
SeByte: A Semantic Clone Detection Tool for

Intermediate Languages

Iman Keivanloo
±
, Chanchal K. Roy

*
, Juergen Rilling

±

±
Department of Computer Science

Concordia University

Montreal, Canada

{i_keiv, rilling@cse.concordia.ca}

*
Department of Computer Science

University of Saskatchewan

 Saskatoon, Canada

croy@cs.usask.ca

Abstract—SeByte is a semantic clone detection tool which

accepts Java bytecode (binary) as input. SeByte provides a

complementary approach to traditional pattern-based source

code level clone detection. It is capable of detecting clones missed

by existing clone detection tools since it exploits both pattern and

content similarity at binary level.

Index Terms— clone detection, Semantic Web, Java bytecode.

I. INTRODUCTION

In this paper, we introduce SeByte, a clone detection tool
that is capable of detecting semantic clone classes such as the
one in Fig. 1. In our earlier research [1] we introduced the core
of SeByte, including (1) relaxation on code fingerprinting, (2)
multi-dimensional comparison, and (3) metric-based clone
detection using both set theory and pattern matching.

Contrary to type-1, 2, and 3 clones, there is no agreement
on the definition of a semantic clone. Although, one might
consider type-4 clones to be semantic clones, there are cases
when semantic clones go beyond the scope of type-4 clones
(based on the definition of Roy et al. [2]). Figure 1 illustrates
such a case, which has been detected in the EIRC dataset [3]
using our SeByte clone detection tool. Block A and C are
semantically related since both blocks, based on their code
pattern and variable names, manipulate the color of GUI
elements. Therefore, from a maintenance perspective, if one of
the blocks requires a bug fix or an update also similar cloned
blocks should be inspected as part of the maintenance task.

In this example, method block A and B constitute an easy
detectable type-3 clone-pair (group). However, detecting that
blocks A and C are cloned is not as straight forward. Clone
detection tools such as CCFinder [4] or NiCad [5] when
configured with less restrictive settings (e.g., NiCad with blind
detection enabled) can detect these two blocks as type-2 clones,
since in this example only method names were re-named.

Method_A(Color s) {

 super.setForeground(s);

 container.setForeground(s);

 bottom_panel.setForeground(s);

 label.setForeground(s);

 tabs.setForeground(s);

}

public void Method_C(Color s) {

 super.setBackground(s);

 container.setBackground(s);

 bottom_panel.setBackground(s);

 label.setBackground(s);

 tabs.setBackground(s);

}

Method_B(Color s) {

 super.setForeground(s);

 nick_list.setForeground(s);

}

B

A C

Fig. 1. Three methods with similar pattern. Are they type-3 or semantic
clones? From maintenance point of view the best answer is semantic clone.

However, using these less restrictive settings would also
create a high false positive rate, significantly affecting the
usability of the results. Rather than reducing the precision of
existing tools, a more specialized detection approach for
identifying functionality similarities between code blocks is
required. In fact, such a semantic clone detection approach (i.e.,
SeByte) should classify in our example all three blocks in one
class (i.e., group) as semantic clones with high confidence.

II. SEBYTE ARCHITECTURE OVERVIEW

SeByte is implemented in Java and currently only supports
clone detection on Java bytecode. The tool is available online
for download at http://aseg.cs.concordia.ca/sebyte. SeByte was
one of the (1) few binary-level detection tools and (2) the first
binary level tool using an inference engine-based approach. To
improve the ease of use, we emphasized an open and flexible
tool design to help both end-users and the research community
to apply the tool in various application contexts. Thus, within
the download package, there are four executable standalone
Java files which are tagged based on their execution order.
Figure 2 provides a schematic overview for each process,
including its (1) main task, (2) inputs, and (3) outputs. Each
process must be executed using the command line such as

“java -jar step1_prepare.jar”. Note that after
completing the first process, the subject system’s bytecode files
(i.e., .class) must be copied to the corresponding folder. Figure
3 and 4 show a sample output of step2_extract process. The
output generated in the steps is plain text. In Fig. 3, we use a
directed labeled graph notation to illustrate the content of the
populated ontology. A generated query (Fig. 4) then takes
advantage of the embedded Semantic Web inference engine to
detect all similar patterns to the one shown in Fig. 3, even for
cases with gap [1].

III. SEBYTE CONFIGURATION

SeByte uses five major, stable configuration parameters
which we describe below. The non-stable input parameters
were omitted due to space limitations. The parameters are read

from the config file (Fig. 2), with the first parameter (last
one in the config file) being the root address, which is used by
SeByte as destination for its (1) temporary directories and
files

1
, (2) ontologies, (3) SPARQL queries, and (4) all the CSV

and textual reports to the root address parameter.

1 Since the idea behind SeByte development has been to support full

openness, it reports all of its internal data step by step in plain-text

format.

10000

C:\Java\jdk1.7.0_01\bin\javap.exe

0.2

0.6

3.0

testcases/input

Java Bytecode

Files (.class)

Java Disassembler

(e.g., javap)

Disassembled

Text Files

Environment

Preparation
e.g., temp and

output directory

creation

Fingerprinting +

Ontology population +

Query generation

Ontologies

Clone detection

Clone-pair

CSV Report

SPARQL

Queries

Clone class

Generation

+ Mapper to Source Code

Clone Class Report

(Mapped to Source Code)

step1_prepare.jar step2_extract.jar step3_detection.jar step4_report.jar

w
φ

m

Configuration File

One of the SeByte

Experimental Config.

Parameters

Fig. 2. SeByte processes and the configuration file description - The execution order (left to right) and their dependency on the configuration parameters

The address to the Java disassembler (e.g., javap.exe) is the
second major parameter. The last three parameters are type,
method, and minimum size values denoted by and
respectively. The acceptable ranges for these parameters are:
 , , and . and are the
major SeByte thresholds [1] for its Jaccard function.
specifies the minimum size of clone pairs in terms of
fingerprinted tokens in the Java intermediate language level.

A. SeByte Parameter Calibration

One of the challenges when using SeByte is the need to
select appropriate values for the thresholds. As noted earlier
[1], we do believe SeByte should be configured based on its
application context. In other words, there is no single
configuration for its two thresholds (i.e., and).
Nevertheless, we have observed [1] based on our manually
created dataset that some combination (e.g.,
) seems to outperform other configurations. The default
value for is 3.

B. SeByte Extensibility

We have designed SeByte to support openness, ease of use
and extensibility. We identified four major tasks and
implemented them as separated and independent executable
processes (Fig. 2). All implemented steps can be replaced by
further customized instances. For example, the current
implementation of step 2 is based on our specialized
fingerprinting rules [1], which can easily be replaced by user
customized implementations. Note that, step 2 is responsible
for fact extraction which disassembles the bytecode content
and creates the ontologies and SPARQL queries.

IV. INTERESTING EXAMPLES

SeByte has been designed to detect semantic clone-pairs,
which are not detectable by the source code level clone
detection tools [1]. Figure 5 shows one of the interesting
examples of such a clone. Pair #1 and #2, which constitute the
clone-pair, are textually highly dissimilar. However, SeByte
can detect them as a clone-pair, due to the use of (1) binary
content and (2) relaxation on fingerprinting in its detection
approach. Figure 5 illustrate the advantage of using binary
content that provides like in this case method inlining. The
method inlining in pair #1 (indicated through the arrow)

exemplifies how SeByte can recognize these two fragments as
a semantic clone-pair with high confidence.

V. DEMONSTRATION

As part of the tool demonstration we execute step by step
the four major processes of SeByte and describe in detail (1)
the necessity of each process step, (2) its external, and (3)
internal serialized data. Describing the internal data will be of
interest to the audience (1) to provide additional insights on
how SeByte takes advantage of Semantic Web openness and
reasoning and (2) how this internal data can be used for further
processing and extensions. We will also demonstrate the
SeByte Semantic Web-based search process using a graphical
querying and inference engine to highlight the intuitiveness of
the SeByte pattern search process. Finally, the SeByte clone
reports in CSV, intermediate language, and source code-level
will be discussed and examples illustrating the applicability of
SeByte in detecting semantic clones will be shown.

VI. CONCLUSION

In this paper, we introduce SeByte which is the first
implementation of our semantic clone detection approach [1].
SeByte is able to detect semantic clone by (1) exploiting
valuable facts available at bytecode level and (2) taking
advantage of our heterogeneous clone detection algorithm [1].
We have designed and implemented SeByte to make it easy to
understand and extend by supporting openness as much as
possible.

REFERENCES

[1] I. Keivanloo, C. K. Roy and J. Rilling, “Java Bytecode Clone Detection
via Relaxation on Code Fingerprint and Semantic Web Reasoning,”
IWSC, 2012, 7 pp.

[2] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation of
code clone detection techniques and tools: A qualitative approach”,
Science of Com. Prog., vol. 74, no. 7, May 2009, pp. 470-495.

[3] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo,
“Comparison and evaluation of clone detection tools”, Tran. Soft. Eng.
vol. 33, no. 9, 2007, pp. 577–591.

[4] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
Tran. Soft. Eng., vol. 28, no. 7, 2002, pp. 654–670.

[5] C. K. Roy and J. R. Cordy, “NICAD: Accurate Detection of Near-Miss
Intentional Clones Using Flexible Pretty-Printing and Code
Normalization”, Proc. ICPC, 2008, pp. 172-181.

Fig. 3. Part of the populated ontology for method fingerprints which is shown using directed labeled graph notation.

select distinct ?link where { ?n0 ?link ?n1 .

 ?n1 rdf:type method:isEnabled .

 ?n1 ?link ?n2 .

 ?n2 rdf:type method:drawFlush3DBorder .

 ?n2 ?link ?n3 .

 ?n3 rdf:type method:drawDisabledBorder .

 ?n3 ?link ?n4 .

 ?n4 rdf:type method:isEnabled .

 ?n4 ?link ?n5 .

 ?n5 rdf:type method:isEditable .

 ?n5 ?link ?n6 .

 ?n6 rdf:type method:drawFlush3DBorder .

 ?n6 ?link ?n7 .

 ?n7 rdf:type method:drawDisabledBorder .}

Fo
rm

u
lates th

e exp
ected

m

eth
o

d
 to

ken
s to

 b
e m

atch
ed

in

clu
d

in
g th

eir o
rd

er

Fig. 4. Sample SPARQL query which detects all similar code fragments with and without transitivity (i.e., gap) similar to the modeled ontology in Fig. 3

Pair #1 Pair #2

Fig. 5. An interesting semantic clone class detected by SeByte which takes advantage of method inlining within binary content

.

 .

