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ABSTRACT 

Disconnection and reconnection are common problems for 

users of synchronous groupware, but these problems are not 

easy for developers to handle because of the wide range of 

scenarios and timeframes that must be considered. We have 

developed a new toolkit called DiscoTech that helps 

programmers deal with disconnection. The toolkit is based 

on five design dimensions that determine how stored 

information can be manipulated as the system waits for an 

absent user to rejoin, and how information should be 

replayed upon reconnection. DiscoTech provides a plug-in 

architecture to handle a wide variety of behaviours that 

developers may need during disconnection; these plug-ins 

range from fully generic tools to customized strategies with 

full knowledge of the groupware application. We present 

the design of the DiscoTech toolkit, show examples of its 

use, and provide evidence that it covers a broad range of 

situations, imposes minimal performance overhead, and is 

easy for programmers to learn. DiscoTech handles a wider 

range of issues than previous toolkits, without requiring 

undue effort, and provides a practical way to improve the 

real-world usability of synchronous groupware. 
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INTRODUCTION 

Collaborators in synchronous groupware frequently become 

disconnected from the session (e.g., because of power 

failure, network outage, network latency, or explicit 

departure). Disconnections can range in duration from a 

few seconds (e.g., due to network congestion) to hours or 

days (e.g., stowing a laptop while flying). Disconnected 

participants lose track of the ongoing collaboration, and 

when they rejoin the session, they can have difficulty 

understanding both the state of the workspace and the 

current activities of other people. Previous work in CSCW 

has shown the kinds of problems that disconnection can 

cause, and has proposed several solutions for handling 

reconnection [12], late entrance (e.g., [4,14,16,18]), periods 

of asynchrony [22,23], or network faults [13].  

However, existing techniques handle only a limited number 

of disconnection and reconnection situations, and there is 

little support for dealing with different lengths of 

disconnection, user-level concerns such as summarization, 

and application-level requirements for changes made to 

stored data during an absence. As a result, developers must 

have a deep understanding of the issues underlying 

disconnection, and must write a great deal of code to handle 

different scenarios. Recently, a general framework of 

disconnection was proposed [12], showing that there are 

several recurring patterns in the way that disconnection and 

reconnection can be handled, and suggesting that this 

service would be an ideal candidate for a toolkit approach.  

We have developed such a toolkit – called DiscoTech – that 

simplifies developer tasks in handling disconnection and 

reconnection, based on an analysis of user-level questions 

that need to be answered on reconnection (what happened 

during the absence, what is the state of the workspace, and 

what is happening now). These questions are formalized in 

a design space with five dimensions that specify how 

messages can be processed in different disconnection 

scenarios. The different strategies on the five dimensions 

are implemented as plug-ins in DiscoTech‟s component 

architecture, which allows developers to handle a wider 

range of disconnection and reconnection requirements than 

have been seen in any previous toolkit. The architecture 

allows three types of plug-ins: fully generic, which address 

standard issues such as message format, sampling, and 

ordering in the data that is queued during a disconnection; 

partially generic, which are parameterized to allow tuned 

behaviour (e.g., to allow re-ordering with priority for 

certain message types); and customized, which allow 

application-dependent transformations of data based on the 

systems specific needs (e.g., changing movement data to a 

„heat map‟ representation). Different plug-ins and 

parameters provide support for disconnections of different 

lengths and for different usage scenarios. The goal of 

DiscoTech is to make it simple for the groupware 

programmer to handle standard cases, but also to make it 

possible to handle more complex cases when required. 

Our initial evaluations of DiscoTech show that it succeeds 

in three important design areas. First, we demonstrate the 
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coverage of the toolkit by showing how policies from 

previous work (including latecomer support) are handled by 

DiscoTech. Second, we show that the toolkit is easy for 

developers to learn and use by reporting on tutorial sessions 

with four programmers. Third, we provide empirical 

evidence that DiscoTech adds minimal overhead for 

connected clients, and that memory use is appropriately 

constrained when people are disconnected. 

Our work makes two main contributions. The design space 

provides a set of concepts to show the range of solutions for 

handling disconnection, and identifies a number of specific 

strategies that can be implemented as plug-ins. The 

DiscoTech toolkit itself provides an architecture and model 

for using and composing individual plug-in solutions, and 

our evaluations show that the toolkit has broad coverage, is 

easy for developers to use, and performs well. DiscoTech 

provides a wider range of solutions to the problem of 

disconnection than exist in any previous toolkit, without 

causing undue programmer effort or performance penalties. 

The libraries for DiscoTech are freely available 

(hci.usask.ca/software/DiscoTech_Sourcecode.zip) and 

work with any .NET language.  

RELATED WORK 

Overview of the disconnection problem 

Issues of robustness, fault tolerance, network disconnection, 

and late joiners have been investigated for some time (e.g., 

[1,3,5,10,15,28]), but the user view of groupware 

disconnection has not been widely considered. Gutwin et al. 

[12] recently provided an overview of the problem from 

this perspective, stating two main factors for handling 

disconnection: the time scale of the absence, and the phase 

of the disconnection (specifically identifying a 

disconnection, determining what to do during the absence, 

and determining what to do on reconnection.) 

Time scale is important in these decisions because users 

want different kinds of information depending on how long 

they have been away; therefore, duration of absence can be 

used as the basis for adapting storage behaviour. 

The high-level design presented by Gutwin et al. included 

this conceptual architecture and several example systems, 

but did not go into detail about the range of techniques that 

could be used in handling disconnection and reconnection, 

or about development infrastructures that could allow the 

disconnection problem to be dealt with in an efficient and 

general fashion by groupware programmers. 

Techniques for handling aspects of disconnection 

Strategies for dealing with disconnection issues have been 

explored in research on individual systems and toolkits. The 

range of techniques seen in previous literature was part of 

the motivation for a plug-in architecture for the DiscoTech 

toolkit, and many of the techniques described below have 

been used to inform the design of DiscoTech‟s specific 

plug-ins. We do not cover some basic issues, such as 

identification of disconnection, or reestablishing a network 

connection (although these are handled bythe toolkit). In 

addition, we consider fault tolerance for data (e.g., data 

replication [20]) and consistency maintenance for replicated 

models (e.g., [26]) to be outside the scope of DiscoTech. 

These issues are important but can be handled by other 

modules in the overall groupware architecture. Strategies 

for handling disconnection include: 

 Persistence. Maintaining a persistent state for the shared 

environment allows that state to be sent to users after a 

disconnection. This strategy is used for place-based 

groupware (e.g., TeamRooms [25]) and for the virtual 

worlds used in games (e.g., World of Warcraft).  

 State recovery. Even in groupware systems that are not 

place-based, the state of documents or workspaces can 

be stored at a central location and sent to a reconnecting 

user (e.g., the YCab framework [3]). In pure state-

recovery systems, no event-based information (such as 

awareness events) is stored. In some systems (e.g., 

DOORS [23]), event-based information exists when 

users are connected synchronously, but events are not 

stored during periods of asynchrony. 

 Store-and-forward. In this approach, events are queued 

at a central server and are sent to the receiver upon 

request (e.g., XTV [5] or Chung et al.‟s latecomer 

service [4]). Unlike state-based systems, state is 

reconstructed at the receiver using forwarded events. 

 Replay. On reconnection, queued events from store-and-

forward systems are delivered to the receiver and can be 

replayed – both to reconstruct state, and to provide an 

understanding of what happened during the absence. For 

example, DreamObjects [18] allows playback of some 

or all of the queued events, and a system by Manohar 

and Prakash provided a „video-player‟ interface that 

allowed playback to be paused or fast-forwarded [19]. 

 Type-based selection. A few systems select what 

messages to send after a reconnection, based on the 

message type. For example, WebArrow [17] only sends 

chat messages after reconnection, not voice. 

 Discarding old state-update events. Some event-based 

systems recognize that certain events only update state 

variables (e.g., a temperature from a sensor), and 

discard all but the most recent of these events [7]. 

 Reordering. Some games priorize state updates for 

nearby avatars ahead of those for distant avatars [2], or 

move important messages (e.g., deaths and spawns) to 

the front of the queue. 

 Coalescing and chunking. When messages are batched 

at the sender, some systems reduce space requirements 

by aggregating several messages into one (e.g., 

ReConMUC [1]) or converting incremental updates into 

a larger single updates (e.g., change multiple draw 

messages into a single polyline) [23].  

 Compression. Batched updates can be compressed using 

libraries such as zlib (e.g., XTV [5], ReConMUC [1], or 

Chung‟s latecomer system [4]).  

 Continuation while disconnected. When a connection is 

lost, some systems such as DISCIPLE [15] allow a 
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mobile client to work offline. These systems are similar 

in approach to groupware that supports both 

asynchronous and synchronous work (e.g., DOORS 

[23]), but applies the idea to network disconnection. 

 Content-based filtering. The volume of messages stored 

for a particular receiver can in some cases be reduced by 

selecting only those messages that match certain 

patterns (e.g., keywords in an IRC client [1]).  

Latecomer support 

The existing CSCW toolkits that are closest to our work are 

those that deal with the „latecomer‟ problem that has been 

considered since the earliest groupware systems (e.g., 

[4,18,19,27]). Toolkit approaches to the latecomer problem 

can generally be divided into those that provide state-based 

recovery (e.g., Habanero [16] or Suite [8]), those that 

provide replay-based recovery (e.g., Chung et al.‟s 

accommodation service [4] or XTV [5]), and those that 

combine both approaches (e.g., DreamObjects [18]).  

Although there are often different issues at play in 

supporting latecomers versus disconnected users, many of 

the ideas are similar – and in fact some researchers have 

noted that absences in the middle of a groupware session 

can also be thought of as „latecomers‟ (e.g., [4]). However, 

no groupware toolkit has addressed these concerns in a way 

that provides both flexibility and simplicity for the 

application programmer. In order to fill this need, we 

designed the DiscoTech toolkit.  

DESIGN DIMENSIONS FOR DISCONNECTION 

The overall goal of handling disconnection is to help 

collaborators rejoin and continue the collaborative work 

session as smoothly and seamlessly as possible. This 

involves three main questions from the user‟s perspective: 

 What happened during the absence? The returning user 

needs to „catch up‟ on important events and changes that 

have occurred during the absence. 

 What is the state of the workspace? The user needs to 

understand the current state of the collaboration 

artifacts, both in order to interpret changes and to 

understand the overall state of the collaboration. 

 What is happening now? The user needs information 

about current activities in order to smoothly re-integrate 

into the group‟s activity. For example, the user needs 

the last few messages of a chat conversation in order to 

restart their participation in the conversation. 

These needs involve competing goals: the user wants to get 

as complete an understanding as possible of the missed 

events, but reconnection data must be delivered as quickly 

as possible if the user is to rejoin the collaboration in a 

timely fashion. This implies, for example, that in many 

cases the events cannot simply be replayed in their original 

form (since this would take too much time); in addition, this 

means that the transmission time of stored messages after 

reconnection must be minimized. 

From these user-level requirements, we identify five 

dimensions along which groupware messages can be 

manipulated or altered during or after a disconnection. 

1. Message Format: changing the way messages are 

represented and packaged, primarily to reduce volume. 

 Compression: using lossless compression techniques 

(such as Zip or GMC) to reduce message size; some 

lossy techniques also apply (e.g., re-encoding JPEGs). 

 Aggregation: repackaging to incorporate several 

individual events per message. For example, sending 

multiple telepointer locations per message saves the 

overhead of identifying each event as a telepointer. 

 Chunking: adding together several events to create a 

single larger event. For example, changing a set of 

character-by-character typing events into a single chat 

message event; or coalescing several pixel edits into a 

larger bitmap region event. 

2. Sampling: selecting a subset of the stored messages 

based on a particular property. Sampling techniques imply 

that some messages are deleted from the queue. 

 Sampling by priority or type: selecting messages based 

on an explicit priority designation in the message, or on 

an implicit designation based on message type. An 

example of the latter approach is to select messages that 

involve changes to the model and discard awareness 

messages (e.g., telepointer movement). 

 Sampling by time: messages may be selected either by 

time period (e.g., randomly retain one message per 

second, to show the distribution of events), or by time 

cutoff (e.g., retain the last ten seconds of activity).  

 Sampling by count: similar to time sampling, but using 

the number of messages rather than time as the 

governing structure. This approach might retain every 

Nth message, or just the most recent N messages. 

3. Pacing: changing the temporal spacing of a stream of 

messages, primarily to reduce the time needed for the user 

to interpret events on reconnection. 

 Uniform speedup: message timestamps can be 

uniformly altered to decrease playback time; for 

example, events could be replayed at double speed. 

 Non-uniform time change: times can be altered to 

achieve specific purposes, such as removing gaps in the 

message stream, or reducing less important sequences. 

 Quick-as-possible playback: in extreme cases, events 

can be played with no time delay – that is, messages are 

processed directly one after another.  

4. Ordering: changes to the order of messages in the queue, 

without removing any messages. As with sampling, 

decisions are made based on properties of the message data. 

 Priority: some messages may be considered as more 

important and can be moved to the front of the queue. 

Examples include important game events (e.g., hits), or 

messages that are important for causal processes. 

 Size: if small messages can be processed faster, it may 

be useful to collect them at the front of the queue. 



 

 Recency: in a standard queue, recent messages would 

arrive last after reconnection; in situations where 

messages do not have causal dependencies, however, 

recent messages could be delivered first. For example, a 

chat system might show the recent parts of an ongoing 

conversation, and then gradually fill in earlier parts. 

5. Transformation: changing the content or representation 

of messages, either to reduce size or interpretation time. 

Transformations are often paired with visualizations that 

show the information in a way that is different to the 

original presentation.  

 Averaging. Some messages (such as position or 

movement events) can be combined through averaging 

(e.g., showing the average location of an avatar over 

one-second intervals, rather than at each movement).  

 Summarization. Messages can be summarized without 

changing the basic data representation. For example, 

text chat could be replaced with a shorter text summary. 

 Representation. Messages can be processed to create a 

completely new representation. For example, the text of 

a chat conversation could be replaced with information 

about participants‟ activity level; similarly, telepointer 

movements could be replaced with a „heat map‟ 

showing overall activity. Transformations can also 

convert event updates to state structures (e.g., 

converting movement messages to a „game frame‟ 

containing every avatar location). 

PLUG-IN ARCHITECTURE 

Guided by this design space, we have created the 

DiscoTech architecture. DiscoTech‟s goals are: 

 Ease of Use: Groupware developers should be able to 

use the architecture without having to substantially 

modify it or their application. The architecture should be 

available as a usable toolkit with a simple API. 

 Expressiveness: The architecture should support a wide 

range of disconnection/reconnection behaviour, as 

captured in the design space above. 

 High Performance: Applications using the architecture 

should not pay a major performance penalty, and any 

penalty should be predictable and quantifiable. 

We have realized these goals through a plug-in architecture 

that has been implemented within the DiscoTech toolkit. 

DiscoTech is based on an earlier design [12], but is novel in 

that it deals with disconnection issues using plug-ins. 

Groupware developers can use DiscoTech as a networking 

API that provides built-in disconnection handling. 

Developers stream their application events via the 

DiscoTech API, and events are propagated via the network 

to other clients. In case of network outages, events are 

queued on a server, and sent to the disconnected client upon 

reconnection. Developers can easily select among available 

strategies in the DiscoTech API for dealing with 

disconnection, or can develop custom plug-ins. 

Ease of Use through the DiscoTech toolkit 

DiscoTech allows groupware developers to easily add 

disconnection handling to their application. Developers 

simply route their application‟s events through the toolkit. 

Similarly to other middleware solutions, DiscoTech 

broadcasts the application‟s events to all other clients. 

DiscoTech handles disconnection and reconnection events 

by constantly queuing application events in case of 

disconnection, and by automatically providing catch-up 

functionality when the client reconnects. 

Figure 1 shows how applications interact with DiscoTech. 

The current implementation uses a client/server architecture 

in which the application sends events to DiscoTech via its 

API. DiscoTech then propagates the events to other clients 

(via its Sender module). Events received from other clients 

are queued on an event queue, and are forwarded to the 

application via a call-back. DiscoTech therefore propagates 

events for applications, providing the network functions 

usually provided by a middleware such as GT [6] or by raw 

socket communication. DiscoTech has no knowledge of 

event semantics; events are simply viewed as serializable 

objects that can be queued or sent over a network. 

 

Figure 1: DiscoTech client 

DiscoTech provides a server (Figure 2) whose primary 

function is to broadcast messages from each client to all of 

the other clients. Incoming events for client i are read by a 

Receiver component, which then enqueues the message on 

each client‟s Event Queue. A Sender process for each client 

waits for new messages to arrive on the Event Queue, and 

sends them to the client. 

 
Figure 2: DiscoTech server 

If a client disconnects, its sender/receiver pair attempts to 

reestablish connection. In case of a brief network 

disruption, the connection might be reestablished 

immediately. In a longer disconnection (e.g., a computer 



being powered down for the weekend), the connection may 

take hours or days to reestablish. In the meantime, events 

are queued so that they can be sent to the client upon 

reconnection. During longer disconnections, the contents of 

the event queue must be modified in order to reduce space 

requirements and to avoid the need for lengthy data 

transmission following reconnection. The groupware 

developer can configure the techniques used to reduce the 

space requirements of the server-side event queue. Two 

techniques are used: (1) the data stored on the event queue 

is reduced through the approaches discussed in the design 

space (e.g., compression, aggregation, and sampling) and 

(2) messages can be compressed using standard techniques 

as part the network transmission process. 

Following reconnection and receipt of data, the client 

controls how the data is sent to the application. Events can 

simply be forwarded to the application directly, or can be 

modified to help the user re-establish context. For example, 

the client‟s plug-ins may reorder events so that highest 

priority events are processed first, or may adjust playback 

to show missed activity at double speed. 

Expressiveness through Plug-ins 

Application programmers can use the DiscoTech toolkit as-

is, selecting among a set of predefined compaction and 

replaying behaviours. This allows easy addition of 

disconnection handling – all that the developer needs to do 

is route the application‟s events through DiscoTech. 

This approach limits disconnection handling, however, to 

behaviours that can be programmed without knowledge of 

the underlying semantics of the events. For example, the 

following generic behaviours are possible with the toolkit: 

 Compression – using standard libraries such as zlib 

 Truncation – the last k events (or k seconds of events)  

 Sampling – discarding all but a subset of events 

 Accelerated playback of events 

However, many interesting behaviours require knowledge 

of the semantics of the events themselves, such as: 

 Aggregation of multiple events to a single event 

conveying the same information 

 Discarding events which are superseded by later events 

 Transforming events into a summary representation 

DiscoTech uses a plug-in mechanism to open the toolkit,, 

allowing programming of custom disconnection behaviours. 

Plug-ins can be attached to either the server or client-side 

event queues. Plug-ins are periodically invoked by the 

toolkit (as triggered by timer interrupts or by the queue 

reaching a threshold size), and may arbitrarily modify the 

contents of the queue. Plug-ins fall into three categories: 

generic, partially generic and custom. 

Generic Plug-ins: Generic plug-ins, as described above, 

provide functionality that can be implemented with no 

knowledge of events‟ semantics. Events are considered to 

be generic objects, tagged with a time stamp specifying 

when the event originated at the source client. The toolkit 

provides a set of generic plug-ins, providing simple and 

useful disconnection behaviour. Generic plugins are 

parameterized by the type of message on which they should 

operate (e.g., awareness messages only), and by the 

timeframe in which they should operate. 

Partially Generic Plug-ins: The toolkit provides plug-ins 

that must be parameterized by the application programmer 

to adapt them to the event types used by the application. For 

example, a chunker combines groups of events into coarser-

grained events. This plug-in could transform individual 

keystroke events from a chat system into a single event, or 

could coalesce line-segment events into a poly-line for a 

drawing program. While the aggregation behaviour is 

generic, the specifics of how a set of events are transformed 

into a single event are application-specific. Users of this 

plug-in must parameterize it by providing the 

implementation of a Chunk method that takes a list of 

events and combines them into a single event. In 

DiscoTech, this plug-in is implemented as an abstract class, 

requiring the application programmer to create a concrete 

subclass that implements the Chunk function. 

As a second example, the AggregateToState partially-

generic plug-in allows a sequence of events to be collapsed 

into a single state update event, possibly involving a 

significant change in form. As we shall see, 

AggregateToState can be used to convert a sequence of line 

drawing commands to a single bitmap image, or a sequence 

of telepointer move events to a matrix representing a 

heatmap. This plug-in must be customized with the 

underlying data structure (e.g., the bitmap) and with a 

method that applies events to the data structure (e.g., 

drawing the line on the bitmap). 

Partially generic plug-ins significantly extend the 

expressiveness of the toolkit. The cost to the application 

programmer is that he/she must understand the functionality 

of the plug-in well enough to provide the code customizing 

it for the application‟s event types. 

Custom Plug-ins: Some functionality is so dependent on 

the underlying event types that no generic behaviour is 

possible. For example, a sequence of moves in a chess 

game might be summarized using standard chess notation, 

or a sequence of video frames might be converted through 

image analysis to a summary of the video‟s content. 

These three plug-in types represent a progression from the 

simplicity of full genericity to the power of custom 

components. This allows developers to choose the degree to 

which they wish to engage with the toolkit – if standard 

behaviour is acceptable, there is little for developers to 

learn. If they wish to have sophisticated, custom behaviour, 

the toolkit makes it possible.  

High Performance through Light-Weight Operation 

While disconnection handling can greatly improve the 

usability of groupware applications, it must not 

unreasonably reduce application performance. DiscoTech is 



 

designed to provide minimal overhead during normal 

connected state, and to provide developers with hooks to 

manage resource consumption during disconnected states. 

Application events sent from one client to another pass 

through the DiscoTech server, which broadcasts them to 

other clients. This message broadcasting architecture is 

widely used in groupware implementation (e.g., GT [6], or 

many commercial games). DiscoTech adds the overhead of 

queuing events on the server rather than sending them 

directly. When a client is connected, however, events can 

be removed from the queue as soon as they are added. As 

shown below, the overhead of the queue is minimal 

compared to the cost of sending messages over the network. 

When a client is disconnected, the server enqueues its 

messages until the client reconnects. This can lead to 

unbounded memory use, as there is no limit to the length of 

disconnection. Server-side plug-ins allow the developer to 

reduce queue size with a variety of pruning and compaction 

techniques. Through parameters on these plug-ins, the 

developer can control how aggressively these algorithms 

are applied – e.g., how often they should be invoked and 

how much data should be retained.  

Following reconnection, the queued data is sent to the 

reconnected client. As the event queue grows, so does the 

bandwidth required to transmit these events. Bandwidth 

requirements are controlled through two mechanisms. First, 

as described above, developers can control the amount of 

data stored on the event queue. Second, the network module 

can minimize transmission time by delivering the queue as 

a whole, and by using compression to reduce size. 

Later in the paper, we present evaluation results showing 

that DiscoTech indeed imposes minimal overhead during 

normal connected operation, and provides hooks for control 

over resource requirements during disconnection. 

DETAILS OF PLUG-IN IMPLEMENTATION 

The main novelty of DiscoTech is its plug-in approach to 

handling disconnection and reconnection. Plug-ins are 

classes that descend from the abstract base class DTPlugin, 

and are all designed around a similar pattern – plug-ins 

have access to the queued events, and can perform 

manipulations on that queue depending on the algorithm 

built into the plug-in. We have implemented plug-ins to 

correspond to all of the types detailed in the design space, 

including reformatters, resamplers, re-orderers, re-pacers, 

and transformers (see descriptions above). 

A plug-in‟s „main‟ method is called ApplyPlugin. When 

invoked by the toolkit, this method applies the plug-in‟s 

algorithms to the event queue. Plug-ins have two properties: 

EventQueue, which links to the event queue that is to be 

manipulated; and Timeframe, which specifies the time 

period for which the plug-in is to operate. In addition, 

certain plug-ins have additional properties (e.g., the 

TimeBasedTruncator plug-in takes an argument on creation 

to determine the age at which events will be deleted from 

the queue). Last, plug-ins all have a method that carries out 

the desired actions on the given queue (this method is 

specific to the plug-in type). 

Application programmers can use the built-in generic plug-

ins (e.g., the Truncator) without any customization. For the 

partially generic plug-ins, such as the Chunker plug-in (see 

above), the programmer needs to redefine the behaviour of 

the Chunk() method. For a custom plug-in, the programmer 

creates a new class that inherits the abstract base class 

DTPlugin. With custom classes, programmers can 

arbitrarily change the content of the event queue. 

Multiple plug-ins can be applied to the event queue (e.g., to 

provide different treatment for old versus new events). Each 

plug-in must therefore be capable of recognizing event 

types generated by other plug-ins. For example, if chunking 

introduces a new event type into the event queue to 

represent the newly „chunked‟ data, other plug-ins must be 

capable of dealing with that event type. 

USING THE DISCOTECH TOOLKIT  

DiscoTech is implemented in C#, and can be used in any 

.NET project by including DiscoTech‟s client-module or 

server-module libraries with the client or server application. 

There is a clean separation between the application and 

DiscoTech‟s components; the application only interacts 

with the toolkit‟s Disco component (which acts as a 

mediator between the application and DiscoTech). At the 

simplest level of use (i.e., generic plug-ins only), 

developers need only learn the DiscoTech APIs in order to 

pass events through the Disco instance; disconnection and 

reconnection behaviour is handled transparently. 

Programmers instantiate DiscoTech with details of the 

server IP address and port, and then define two event 

handlers to receive command and data messages. 

The programmer also needs to specify the set of plug-ins 

they want to use: e.g., to use the „HeatmapTransformer‟ 

plug-in between 60 seconds and 10 minutes of 

disconnection, the following lines are used: 
DTPlugin hm = new HeatmapTransformer(60,600); 
Disco.AddPlugin(hm); 

For sending a message over the network, the programmer 

uses the following call: 
Disco.SendMessage(message);  

where „message‟ is a string or an event object. The receiver 

will get the message via the event handler mentioned above. 

EXAMPLES USING DISCOTECH 

We show two examples – a chat system and a paper-

reviewing application – that demonstrate a range of 

strategies for handling disconnection, and show that 

DiscoTech supports both low-cost generic behaviours as 

well as application-specific behaviour when needed. 

Text Chat Application 

In this simple chat system (Figure 3), users type messages 

and press Send to propagate the chat to all users. The 

application uses two event types: one to send the content of 

a chat message, and one to send an „is typing‟ awareness 



message. When a client is disconnected, these messages are 

queued on the server; for long disconnections, messages are 

transformed to take up less space according to the following 

rules: 

 Events less than 10 seconds old are preserved as-is. 

 Chat messages older than 10 seconds are chunked into a 

single message (using the partially-generic Chunker 

plug-in) 

 Awareness events older than 10 seconds are removed 

from the queue (using the generic Truncator plug-in). 

 Chat messages older than 10 minutes are replaced with a 

„chat frequency‟ event that counts the number of chat 

messages from each user. This uses a custom plug-in 

requiring knowledge of the application‟s event types. 

On reconnection, messages are replayed at the client 

according to the following rules: 

 „Chat frequency‟ events are passed to the client, which 

highlights users‟ icons based on number of messages 

(this is application-specific behaviour). 

 Chunked chat messages are passed to the client so that 

they can be immediately shown in the chat pane. This is 

default behaviour requiring no plug-in. 

 Newer chat messages are replayed at double speed 

(using the generic Speedup plug-in) until the playback 

catches up. The order and timing of the messages 

matches their original input, but the timeline is 

compressed. This allows users to see the rate at which 

messages were originally typed, but faster. 

 

Figure 3: Chat application 

Despite its simplicity, this example illustrates much of the 

power of the DiscoTech architecture. It is easy to configure 

the server to limit the amount of information that is stored, 

an approach that allows a client to be disconnected 

indefinitely. A custom plug-in is used to create the chat 

frequency event, but if developers prefer not to create this 

plug-in, the generic truncation plug-in could be used to 

discard old chat messages. This shows that developers can 

choose between simple behaviour with generic plug-ins, or 

extended behaviour with custom plug-ins. 

The reconnection plug-ins are used to help users regain 

context. Here, highlighting user icons gives a general 

picture of who was active during the disconnection. Older 

chat messages are simply posted to the window, while 

newer messages are played back at the relative rate they 

were originally typed. 

The plug-ins used in this application are parameterized by 

thresholds such as the age at which awareness messages 

should be discarded, or the age at which double-speed 

playback should be used on the client. These parameters are 

simple properties that are set through the DiscoTech API. 

Collaborative Paper Reviewing System 

Our second example is a system used by groups of authors 

to review and comment on a paper draft (Figure 4). The 

application allows real-time text highlighting, whiteboard-

style annotations, and addition of typed comments, and also 

provides telepointers to convey gestures. The application 

also shows a summary of comments in a separate window. 

Clients send a stream of events specifying the current 

position of each user‟s mouse pointer. Clients also send 

events capturing users‟ markup operations, such as adding a 

comment or an annotation.  

Although this application is substantially different from the 

chat system, the programmer handles disconnection in a 

similar fashion. All editing operations must be preserved on 

the server event queue. If the disconnection is lengthy (>10 

minutes), the partially generic AggregateToState plug-in is 

used to combine all edit events into a single event that 

conveys the current state of the annotations. The handling 

of telepointer events depends on the length of the absence: 

 The last 60 seconds of telepointer events are stored as-is 

and replayed with the Speedup plug-in; 

 For longer disconnections, telepointer events are 

transformed to a heatmap display (Figure 4) which 

shades the document according to the number of 

telepointer events in each area. A custom plugin 

(HeatmapTransformer) converts telepointer events into 

the heatmap data structure. 

 
Figure 4: Reviewing application showing heatmap. 

These examples show common ways in which 

disconnection behaviour is handled by DiscoTech. A small 

number of plug-ins allows a wide range of application 

behaviour across different application types. Plug-ins 

provide general solutions to common problems that recur 

across applications (e.g., truncation of awareness events, 

accelerated replay, or shifting to a state representation as 

the length of the disconnection increases). 



 

EVALUATION OF DISCOTECH 

We have performed three evaluations of the DiscoTech 

framework. As discussed earlier, our key claims are that 

DiscoTech is expressive, supporting a wide range of 

disconnection behaviours; that DiscoTech is easy to use, 

with a plug-in architecture that hides the disconnection 

handling infrastructure, but still provides customizability; 

and that DiscoTech is performant, demanding only modest 

overhead in feedthrough times and memory use. 

Expressiveness 

DiscoTech can reproduce a wide variety of policies and 

strategies seen in previous work. In the following list, we 

show how several earlier approaches, including latecomer 

support, are accomplished using DiscoTech. 

 Maintain model state. We provide the partially-generic 

„aggregate-to-state‟ plug-in, which can convert model 

updates to a single state representation. Although not a 

purely state-based approach, this plug-in allows 

developers to come arbitrarily close to this behaviour. 

 Store-and-forward. DiscoTech provides this policy 

natively through its queues, although not all updates will 

be forwarded (i.e., if pruned by another plug-in). 

 Event replay. This is possible with the generic „Speedup‟ 

plug-in. One earlier system provided a „VCR-style‟ 

interface for replay [4]; we do not supply this specific 

interface, but the Speedup plug-in could easily support a 

replayer with „pause‟ and „fast-forward‟ controls.  

 Selection filtering. DiscoTech supports filtering with 

generic plugins (which are parameterized by message 

type); more complex filtering (e.g., by message content 

[1], and the “freshest data” policy [7]) can be achieved 

through custom plug-ins. 

 Reordering. This policy is part of the DiscoTech design 

framework, but must be implemented as a custom plug-in. 

 Coalescing, chunking, and compression. We handle these 

strategies through partially-generic plug-ins such as the 

„Chunker‟ described above. In addition, the full queue is 

compressed before delivery (upon reconnection).  

 Working while disconnected. Although DiscoTech‟s 

conceptual architecture supports this policy, we currently 

uses a client-server architecture, so working while offline 

is not possible; however, a peer-to-peer version of 

DiscoTech (in development) will support this approach. 

 Latecomer support. Support for latecomers is built into 

DiscoTech; we implement this by creating an extra client 

at system startup that is considered to be always 

disconnected. When a late entrant joins, we copy the extra 

client's queue to the new entrant and send it to them. Note 

that whatever policies are in place for disconnected clients 

will also affect the late entrant – e.g., they may receive a 

summary representation of chat rather than all of the text. 

This is different from schemes that guarantee the sending 

of a full model, but our approach provides more flexibility 

for the application programmer – we believe that what is 

sent to a late entrant should be an application-level 

decision, which can be achieved with DiscoTech. 

Ease of Use 

To obtain early feedback on ease of use, we solicited 

opinions of four software developers not associated with 

this project. Two developers were undergraduate research 

interns, and two were graduate students. All were familiar 

with the concepts of groupware and with development 

using C#, but none had programmed disconnection 

handling in a groupware application. Each was asked to 

carry out a one-hour tutorial which showed how to convert 

a single-user drawing application into a multi-user version 

including disconnection handling. We observed each 

developer as they worked through the tutorial, and then 

conducted a semi-structured interview after the session. 

All four developers were able to complete the tutorial in 

one hour, correctly adding multi-user functionality to the 

application and experimenting with a variety of 

disconnection behaviors by swapping plug-ins. All reported 

that they found the toolkit‟s API straightforward, and that 

DiscoTech would be a suitable candidate for future 

projects. One participant commented that “The API is really 

generic… Since there is only one method call and a 

callback, it is very straightforward.” Others stated “I would 

use DiscoTech because I don‟t want to reinvent the wheel.” 

and “I would use DiscoTech. It does [it] all for me.” While 

this was far from a comprehensive study, it does provide 

encouraging feedback that people with strong programming 

background and familiarity with groupware can learn the 

DiscoTech concepts quickly, and see value in it for 

programming disconnection behavior. 

Performance 

In order to characterize the overhead of using DiscoTech, 

we tested its effect on an application‟s feedthrough time 

and memory requirements. In both cases, we used the 

canonical groupware example of a shared drawing program. 

To test feedthrough time, we ran a drawing program under 

two conditions: with and without disconnection handling 

enabled. In the “no disconnection handling” condition, 

DiscoTech‟s server-side queue was removed, and the server 

simply forwarded incoming events to all clients, thus 

simulating a traditional message broadcasting architecture. 

In both conditions, a “sender” client was automated to 

inject a new random drawing command every 2,000 ms, 

over a total of 200 seconds. Between one and four 

additional “receiver” clients received these drawing events. 

Feedthrough time was measured as the time from the event 

being sent by the sender client to the time that the message 

was received by a receiver client. A local area network was 

used between the client and server computers with ping 

times not exceeding 1 ms. 

The results of this experiment are shown in Figure 5, which 

shows that feedthrough time increases with number of 

clients, but that the impact of DiscoTech‟s message queuing 

on feedthrough time is negligible. 

To characterize DiscoTech‟s overhead when a client is 

disconnected, we tested the same drawing program, with 



one “sender” client, one connected “receiver” client, and 

one disconnected “receiver” client. In this scenario, the 

server must use its event queue to store information 

allowing the disconnected client to be brought up to date 

following reconnection. 

 

Figure 5: DiscoTech feedthrough time 

The application transmitted two forms of events: telepointer 

movement events, and drawing commands. We measured 

server-side storage use under two conditions. The “without 

compaction” condition measured the space required to store 

the telepointer and drawing messages as-is, with no attempt 

to compress them to a smaller size. The “with compaction” 

condition used partially generic plug-ins to reduce storage 

size: (1) Drawing events: any drawing events occurring 

over the last ten minutes are represented in the queue as 

sent by the client; older drawing events are applied to a 

special bitmap message (using an AggregateToState 

compactor). (2) Telepointer events: the last minute of 

telepointer events are stored as sent by the client; events 

between one and ten minutes old are averaged to provide at 

most one event per five seconds (using an Averager 

compactor), and events older than ten minutes are 

converted to a heatmap (using AggregateToState). 

Each condition was run for 12 hours (720 minutes). The 

results are summarized in Figure 6. In the “without 

compaction” condition, memory use climbed steadily over 

time. This is as expected, as events are continuously added 

to the event queue. Interestingly, even after 12 hours of 

disconnection, only 15 MB was required to store data from 

the drawing program. This hints that even with no 

compaction, small-group shared workspace groupware 

applications such as a drawing program can sustain lengthy 

disconnections with acceptable overhead. 

In the “with compaction” condition, memory usage reaches 

a steady state after approximately one hour, at 

approximately 0.4 MB. This indicates that the aggregation 

to state strategy works well, where individual events are 

retained to allow progressive update (e.g., through double-

speed replaying), while a full state snapshot allows 

aggregation of large numbers of events. The limitation of 

space to 0.4 MB also allows considerably faster 

reconnection than under the “without compaction” 

condition, as less data needs to be transmitted to the client. 

This shows that with the use of parameterized plug-ins, 

DiscoTech can have modest and bounded storage 

requirements when handling disconnection. These results 

depend very much on the kind of application being tested. 

Our drawing surface was limited to 500 x 500 pixels; a 

larger drawing surface would have required more storage 

space. Similarly, trying to save the full contents of a video 

chat on a server would require considerably more storage. 

Nevertheless, for small-group shared-workspace groupware 

applications, this test indicates that storage requirements are 

well within the capacities of modern hardware. 

 

Figure 6: Memory use during disconnection (log-log plot) 

CONCLUSIONS AND FUTURE WORK 

Handling user-level disconnection and reconnection issues 

in synchronous groupware is difficult for developers. To 

simplify this support, we developed DiscoTech, a toolkit 

that covers a wider range of policies than any previous 

infrastructure, but that is easy to understand and imposes 

only minimal performance costs. DiscoTech‟s main novelty 

is that it addresses disconnection problems with a plug-in 

architecture, which provides both simple use in basic cases, 

as well as full customizability for experts. DiscoTech is 

based on a new representation of the design space that 

characterizes the types of behaviour that applications might 

need to exhibit as a consequence of disconnection. Our 

initial evaluations of DiscoTech indicate that it can cover a 

wide range of policies introduced in previous work, that it 

is easy for developers to learn, and that it does not impose 

major performance penalties during both connected and 

disconnected operation. 

Our next steps with DiscoTech fall into three main areas. 

First, we will carry out further work on mechanisms for 

composing and timing the plugins. Currently the 

programmer must decide when different plugins will 

operate, and there is no system support for helping people 

schedule plug-ins and determine how different plug-ins will 

work together. In order to work on data that has already 

been manipulated by another plugin, all data must be tagged 

with a flag indicating whether the effects of the previous 

plugin can be reversed. We plan to explore other ways of 

dealing with this issue, such as with a timeline manager that 

can schedule and apply the plugins. 

Second, we will test peer-to-peer versions of DiscoTech. 

The current toolkit places most of the responsibility for 

handling disconnection at the server – particularly during 

long disconnections. While this is a reasonable division 

0

20

40

60

80

100

2 3 4 5

M
e
a
n
 f
e
e
d
th

ro
u
g
h
 t
im

e
 (

m
s
)

Number of clients

Simple Message Broadcasting

DiscoTech Queuing Architecture

1

10

100

1000

10000

100000

1 10 100 1000

M
e
m

o
ry

 u
s
e
 (

K
B

)

Disconnection time (minutes)

Without Compaction

With Compaction



 

(since servers are less likely to disappear than clients), we 

are interested in a more distributed or peer-to-peer version 

of the architecture that uses strategies from fault-tolerant 

computing, and that will allow clients to continue work 

while disconnected (e.g., in multi-player games). 

Third, we will carry out additional tests to further evaluate 

DiscoTech‟s ease of use and performance in realistic 

situations. We have made the toolkit freely available 

(hci.usask.ca/software/DiscoTech_Sourcecode.zip) in order 

to gather feedback from the CSCW development 

community, and we plan to build several further groupware 

applications in order to test DiscoTech‟s performance with 

short-term outages (e.g., caused by network jitter), long-

term absences, and custom plug-in scenarios. We are also 

interested to see how frequently the different plug-in types 

are used in practice, and whether a small number of plug-

ins can cover a large majority of use cases for the toolkit.  
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