutes)

Without Compaction

With Compaction

(since servers are less likely to disappear than clients), we

are interested in a more distributed or peer-to-peer version

of the architecture that uses strategies from fault-tolerant

computing, and that will allow clients to continue work

while disconnected (e.g., in multi-player games).

Third, we will carry out additional tests to further evaluate

DiscoTech‟s ease of use and performance in realistic

situations. We have made the toolkit freely available

(hci.usask.ca/software/DiscoTech_Sourcecode.zip) in order

to gather feedback from the CSCW development

community, and we plan to build several further groupware

applications in order to test DiscoTech‟s performance with

short-term outages (e.g., caused by network jitter), long-

term absences, and custom plug-in scenarios. We are also

interested to see how frequently the different plug-in types

are used in practice, and whether a small number of plug-

ins can cover a large majority of use cases for the toolkit.

ACKNOWLEDGEMENTS

This research is supported by NSERC through the Strategic

Grants program and the GRAND NCE.

REFERENCES

1. Alves, P. and Ferreira, P., ReConMUC: Adaptable

consistency requirements for efficient large-scale multi-

user chat. Proc. CSCW 2011, 553-562.

2. Brockington, M., Level-Of-Detail AI for a Large Role-

Playing Game, AI Game Programming Wisdom, S.

Rabin ed., Charles River, 2002, 419-435.

3. Buszko, D., Lee, W. and Helal, A., Decentralized ad-

hoc Groupware API and Framework for Mobile

Collaboration. Proc. Group 2001, 5-14.

4. Chung, G., Dewan, P. and Rajaram, S., Generic and

Composable Latecomer Accommodation Service for

Centralized Shared Systems. EHCI 1998, 129-147.

5. Chung, G., Jeffay, K., and Abdel-Wahab, H., Dynamic

Participation in Computer-based Conferencing System,

Journal of Com. Comm. 17, 1 (1994), 7-16.

6. de Alwis, B., Gutwin, C. and Greenberg, S., GT/SD:

performance and simplicity in a groupware toolkit.

EICS 2009, 265-274.

7. Dix, A., Cooperation without (reliable) communication:

Interfaces for mobile applications. Dist. Sys. Eng. 2

(1995), 171-181.

8. Dewan, P. and Choudhary, R. Primitives for

Programming Multi-User Interfaces, UIST 1991, 69-78.

9. Edwards, W., Flexible conflict detection and

management in collaborative applications. Proc. UIST

2007, 139-148.

10. Fraga, J., Siqueira, F., Favarim, F. An adaptive fault-

tolerant component model. WORDS 2003, 179-186.

11. Graham, T.C.N., Kazman, R. and Walmsley, C. Agility

Experimentation: Practical Techniques for Resolving

Architectural Tradeoffs. Proc. ICSE 2007, 519-528.

12. Gutwin, C., Graham, T.C.N., Wolfe, C., Wong, N. and

de Alwis, D. Gone but not Forgotten: Designing for

Disconnection in Synchronous Groupware. Proc. CSCW

2010, 179-188.

13. Hall, R., Mathur, A., Jahanian, F., Prakash, A. and

Rassmussen, C. Corona: A Communication Service for

Scalable, Reliable Group Collaboration Systems. Proc.

CSCW 1996, 140-149.

14. Illmann, T., Thol, R. and Weber, M. Transparent

Latecomer Support for Web-Based Collaborative

Learning Environments. Proc. CSCL 2002, 540-541.

15. Ionescu, M., Krebs, A. and Marsic, I. Dynamic

Content and Offline Collaboration in Synchronous

Groupware. Proc. CTS 2002

16. Ionescu, M. and Marsic, I. Latecomer and Crash

Recovery Support in Fault Tolerant Groupware. IEEE

Distributed Systems Online 2, 7, 2001.

17. Long, B., Dingel, J. and Graham, T.C.N. Experience

applying the SPIN model checker to an industrial

telecommunications system. Proc. ICSE 2008, 693-702.

18. Lukosch, S. Transparent Latecomer Support for

Synchronous Groupware. Proc. CRIWG 2003, 26-41.

19. Manohar, N.R. and Prakash, A. The Session Capture

and Replay Paradigm for Asynchronous Collaboration.

Proc. ECSCW 1995, 149–164.

20. Narasimhan, P., Moser, L. E. and Melliar-Smith, P. M.

Eternal: a component-based framework for transparent

fault-tolerant CORBA. Softw., Pract. and Exper. 32, 8

(2002), 771-788.

21. Navarre, D., Palanque, P. and Basnyat, S. Usability

Service Continuation through Reconfiguration of Input

and Output Devices in Safety Critical Interactive

Systems. Proc. SAFECOMP 2008, 373-386.

22. Pinelle, D., Dyck, J. and Gutwin, C. Aligning Work

Practices and Mobile Technologies: Design for Loosely-

Coupled Mobile Groups. Mobile HCI 2003, 177-192.

23. Preguica, N., Martins, L., Domingos, H. and Duarte, S.

Integrating Synchronous and Asynchronous Interactions

in Groupware Applications. CRIWG 2005, 89-104.

24. Roseman, M. & Greenberg, S. Building Real-time

Groupware with GroupKit, a Groupware Toolkit. ACM

ToCHI, 3,1(1996), 66-106.

25. Roseman, M. and Greenberg, S. TeamRooms: Network

Places for Collaboration. Proc. CSCW 1996, 325-333.

26. Sun, C. and Ellis, C. Operational transformation in real-

time group editors: issues, algorithms, and

achievements. Proc. CSCW 1998, 59–68.

27. Vogel, J., Mauve, M., Geyer, W., Hilt, V., Kuhmünch,

C. A generic late-join service for distributed interactive

media. Proc. ACM Multimedia 2000, 259-267.

28. Vogel, W. Object Oriented Groupware using the

Ensemble System. Proc. ECSCW OOGP 1997, 23-26.

http://hci.usask.ca/software/DiscoTech_Sourcecode.zip

