
Dispersion of Changes in Cloned and Non-cloned Code

Manishankar Mondal Chanchal K. Roy Kevin A. Schneider
University of Saskatchewan, Canada

{mshankar.mondal, croy@cs.usask.ca, kevin.schneider}@usask.ca

Abstract—Currently, the impacts of clones in software main-
tenance activities are being investigated by different researchers
in different ways. Comparative stability analysis of cloned and
non-cloned regions of a subject system is a well-known way
of measuring the impacts where the hypothesis is that, the
more a region is stable the less it is harmful for maintenance.
Each of the existing stability measurement methods lacks to
address one important characteristic, dispersion, of the changes
happening in the cloned and non-cloned regions of software
systems. Change dispersion of a particular region quantifies
the extent to which the changes are scattered over that region.
The intuition is that, more dispersed changes require more
efforts to be spent in the maintenance phase.

Measurement of Dispersion requires the extraction of
method genealogies. In this paper, we have measured the dis-
persions of changes in cloned and non-cloned regions of several
subject systems using a concurrent and robust framework for
method genealogy extraction. We implemented the framework
on Actor Architecture platform which facilitates coarse grained
parallellism with asynchronous message passing capabilities.
Our experimental results with 12 open-source subject systems
written in three different programming languages (Java, C and
C#) using two clone detection tools suggest that, the changes
in cloned regions are more dispersed than the changes in non-
cloned regions. Also, Type-3 clones exhibit more dispersion
as compared to the Type-1 and Type-2 clones. The subject
systems written in Java and C show higher dispersions as well
as increased maintenance efforts as compared to the subject
systems written in C#.

Keywords-Dispersion; Changeability; Code Stability; Modi-
fication Frequency; Average Last Change Date; Actor Archi-
tecture; Concurrent Framework;

I. INTRODUCTION

Reuse of code fragments with or without modifications
by copying and pasting from one location to another is
very common in software development. This results in
the existence of same or similar code blocks in different
components of a software system. Code fragments that are
exactly same or very similar to each other are known as
clones. The impacts of clones are of great concern from
the maintenance point of view. Researchers have tried to
find out the impacts of clones indirectly by determining the
comparative stabilities of cloned and non-cloned code from
different perspectives. The intuition is that, if cloned code
is more stable (gets less frequent changes) than non-cloned
code in general, cloned code does not increase maintenance
effort and is not harmful for the maintenance phase as well.

There are a number of existing methods for calculating
stabilities of cloned and non-cloned code of a subject system.
Most of these [4], [5], [10], [13] calculate stability in

terms of instability or changeability. Only one method [11]
calculate stability in terms of age of LOC. Instability has
been measured in two ways (i) by the ratio of the total
number of lines added, deleted and modified in a code region
to the total number of lines of the code region and (ii) by
determining the modification frequency of a code region
where the modification frequency [5] considers the number
of occurrences of addition, deletion and modification. Each
occurrence can consist of several consecutive lines. The
remaining approach [11] calculates the average last change
dates of cloned and non-cloned code regions using the blame
command of SVN.

Each of these existing approaches lacks some important
information. These are about whether the changes are taking
place to the same regions repeatedly or to different regions
during the evolution of a software system. This information
is very important for analyzing code stability as well as
its impact. Repeated changes to the same code region (e.g.
method) are more manageable as compared to the scattered
changes at different regions. If a change takes place to a
method for the first time, programmers need to spend a con-
siderable amount of time to understand the method context
and to determine the possible impacts of the changes to other
related code regions (or methods). This might be necessary
that relevant changes need to be propagated to other similar
code fragments (clones) to maintain consistency. Even a
very small change might have a great impact to the whole
software system (According to a recent study [6], every
second unintentional inconsistent change to a clone leads
to a fault). However, further changes to the same method
do not possibly require much effort because the impact
analysis of changes to this method has already been done.
Thus, several changes to different code regions generally
are more difficult to tackle than those changes in the same
code region. We can thus say that, if during the evolution
of a software system, C changes take place to n1 different
regions of cloned code and the same number of changes
(C) take place to n2 different regions of non-cloned code
for the same number of consecutive revisions where n1 >n2,
then, for this software system non-cloned code is more stable
than cloned code because modifications in the cloned code
require more effort to be managed than those of its non-
cloned counterpart.

To incorporate this information in the stability mea-
surement process we have introduced dispersion, a new
stability measurement metric, which we have defined by

the percentage of unique methods affected by changes in
cloned or non-cloned regions. We have calculated dispersion
using method level granularity. For determining whether the
changes are taking place to the same or different locations
(methods) during the evolution we have extracted method
genealogies from all the revisions of a subject system.

During the evolution of a software system a particular
method might be created in a particular revision and can
remain alive in multiple consecutive revisions. Each of these
revisions has separate instances of this method. Method
genealogy identifies all of these instances as belonging to
the same method. Extraction of method genealogies is a
complex and time consuming task which can be divided into
multiple smaller independent tasks that can be executed in
parallel to reduce the time complexity of sequential calcula-
tion. In this paper, we have also proposed and implemented
a parallel and distributed framework for method genealogy
extraction and used the framework for calculating change
dispersion.

Our experimental results on 12 subject systems covering
three different programming languages considering all three
major types (Type-1, Type-2,Type-3) of clones using two
clone detection tools (CCFinderX [3] and NiCad [16])
indicate that, dispersion of changes in the cloned code is
higher than the dispersion of changes in the non-cloned
code. In other words, the percentage of methods affected
by changes in cloned code is greater than the percentage of
methods affected by the changes in non-cloned code. Thus,
cloned code is possibly more vulnerable than the non-cloned
code to the maintenance phase. We have also found that,
Type-3 clones exhibit higher dispersion as compared to the
Type-1 and Type-2 clones. The subject systems written in
Java and C show higher dispersions in the maintenance phase
as compared to the C# systems.

The rest of the paper is organized as follows: Section
II outlines the relevant research, Section III elaborates dis-
persion, the concurrent framework for method genealogy
extracton is described in Section IV and Section V extends
the concurrent framework for calculating dispersion. Section
VI contains the experimental setup. The experimental result
is presented in Section VII. Section VIII describes possi-
ble threats to validity and Section IX contains concluding
remarks and future works.

II. RELATED WORK

Over the last several years, the impact of clones has
been an area of focus for software engineering research
resulting in a significant number of studies and empiri-
cal evidence. Kim et al. [8] proposed a model of clone
genealogy. Their study with the revisions of two medium
sized Java systems showed that refactoring clones may not
always improve software quality. They also argued that
aggressive and immediate refactoring of short-lived clones is
not required and that such clones might not be harmful. Saha

et al. [17] extended their work by extracting and evaluating
code clone genealogies at the release level of 17 open
source systems involving four different languages. Their
study reports similar findings to Kim et al. and concludes
that most of the clones do not require any refactoring effort.

Kapser and Godfrey [7] strongly argued against the con-
ventional belief of harmfulness of clones. In their study they
identified different patterns of cloning and showed that about
71% of the cloned code has a kind of positive impact in
software maintenance. They concluded that cloning can be
an effective way of reusing stable and mature features.

Lozano and Wermelinger [14] developed a prototype tool
to track the frequency of changes of cloned and non-cloned
code with method level granularity. On the basis of their
study on four open source systems they concluded that
the existence of cloned code within a method significantly
increases the required effort to change the method. In a
recent study [13] they further analyzed clone imprints over
time and observed that cloned methods remain cloned most
of their life time and cloning introduces a higher density of
modifications in the maintenance phase.

Juergens et al. [6] studied the impact of clones on large
scale commercial systems and suggested that inconsistent
changes occurs frequently with cloned code and nearly every
second unintentional inconsistent change to a clone leads
to a fault. Aversano et al. [2] on the other hand, carried
out an empirical study that combines the clone detection
and co-change analysis to investigate how clones are main-
tained during evolution or bug fixing. Their case study
on two subject systems confirmed that most of the clones
are consistently maintained. Thummalapenta et al. [19] in
another empirical study on four subject systems concluded
that most of the clones are changed consistently and other
inconsistently changed fragments evolve independently.

In a recent study [4] Göde and Harder replicated and
extended Krinke’s study [10] using an incremental clone
detection technique to validate the outcome of Krinke’s
study. They supported Krinke by assessing cloned code to
be more stable than non-cloned code in general while this
scenario reverses with respect to deletions.

Hotta et al. [5] studied the impact of clones by measuring
the modification frequencies of cloned and noncloned code
of several subject systems. Their study using different clone
detection tools suggests that the presence of clones does not
introduce extra difficulties to the maintenance phase.

Krinke [9] measured how consistently the code clones are
changed during maintenance using Simian [18] and diff on
Java, C and C++ code bases considering Type-I clones only.
He found that clone groups changed consistently through
half of their lifetime. In another experiment he showed that
cloned code is more stable than non-cloned code [10]. In his
most recent study [11] he calculated the average last change
dates of the cloned and non-cloned code and observed that
cloned code is more stable than non-cloned code.

None of the existing studies have measured the dispersion
of changes. But, without measuring dispersion we cannot
accurately measure the impact of a particular region (cloned
or non-cloned). We have introduced and measured dispersion
in this paper. Our experimental results suggest that, the
changes in the cloned regions are more dispersed than the
changes in the non-cloned regions of a subject system.

III. CALCULATION OF DISPERSION

We consider method level granularity for measuring dis-
persion. A method is defined as a cloned method when it
contains some cloned lines in it. According to our consid-
eration there are two types of cloned methods (i) fully
cloned methods (all of the lines contained in these methods
are cloned lines) and (ii) partially cloned methods (these
methods contain some non-cloned portions). For calculating
the dispersion of cloned code, we consider the changes
in the cloned portions of the cloned (fully or partially)
methods. Partially cloned methods have also been considered
while calculating the dispersion of non-cloned code because,
changes might occur in the non-cloned portions of the
partially cloned methods. Also, while determining method
genealogies it might be seen that, a partially cloned method
has become fully cloned or fully non-cloned after receiving a
change. These methods have been considered in calculating
the dispersions of both cloned and non-cloned code.

Suppose, we have a subject system of R revisions. At first,
we find the methods and their boundaries in each revision.
Then, we extract the method genealogies from these revi-
sions and determine the unique methods. A unique method is
a method which gets created in a particular revision and lives
in several consecutive revisions with or without changes.
Then, we apply a clone detection tool in these revisions
to determine the clone blocks. By determining which clone
block is contained in which method, we calculate the counts
of unique cloned and non-cloned methods. We also deter-
mine the changes between consecutive revisions and reflect
these changes to the cloned and non-cloned portions of the
methods.

Suppose, for a subject system, the counts of unique cloned
and unique non-cloned methods are C and N respectively.
Cc is the number of unique cloned methods which got some
changes in their cloned portions during the evolution. The
number of changes received by Cc unique cloned methods is
generally greater than Cc. Also, Nc is the number of unique
non-cloned methods that received some changes in their
non-cloned portions. If we denote the change dispersions
of cloned code and non-cloned code by CDc and CDn re-
spectively, they can be expressed by the following equations.

CDc =
Cc × 100

C
(1)

CDn =
Nc × 100

N
(2)

IV. CONCURRENT FRAMEWORK FOR METHOD
GENEALOGY EXTRACTION

The huge task of method genealogy extraction can be
divided into multiple smaller tasks which can be executed by
different processes in parallel on different processors of the
same machine or on different machines connected through
an interconnection network. The results of these tasks can be
combined to achieve the final result. We need to emphasize
on the following objectives during the division of tasks.

(1) The tasks should not be too small so that, the processes
can spend more time on task completion rather than inter-
process communication.

(2) The processes should synchronize among themselves
to ensure the consistency of execution.

(3) Task distribution should ensure load balancing.
Focusing on these objectives, we have defined our ge-

nealogy extraction model as a ‘Manager-Workers’ paradigm
where there is a single manager who manages or coordinates
the tasks of several workers. At the very begining of exe-
cution, manager divides the whole range of revisions into
a number of sub-ranges of equal length. Each sub-range
contains multiple consecutive revisions and the count of sub-
ranges is equal to the number of workers. The manager then
assigns each of the sub-ranges to a particular worker. Each
worker is responsible for the extraction and mapping of the
methods of the revisions it has been assigned to. To get
the final method mapping for the whole range of revisions,
the workers need to synchronize among themselves. The
synchronization process is described below with an example.

Suppose, two workers worker1 and worker2 are respon-
sible for revisions with ranges 1 to 10 and 11 to 20
respectively. Each worker will have to complete the extrac-
tion and mapping of methods of its respective revisions.
Each worker is disciplined in such a way that, it at first
extracts the methods of ith revision in its range, stores the
methods with associated information into a file and then
maps the methods remaining in the files resulted from ith

and (i− 1)th revisions. Then, the worker proceeds with the
(i+1)th revision. With this discipline, worker2 will be able
to extract the methods of 11th revision but will not be able
to complete the mapping between 10th and 11th revisions.
Because, worker2 does not know whether the methods from
10th revision have been extracted and stored by worker1.
Worker1 and worker2 are executing in parallel by starting
their execution at arround the same time and are processing
their respective range of revisions begining with the very
first revisions of their ranges. With proper load balancing,
it is likely that, worker1 and worker2 will be processing
respectively the 10th and 20th revisions at around the same
time. In this case, worker1 needs to send a message to
worker2 after it has extracted and stored the methods of
10th revision. Worker2, in this situation, extracts methods of
revisions 11 to 20 and performs mapping on the revisions 12

to 20 and then waits for the message from worker1. After
getting the message, worker2 performs mapping between
revesions 10 and 11.

V. CALCULATING DISPERSION USING CONCURRENT
FRAMEWORK

The activities of the manager and workers can be extended
for calculating dispersion. In this case, the manager not only
distributes the revisions to the workers but also collects the
values of four counters (C,N,Cc,Nc) from the workers. By
calculating the final values of these four counters, manager
calculates the dispersions of cloned and non-cloned code.

In this case, after extracting the genealogies, each worker
should send message to all other workers to inform that,
it has completed extracting genealogies for the revisions of
its range. After getting messages from all other workers, a
worker begins examining the genealogies of unique methods
belonging to the revisions of its range. As the workers
examine the method genealogies of their ranges, they update
their respective set of counters (C,N,Cc,Nc). At the end of
examination, they send these counters to the manager.

The following sections describe how we have downloaded
the subject systems and how we have calculated the disper-
sions of cloned and non-cloned code.

A. Extraction of repositories

All of the subject systems (listed in Table II) on which
we have applied our method to calculate dispersion have
been downloaded from open source SVN repositories. For a
subject system, we extracted only those revisions which were
created because of some source code modification (addition,
deletion or change). To determine whether a revision should
be extracted or not, we checked the extensions of the files
which were modified to create the revision. If some of these
modified files are source files, we considered the revision as
our target revision and extracted it.

B. Preprocessing

We applied two preprocessings on the source files of each
target revision of a subject system before clone detection.
These are - (i) deletion of lines containing only a single
brace (‘{’ or ‘}’) and appending the brace at the end of the
previous line and (ii) removal of comments and blank lines.

C. Method detection and extraction

For detecting the methods we applied CTAGS on the
source files of a revision. For each method we collected
- (i) file name, (ii) class name (Java and C# systems), (iii)
package name (Java), (iv) method name, (v) signature, (vi)
starting line number and (vii) ending line number. We also
assigned a unique id to each method. However, the id of a
method of one revision can be the same as that of a method
of another revision. This does not introduce conflicts because
separate file is generated for each revision.

D. Clone detection

We have used CCFinderX [3] and NiCad [16] for detect-
ing clones in our experiment. CCFinderX is a token based
clone detection tool that currently detects block clones of
Type-1 and Type-2. Also, NiCad is a recently introduced
clone detection tool that can detect three types of clones
(Type-1, Type-2, Type-3) with high precision and recall [15]
considering both block level and method level granularities.

We applied these two clone detection tools to each target
revision to detect clone blocks. These clone blocks were then
mapped to the already detected methods of this revision by
comparing the beginning and ending line numbers of clone
blocks and methods. So, for each method we collect the be-
gining and ending cloned line numbers (if exist). CCFinderX
currently outputs the beginning and ending token numbers
of clone blocks. We automatically retrieve the corresponding
line numbers from the generated preprocessed files.

E. Detection and reflection of changes

We identified the changes between corresponding files
of consecutive revisions using UNIX diff command. diff
outputs three types of changes (i) addition, (ii) deletion
and (iii) modification with corresponding line numbers. We
mapped these changes to methods using line information.
So, for each method we gathered two more information -
the count of lines changed in cloned portions and the count
of changed lines in non-cloned portions.

F. Storage of methods

At this stage, we have got all necessary pieces of infor-
mation of all methods belonging to a particular revision. We
store these methods in an xml file with individual entry for
each method. For each revision we generated separate xml
file containing the methods of the corresponding revision. A
file name is constructed by appending the revision number
at its end so that, we can generate it when necessary (for
getting previously stored methods of the unchanged files of
a former revision and for calculating dispersion).

G. Method mapping

For mapping methods between two consecutive revisions
we followed the origin analysis technique proposed by
Lozano and Wermelinger [14]. This technique uses a com-
bination of location and signature similarities to determine
which method of revision i corresponds to which method of
revision i+1. Some methods of revision i might get deleted
in revision i+1 and also some new methods might be created
in the (i+1)-th revision. We stored the mapping information
for each two consecutive revisions in a separate file. Method
mapping was accomplished using method ids. The file names
contain the revision numbers in a disciplined way so that we
can generate them when necessary.

H. Calculation of dispersion
For calculating dispersion we examine the genealogy of

each unique method and during this examination we update
four counters - (i) the count of unique cloned methods
(C) (ii) the count of unique non-cloned methods (N) (iii)
the count of unique cloned methods which have got some
changes in their cloned portions (Cc) and (iv) the count of
unique non-cloned methods which have got some changes
in their non-cloned portions (Nc).

For examining the genealogy of a particular unique
method we at first determine the revision in which it
was created. Begining with this revision we examine the
instances of the method in all consecutive revisions where
it was alive. While examining the genealogy of a particular
method we updated the counters in the following way.
● If any of these instances contain a cloned portion, we

increment the counter C by 1.
● If one or more of these instances contain a non-cloned

portion, we increment N by 1.
● If one or more of these instances get some changes in

their cloned portions, we increment Cc by 1.
● If one or more of these instances get some changes in

their non-cloned portions, we increment Nc by 1.
This is obvious that, the genealogy of a particular unique
method can increment each of the counters by at most 1.

In the parallel and distributed environment, each of the
workers is assigned a particular range of revisions. A partic-
ular worker examines the genealogies of only those methods
which have been created in the revisions they are responsible
for. Each worker has its respective set of four counters
which are updated by this worker only. After examining
all the unique methods of all the revisions in a range, the
associated worker sends its copy of four counters to the
manager. The manager gets all the instances of each of the
counters, adds the respective instances to get the final values
of these counters and calculates the dispersions (CDc, CDn)
using the equations Eq. 1 and Eq. 2 respectively.

I. Message passing technique
To provide message passing facility to the manager and

the workers, we implemented them in Java using Actor
Architecture platform [1]. The Actor Architecture platform
provides a class named ’Actor’ which is extended by each of
the workers and the manager. Before activating the manager
and workers in a machine we at first need to run the Actor
Architecture platform on that machine. If the workers are
distributed in more than one machine, each of the machines
needs to run the platform.

VI. EXPERIMENTAL SETUP

A. Setup for CCFinderX
We set CCFinderX to detect clone blocks of minimum

30 tokens with TKS (minimum number of distinct types of
tokens) set to 12 (as default).

Table I: NiCad Settings

Clone Types Identifier Renaming Dissimilarity Threshold

Type 1 none 0%
Type 2 blindrename 0%
Type 3 blindrename 20%

Table II: Subject Systems

Systems Domains LOC Revisions

Ja
va

DNSJava DNS protocol 23,373 1635
Ant-Contrib Web Server 12,621 176
Carol Game 25,092 1699
jabref Project Management 79,853 32

C

Ctags Code Def. Generator 33,270 774
Camellia Multimedia 85,015 55
QMail Admin Mail Management 4,054 317
Gnumakeuniproc Project Building 83,269 110

C
#

GreenShot Multimedia 37,628 999
ImgSeqScan Multimedia 12,393 73
Capital Resource Database Management 75,434 122
MonoOSC Formats and Protocols 18,991 355

B. Setup for NiCad

Using NiCad we detected block clones with a minimum
size of 5 LOC in the pretty-printed format that removes
comments and formatting differences. We used the NiCad
settings in Table I for detecting three types of clones. The
dissimilarity threshold means that the clone fragments in
a particular clone class may have dissimilarities up to that
particular threshold value between the pretty-printed and/or
normalized code fragments. For all the settings in Table I
NiCad was shown to have high precision and recall [15].
Before using the NiCad outputs of Type-2 and Type-3 cases,
we processed them in the following ways.

(1) Every Type-2 clone class that exactly matched any
Type-1 clone class was excluded from Type-2 outputs.

(2) Every Type-3 clone class that exactly matched any
Type-1 or Type-2 clone class was excluded from Type-3
outputs.

C. Subject Systems

Table II lists the subject systems that were included in
our study along with their associated attributes. We selected
this set of subject systems for a number of reasons. The
subject systems are diverse, differing in size, spanning 10
different application domains, and covering three different
programming languages.

D. Concurrent framework

We have implemented the concurrent framework for cal-
culating dispersion in Java programming language using the
Actor Architecture platform [1]. We executed our framework
on multiple machines connected with an interconnection
network. The concurrent framework was significantly faster
than the sequential program which we implemented initially
for genealogy extraction.

Table III: Comparative dispersions of Cloned and Non-cloned Methods

L
an

g Type 1 Type 2 Type 3 CCFinder
Systems CDc CDn Rem CDc CDn Rem CDc CDn Rem CDc CDn Rem

Ja
va

DNSJava 24.53 5.91 ⊖ 15.17 7.82 ⊖ 18.16 7.55 ⊖ 18 7 ⊖
Ant-Contrib 17.64 1.63 ⊖ 2.22 1.95 ⊖ 5 1.97 ⊖ 5 0 ⊖
Carol 5.87 19.50 ⊕ 9.35 19.33 ⊕ 18.92 19.72 ⊗ 23 7 ⊖
jabref 11.23 20.43 ⊕ 8.95 21.78 ⊕ 13.05 18.44 ⊕ 31 8 ⊖

C

Ctags 0 10.04 ⊕ 20 9.66 ⊖ 14.53 9.78 ⊖ 21 10 ⊖
Camellia 0 9.85 ⊕ 12.5 9.55 ⊖ 35 8.76 ⊖ 30 9 ⊖
QMail Admin 50 7.29 ⊖ 42.85 8.03 ⊖ 60 8.15 ⊖ 50 12 ⊖
Gnumakeuniproc 12.5 0.42 ⊖ 0 0.50 ⊕ 1.38 0.51 ⊖ 1.26 2.73 ⊕

C
#

GreenShot 8.88 29.32 ⊕ 22.96 29.49 ⊕ 30.37 30.47 ⊗ 14 5 ⊖
ImgSeqScan 0.0 3.76 ⊕ 0.0 3.73 ⊕ 0.0 3.72 ⊕ 25 0.55 ⊖
Capital Resource 0.0 4.92 ⊕ 0.0 4.79 ⊕ 3.95 4.47 ⊕ 3.95 4.58 ⊕
MonoOSC 3.17 10.48 ⊕ 5.26 10.42 ⊕ 39.13 10.03 ⊖ 39.44 12 ⊖

CDc= Dispersion of Changes in Cloned Methods CDn= Dispersion of Changes in Non-cloned Methods
⊕ = CDc <CDn ⊖ = CDc >CDn

⊗ = Difference between the dispersions of cloned and non-cloned methods is not significant.

VII. EXPERIMENTAL RESULTS AND DISCUSSION

The magnitudes of dispersions of cloned and non-cloned
code for each of the subject systems with associated remarks
are shown in the Table III which contains 48 (12 subject sys-
tems × 4 cases) decision points. Each point consists of a par-
ticular subject system and a particular case (Type1, Type2,
Typ3 or CCFinder) and contains corresponding dispersions
(CDc, CDn) and a remark (Rem). The decision points are
categorized into three categories which are explained below.

Category 1. For these points (indicated by ⊕), the
changes in cloned code were less dispersed than the changes
in non-cloned code (CDc <CDn).

Category 2. The decision points marked with ⊖ signs
indicate that changes in non-cloned code were less dispersed
than those of cloned code (CDn <CDc).

Category 3. For these points (marked with ⊗), we have
not got significant differences between the corresponding
dispersions of cloned and non-cloned code.

To determine whether the difference between the dis-
persions of cloned and non-cloned code of a subject sys-
tem for a particular case is significant we calculated an
Eligibility V alue on the observed dispersions according
to the following equation.

EligibilityV alue = (HCD −LCD) ∗ 100
LCD

(3)

Here, HCD stands for Higher Change Dispersion where
LCD is elaborated as Lower Change Dispersion. An eli-
gibility value of at least 10 is treated as a significant one.

If this EligibilityV alue is greater than the threshold
value, the subject system will be counted as belonging to
Category1 or Category2 (if CDc <CDn then Category1
otherwise Category2). We have selected the calculation
procedure and the threshold magnitude of ElibigilityV alue
in such a way that, they will force a subject system hav-
ing larger but very near dispersions (such as 41 and 40.

EligibilityV alue = (41-40)*100/40 = 2.5) to be selected
in Category3 while a subject system with smaller but near
dispersions (such as 3 and 4. EligibilityV alue = 33.33) to
be selected in Category1 or Category2 which is expected.

Overall analysis: Among 48 decision points of Table
III, 46 points fall in category 1 or category 2. We call them
significant decision points because the differences between
the dispersions for these points are significant according to
the Eligibility Value of equation Eq. 3. We have ignored the
remaining 2 decision points marked with (⊗).

According to 44.44% of the significant points, dispersion
of changes in cloned code is less than the dispersion of
changes in non-cloned code. The opposite is true for the
remaining 55.56% points. Though the difference between
the percentages is not much significant, it indicates that,
the changes in the cloned portions of a subject system
are more scattered than the changes in the non-cloned
portions. In other words, the proportion of methods affected
by the changes in cloned code is generally greater than the
proportion of methods affected by the changes in the non-
cloned code.

Language centric analysis: From the graph in Fig. 1 we
see that, in case of Java, 66.67% of the significant decision
points suggest higher dispersion of changes in the cloned
code, whereas it is 75% for C and 26.67% for C#. Thus,
as regards to dispersion, both Java and C are possibly more
vulnerable for the maintenance phase with C being the most
threatened one. The vulnerability imposed by the clones of
C# systems is much lower than the correspondig non-cloned
code and thus can be ignored.

Type centric analysis: According to the type centric
statistics of the graph in Fig. 2, each of the clone types
of Java and C poses some vulnerability to the maintenance
phase with Type-3 being the most vulnerable one for each of
these two languages. Our results also show that, no decision
points belonging to Type 1 and Type 2 cases of C# exhibit

Figure 1: Programming language centric statistics

Figure 2: Type centric statistics for each prog. language

higher dispersion of cloned code. Thus, we possibly do not
need to pay much attention for these two types of clones
of C#. However, Type 3 clones of this language should be
taken care of.

VIII. THREATS TO VALIDITY

We calculated and analyzed the dispersions of changes
of cloned and non-cloned code for only 12 subject systems
which are no way sufficient for taking any general decision
about different types of clones and programming languages.
Also, some other important factors such as programmer ex-
pertise, application domain, programmer‘s knowledge about
appilcation domain were not considered in our experiment.
But, our selection of subject systems considering ten appli-
cation domains, three programming languages, diversified
sizes and revisions have considerably minimized these lack-
ings, and thus we believe that our findings are significant.

IX. CONCLUSION

In this paper, we have introduced a new metric dis-
persion (of changes) which measures how much scattered
the changes in a particular code region (cloned or non-
cloned) are. Calculation of dispersion requires the extraction
of method genealogies. We have also proposed a parallel
and distributed framework for method genealogy extraction
and extended this framework for calculating dispersion. We

implemented this extended framework on Actor Architecture
platform. Our concurrent framework will help the future
software engineering research (that involve the processing
of multiple revisions) by reducing a significant amount
of processing time. The introduced metric will assist in
fine grained calculation of the impacts of cloned and non-
cloned code in the maintenance phase. Our experimental
result on 12 open source subject systems written in three
different programming languages suggests that, the changes
in cloned code are more dispersed than the changes in non-
cloned code. So, according to the dispersion of changes,
cloned code requires more maintenance effort than non-
cloned code. Also, Type-3 clones show more dispersed
changes as compared to the other two clone types (Type-
1 and Type-2). Moreover, the subject systems written in
Java and C show higher dispersions than the subject systems
written in C#. We are planning to investigate the dispersions
of cloned and non-cloned code for different application
domains to determine which type of applications generally
exhibit higher change dispersions.

REFERENCES

[1] Actor Architecture platform. http://www.docstoc.com/docs/5693312/
Actor-Architecture.

[2] L. Aversano, L. Cerulo, M. D. Penta, “How clones are maintained:
An empirical study”, in Proc. CSMR, 2007, pp. 81-90.

[3] CCFinderX. http://www.ccfinder.net/ccfinderxos.html
[4] N. Göde, J. Harder, “Clone Stability”, in Proc. CSMR, 2011, pp.

65-74.
[5] K. Hotta, Y. Sano, Y. Higo, S. Kusumoto, “Is Duplicate Code

More Frequently Modified than Non-duplicate Code in Software
Evolution?: An Empirical Study on Open Source Software”, in Proc.
EVOL/IWPSE, 2010, pp. 73-82

[6] E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner, “Do Code
Clones Matter?”, in Proc. ICSE, 2009, pp. 485-495.

[7] C. Kapser and M. W. Godfrey, ““Cloning considered harmful”
considered harmful: patterns of cloning in software”, Emp. Soft. Eng.
13(6), 2008, pp. 645-692.

[8] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy, “An empirical
study of code clone genealogies”, in Proc. ESEC-FSE, 2005, pp.
187-196.

[9] J. Krinke, “A study of consistent and inconsistent changes to code
clones”, in Proc. WCRE, 2007, pp. 170-178.

[10] J. Krinke, “Is cloned code more stable than non-cloned code?”, in
Proc. SCAM, 2008, pp. 57-66.

[11] J. Krinke, “Is Cloned Code older than Non-Cloned Code?”, in Proc.
IWSC, 2011, pp. 28-33.

[12] A. Lozano, M. Wermelinger, B. Nuseibeh, “Evaluating the Harmful-
ness of Cloning: A Change Based Experiment”, in Proc. MSR, 2007,
pp. 18-21.

[13] A. Lozano and M. Wermelinger, “Tracking clones’ imprint”, in Proc.
IWSC, 2010, pp. 65-72.

[14] A. Lozano, and M. Wermelinger, “Assessing the effect of clones on
changeability”, in Proc. ICSM, 2008, pp. 227-236.

[15] C. K. Roy and J. R. Cordy, “A mutation / injection-based automatic
framework for evaluating code clone detection tools,” in Proc. ICST
Mutation, 2009, pp. 157–166.

[16] C.K. Roy and J.R. Cordy, “NICAD: Accurate Detection of Near-
Miss Intentional Clones Using Flexible Pretty-Printing and Code
Normalization,” in Proc. ICPC, 2008, pp. 172–181.

[17] R. K. Saha, M. Asaduzzaman, M. F. Zibran, C. K. Roy, and K. A.
Schneider, “Evaluating code clone genealogies at release level: An
empirical study”, in Proc. SCAM, 2010, pp. 87-96.

[18] “Simian - Similarity Analyser”. http://www.harukizaemon.com/
simian/index.html.

[19] S. Thummalapenta, L. Cerulo, L. Aversano, and M. D. Penta, “An
empirical study on the maintenance of source code clones”, in Emp.
Soft. Engg., 15(1), 2009, pp. 1-34.

